首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alzheimer's disease (AD) is characterized by increased beta amyloid (Abeta) levels, extracellular Abeta deposits in senile plaques, neurofibrillary tangles, and neuronal loss. However, the physiological role of normal levels of Abeta and its parent protein, the amyloid precursor protein (APP) are unknown. Here we report that low-level transgenic (Tg) expression of the Swedish APP mutant gene (APPswe) in Fischer-344 rats results in attenuated age-dependent cognitive performance decline in 2 hippocampus-dependent learning and memory tasks compared with age-matched nontransgenic Fischer-344 controls. TgAPPswe rats exhibit mild increases in brain APP mRNA (56.8%), Abeta-42 (21%), and Abeta-40 (6.1%) peptide levels at 12 mo of age, with no extracellular Abeta deposits or senile plaques at 6, 12, and 18 mo of age, whereas 3- to 6-fold increases in Abeta levels are detected in plaque-positive human AD patients and transgenic mouse models. The data support the hypothesis that a threshold paradigm underlies Abeta-related pathology, below which APP expression may play a physiological role in specific hippocampus-dependent tasks, most likely related to its neurotrophic role.  相似文献   

2.
3.
Cyclic AMP-responsive element binding protein (CREB) activity is known to contribute to important neuronal functions, such as synaptic plasticity, learning and memory. Using a microelectroporation technique to overexpress dominant negative mutant CREB (mCREB) in the adult mouse brain, we found that overexpression of mCREB in the forebrain cortex induced neuronal degeneration. Our findings suggest that constitutively active CREB phosphorylation is important for the survival of mammalian cells in the brain.  相似文献   

4.
Extracellular accumulation of beta-amyloid peptide (Abeta) has been linked to the development of Alzheimer disease. The importance of intraneuronal Abeta has been recognized more recently. Although considerable evidence indicates that extracellular Abeta contributes to the intracellular pool of Abeta, the mechanisms involved in Abeta uptake by neurons are poorly understood. We examined the molecular mechanisms involved in Abeta-(1-42) internalization by primary neurons in the absence of apolipoprotein E. We demonstrated that Abeta-(1-42) is more efficiently internalized by axons than by cell bodies of sympathetic neurons, suggesting that Abeta-(1-42) uptake might be mediated by proteins enriched in the axons. Although the acetylcholine receptor alpha7nAChR, previously suggested to be involved in Abeta internalization, is enriched in axons, our results indicate that it does not mediate Abeta-(1-42) internalization. Moreover, receptors of the low density lipoprotein receptor family are not essential for Abeta-(1-42) uptake in the absence of apolipoprotein E because receptor-associated protein had no effect on Abeta uptake. By expressing the inactive dynamin mutant dynK44A and the clathrin hub we found that Abeta-(1-42) internalization is independent of clathrin but dependent on dynamin, which suggests an endocytic pathway involving caveolae/lipid rafts. Confocal microscopy studies showing that Abeta did not co-localize with the early endosome marker EEA1 further support a clathrin-independent mechanism. The lack of co-localization of Abeta with caveolin in intracellular vesicles and the normal uptake of Abeta by neurons that do not express caveolin indicate that Abeta does not require caveolin either. Instead partial co-localization of Abeta-(1-42) with cholera toxin subunit B and sensitivity to reduction of cellular cholesterol and sphingolipid levels suggest a caveolae-independent, raft-mediated mechanism. Understanding the molecular events involved in neuronal Abeta internalization might identify potential therapeutic targets for Alzheimer disease.  相似文献   

