首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
珙桐是我国特有珍稀濒危植物,休眠期长且具二次休眠现象。将处于休眠萌发过程中的珙桐种子依据胚根长度划分为4个阶段,利用高效液相色谱(HPLC)测定各阶段种子及其内果皮中ABA(脱落酸)、GA(赤霉素)、KT(细胞分裂素)、IAA(3-吲哚乙酸)4种内源激素含量,分析其比值动态变化,并与幼苗阶段进行比较。结果显示:未破壳种子的内果皮中内源激素含量以ABA最高,其次是GA、IAA、KT,随着种子破壳后四种激素含量显著降低。除ABA外,种子中GA、IAA和KT含量随着胚根的伸长逐渐升高,但仍低于幼苗阶段。此外,随着胚根伸长,种子中GA/ABA、IAA/ABA、KT/ABA比值逐渐增大,其中以GA/ABA的变化最显著。因此,珙桐种子的休眠和萌发可能主要受ABA和GA的平衡和拮抗来调控。  相似文献   

2.
利用发根农杆菌A4菌株在西洋参根外植体上直接诱导产生发根,并分析不同浓度的植物激素6-BA、NAA,前体物醋酸镁(Mg(Ac)2)、L-亮氨酸和诱导子茉莉酸甲酯(MJA)、水杨酸(SA)对西洋参(Panax quinquefolium L.)发根生长和皂苷含量的影响。同时,研究MJA与SA组合作用对皂苷含量的影响。采用高效液相色谱法测定发根中单体皂苷Rb1的含量。结果显示,适宜浓度的外源物质均可促进皂苷含量的