5.
The conversion of soluble, non-toxic amyloid beta-protein (Abeta) to aggregated, toxic Abeta could be the key step in the development of Alzheimer's disease. Liposomal studies have proposed that Abeta-(1-40) preferentially recognizes a cholesterol-dependent cluster of gangliosides and a conformationally altered form of Abeta promotes the aggregation of the protein. Cell experiments using fluorescein-labeled Abeta-(1-40) supported this model. Here, the interaction of native Abeta-(1-42) with unfixed rat pheochromocytoma PC12 cells was visualized using the amyloid-specific dye Congo red. Abeta-(1-42) preferentially bound to ganglioside and cholesterol-rich domains of cell membranes and formed amyloids in a time-dependent manner. These observations corroborate the model involving ganglioside-mediated accumulation of Abeta. The NGF-induced differentiation of PC12 cells into neuron-like cells caused a marked increase in both gangliosides and cholesterol, and thereby greatly potentiated the accumulation and cytotoxicity of Abeta-(1-42). NGF-differentiated cells exposed to Abeta-(1-42) had degenerated neurites, in which ganglioside and cholesterol-rich domains were localized, preceding cell death. A reduction in the amount of cholesterol by the cholesterol synthesis inhibitor compactin almost nullified the formation of amyloids by Abeta-(1-42). Our system using NGF-differentiated PC12 cells and Congo red is useful for screening inhibitors of the formation of amyloids by and cytotoxicity of Abeta.  相似文献   

6.
Cyclophilin D (CypD, encoded by Ppif) is an integral part of the mitochondrial permeability transition pore, whose opening leads to cell death. Here we show that interaction of CypD with mitochondrial amyloid-beta protein (Abeta) potentiates mitochondrial, neuronal and synaptic stress. The CypD-deficient cortical mitochondria are resistant to Abeta- and Ca(2+)-induced mitochondrial swelling and permeability transition. Additionally, they have an increased calcium buffering capacity and generate fewer mitochondrial reactive oxygen species. Furthermore, the absence of CypD protects neurons from Abeta- and oxidative stress-induced cell death. Notably, CypD deficiency substantially improves learning and memory and synaptic function in an Alzheimer's disease mouse model and alleviates Abeta-mediated reduction of long-term potentiation. Thus, the CypD-mediated mitochondrial permeability transition pore is directly linked to the cellular and synaptic perturbations observed in the pathogenesis of Alzheimer's disease. Blockade of CypD may be a therapeutic strategy in Alzheimer's disease.  相似文献   

7.
Ikeda K  Okada T  Sawada S  Akiyoshi K  Matsuzaki K 《FEBS letters》2006,580(28-29):6587-6595
The formation of fibrils by amyloid beta-protein (Abeta) is considered as a key step in the pathology of Alzheimer's disease (AD). Inhibiting the aggregation of Abeta is a promising approach for AD therapy. In this study, we used biocompatible nanogels composed of a polysaccharide pullulan backbone with hydrophobic cholesterol moieties (cholesterol-bearing pullulan, CHP) as artificial chaperones to inhibit the formation of Abeta-(1-42) fibrils with marked amyloidgenic activity and cytotoxicity. The CHP-nanogels incorporated up to 6-8 Abeta-(1-42) molecules per particle and induced a change in the conformation of Abeta from a random coil to alpha-helix- or beta-sheet-rich structure. This structure was stable even after a 24-h incubation at 37 degrees C and the aggregation of Abeta-(1-42) was suppressed. Furthermore, the dissociation of the nanogels caused by the addition of methyl-beta-cyclodextrin released monomeric Abeta molecules. Nanogels composed of amino-group-modified CHP (CHPNH(2)) with positive charges under physiological conditions had a greater inhibitory effect than CHP-nanogels, suggesting the importance of electrostatic interactions between CHPNH(2) and Abeta for inhibiting the formation of fibrils. In addition, CHPNH(2) nanogels protected PC12 cells from Abeta toxicity.  相似文献   

8.
Accumulation of amyloid (Abeta) peptides has been suggested to be the primary event in Alzheimer's disease. In neurons, K+ channels regulate a number of processes, including setting the resting potential, keeping action potentials short, timing interspike intervals, synaptic plasticity, and cell death. In particular, A-type K+ channels have been implicated in the onset of LTP in mammalian neurons, which is thought to underlie learning and memory. A number of studies have shown that Abeta peptides alter the properties of K+ currents in mammalian neurons. We set out to determine the effects of Abeta peptides on the neuronal A-type K+ channels of Drosophila. Treatment of cells for 18 h with 1 microM Abeta1-42 altered the kinetics of the A-type K+ current, shifting steady-state inactivation to more depolarized potentials and increasing the rate of recovery from inactivation. It also caused a decrease in neuronal viability. Thus it seems that alteration in the properties of the A-type K+ current is a prelude to the amyloid-induced death of neurons. This alteration in the properties of the A-type K+ current may provide a basis for the early memory impairment that was observed prior to neurodegeneration in a recent study of a transgenic Drosophila melanogaster line over-expressing the human Abeta1-42 peptide.  相似文献   

9.
Because of their abundance, resistance to proteolysis, rapid aggregation and neurotoxicity, N-terminally truncated and, in particular, pyroglutamate (pE)-modified Abeta peptides have been suggested as being important in the initiation of pathological cascades resulting in the development of Alzheimer's disease. We found that the N-terminal pE-formation is catalyzed by glutaminyl cyclase in vivo. Glutaminyl cyclase expression was upregulated in the cortices of individuals with Alzheimer's disease and correlated with the appearance of pE-modified Abeta. Oral application of a glutaminyl cyclase inhibitor resulted in reduced Abeta(3(pE)-42) burden in two different transgenic mouse models of Alzheimer's disease and in a new Drosophila model. Treatment of mice was accompanied by reductions in Abeta(x-40/42), diminished plaque formation and gliosis and improved performance in context memory and spatial learning tests. These observations are consistent with the hypothesis that Abeta(3(pE)-42) acts as a seed for Abeta aggregation by self-aggregation and co-aggregation with Abeta(1-40/42). Therefore, Abeta(3(pE)-40/42) peptides seem to represent Abeta forms with exceptional potency for disturbing neuronal function. The reduction of brain pE-Abeta by inhibition of glutaminyl cyclase offers a new therapeutic option for the treatment of Alzheimer's disease and provides implications for other amyloidoses, such as familial Danish dementia.  相似文献   

10.
11.
Neurotrophic factors in Alzheimer's disease: role of axonal transport   总被引:4,自引:0,他引:4  
Neurotrophic factors (NTF) are small, versatile proteins that maintain survival and function to specific neuronal populations. In general, the axonal transport of NTF is important as not all of them are synthesized at the site of its action. Nerve growth factor (NGF), for instance, is produced in the neocortex and the hippocampus and then retrogradely transported to the cholinergic neurons of the basal forebrain. Neurodegenerative dementias like Alzheimer's disease (AD) are linked to deficits in axonal transport. Furthermore, they are also associated with imbalanced distribution and dysregulation of NTF. In particular, brain-derived neurotrophic factor (BDNF) plays a crucial role in cognition, learning and memory formation by modulating synaptic plasticity and is, therefore, a critical molecule in dementia and neurodegenerative diseases. Here, we review the changes of NTF expression and distribution (NGF, BDNF, neurotrophin-3, neurotrophin-4/5 and fibroblast growth factor-2) and their receptors [tropomyosin-related kinase (Trk)A, TrkB, TrkC and p75NTR] in AD and AD models. In addition, we focus on the interaction with neuropathological hallmarks Tau/neurofibrillary tangle and amyloid-β (Abeta)/amyloid plaque pathology and their influence on axonal transport processes in order to unify AD-specific cholinergic degeneration and Tau and Abeta misfolding through NTF pathophysiology.  相似文献   

12.
Amyloid beta-peptide (Abeta) is a major component of plaques in Alzheimer's disease, and formation of senile plaques has been suggested to originate from regions of neuronal membrane rich in gangliosides. Here we demonstrate using NMR on 15N-labelled Abeta-(1-40) and Abeta-(1-42) that the interaction with ganglioside G(M1) micelles is localized to the N-terminal region of the peptide, particularly residues His13 to Leu17, which become more helical when bound. The key interaction is with His13, which undergoes a G(M1)-specific conformational change. The sialic acid residue of the ganglioside headgroup is important for determining the nature of the conformational change. The isolated pentasaccharide headgroup of G(M1) is not bound, suggesting the need for a polyanionic surface. Binding to heparin confirms this suggestion, since binding is of similar affinity but does not produce the same conformational changes in the peptide. A comparison of Abeta-(1-40) and Abeta-(1-42) indicates that binding to G(M1) micelles is not related to oligomerization, which occurs at the C-terminal end. These results imply that binding to ganglioside micelles causes a transition from random coil to alpha-helix in the N-terminal region, leaving the C-terminal region unstructured.  相似文献   

13.
Familial Danish dementia is an early onset autosomal dominant neurodegenerative disorder linked to a genetic defect in the BRI2 gene and clinically characterized by dementia and ataxia. Cerebral amyloid and preamyloid deposits of two unrelated molecules (Danish amyloid (ADan) and beta-amyloid (Abeta)), the absence of compact plaques, and neurofibrillary degeneration indistinguishable from that observed in Alzheimer disease (AD) are the main neuropathological features of the disease. Biochemical analysis of extracted amyloid and preamyloid species indicates that as the solubility of the deposits decreases, the heterogeneity and complexity of the extracted peptides exponentially increase. Nonfibrillar deposits were mainly composed of intact ADan-(1-34) and its N-terminally modified (pyroglutamate) counterpart together with Abeta-(1-42) and Abeta-(4-42) in approximately 1:1 mixture. The post-translational modification, glutamate to pyroglutamate, was not present in soluble circulating ADan. In the amyloid fractions, ADan was heavily oligomerized and highly heterogeneous at the N and C terminus, and, when intact, its N terminus was post-translationally modified (pyroglutamate), whereas Abeta was mainly Abeta-(4-42). In all cases, the presence of Abeta-(X-40) was negligible, a surprising finding in view of the prevalence of Abeta40 in vascular deposits observed in sporadic and familial AD, Down syndrome, and normal aging. Whether the presence of the two amyloid subunits is imperative for the disease phenotype or just reflects a conformational mimicry remains to be elucidated; nonetheless, a specific interaction between ADan oligomers and Abeta molecules was demonstrated in vitro by ligand blot analysis using synthetic peptides. The absence of compact plaques in the presence of extensive neuro fibrillar degeneration strongly suggests that compact plaques, fundamental lesions for the diagnosis of AD, are not essential for the mechanism of dementia.  相似文献   

14.
Mutations in presenilins are the major cause of familial Alzheimer's disease, but the pathogenic mechanism by which presenilin mutations cause memory loss and neurodegeneration remains unclear. Here we demonstrate that conditional double knockout mice lacking both presenilins in the postnatal forebrain exhibit impairments in hippocampal memory and synaptic plasticity. These deficits are associated with specific reductions in NMDA receptor-mediated responses and synaptic levels of NMDA receptors and alphaCaMKII. Furthermore, loss of presenilins causes reduced expression of CBP and CREB/CBP target genes, such as c-fos and BDNF. With increasing age, mutant mice develop striking neurodegeneration of the cerebral cortex and worsening impairments of memory and synaptic function. Neurodegeneration is accompanied by increased levels of the Cdk5 activator p25 and hyperphosphorylated tau. These results define essential roles and molecular targets of presenilins in synaptic plasticity, learning and memory, and neuronal survival in the adult cerebral cortex.  相似文献   

15.
Amyloid beta (Abeta) peptides play an important role in the pathogenesis of Alzheimer's disease. Free radical generation by Abeta peptides was suggested to be a key mechanism of their neurotoxicity. Reports that neurotoxic free radicals derived from Abeta-(1-40) and Abeta-(25-35) peptides react with the spin trap N-tert-butyl-alpha-phenylnitrone (PBN) to form a PBN/.Abeta peptide radical adduct with a specific triplet ESR signal assert that the peptide itself was the source of free radicals. We now report that three Abeta peptides, Abeta-(1-40), Abeta-(25-35), and Abeta-(40-1), do not yield radical adducts with PBN from the Oklahoma Medical Research Foundation (OMRF). In contrast to OMRF PBN, incubation of Sigma PBN in phosphate buffer without Abeta peptides produced a three-line ESR spectrum. It was shown that this nitroxide is di-tert-butylnitroxide and is formed in the Sigma PBN solution as a result of transition metal-catalyzed auto-oxidation of the respective hydroxylamine present as an impurity in the Sigma PBN. Under some conditions, incubation of PBN from Sigma with Abeta-(1-40) or Abeta-(25-35) can stimulate the formation of di-tert-butylnitroxide. It was shown that Abeta peptides enhanced oxidation of cyclic hydroxylamine 1-hydroxy-4-oxo-2,2,6, 6-tetramethylpiperidine (TEMPONE-H), which was strongly inhibited by the treatment of phosphate buffer with Chelex-100. It was shown that ferric and cupric ions are effective oxidants of TEMPONE-H. The data obtained allow us to conclude that under some conditions toxic Abeta peptides Abeta-(1-40) and Abeta-(25-35) enhance metal-catalyzed oxidation of hydroxylamine derivatives, but do not spontaneously form peptide-derived free radicals.  相似文献   

16.
17.
18.
Pai AS  Rubinstein I  Onyüksel H 《Peptides》2006,27(11):2858-2866
beta-Amyloid (Abeta) is a hydrophobic peptide that drives the pathogenesis of Alzheimer's disease (AD) due to its aberrant aggregation. Inhibition of Abeta aggregation process is one of the most promising strategies for therapeutic intervention in AD. Here, we demonstrate that sterically stabilized (PEGylated) phospholipid nanomicelles (SSM) are effective in mitigating Abeta-42 aggregation using several deterministic techniques such as (1) Turbidimetry (2) Congo red binding (3) Thioflavine-T binding (4) Laser light scattering and (5) Electron Microscopy. alpha-Helicity of Abeta-42 is significantly augmented in the presence of SSM as demonstrated by circular dichroism (p<0.05). Cytotoxicity studies, employing human neuroblastoma SHSY-5Y cells, established that PEGylated phospholipid associated peptide demonstrated significantly lower neurotoxicity compared to lipid untreated Abeta-42 (p<0.05). Collectively, our results establish that PEGylated phospholipids abrogate transformation of Abeta-42 to amyloidogenic beta-sheeted form and impart neuroprotection in vitro. This study provides a foundation for designing nanoconstructs of PEGylated phospholipid nanomicelles in conjunction with a therapeutic agent for multitargeting the different pathophysiologies associated with AD.  相似文献   

19.
20.
Alzheimer's disease pathology is characterized by the presence of neuritic plaques and the loss of cholinergic neurons in the brain. The underlying mechanisms leading to these events are unclear, but the 42-amino acid beta-amyloid peptide (Abeta(1-42)) is involved. Immunohistochemical studies on human sporadic Alzheimer's disease brains demonstrate that Abeta(1-42) and a neuronal pentameric cation channel, the alpha7 nicotinic acetylcholine receptor (alpha7nAChR), are both present in neuritic plaques and co-localize in individual cortical neurons. Using human brain tissues and cells that overexpress either alpha7nAChR or amyloid precursor protein as the starting material, Abeta(1-42) and alpha7nAChR can be co-immunoprecipitated by the respective specific antibodies, suggesting that they are tightly associated. The formation of the alpha7nAChR.Abeta(1-42) complex can be efficiently suppressed by Abeta(12-28), implying that this Abeta sequence region contains the binding epitope. Receptor binding experiments show that Abeta(1-42) and alpha7nAChR bind with high affinity, and this interaction can be inhibited by alpha7nAChR ligands. Human neuroblastoma cells overexpressing alpha7nAChR are readily killed by Abeta(1-42), whereas alpha7nAChR agonists such as nicotine and epibatidine offered protection. Because Abeta(1-42) inhibits alpha7nAChR-dependent calcium activation and acetylcholine release, two processes critically involved in memory and cognitive functions, and the distribution of alpha7nAChR correlates with neuritic plaques in Alzheimer's disease brains, we propose that interaction of the alpha7nAChR and Abeta(1-42) is a pivotal mechanism involved in the pathophysiology of Alzheimer's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号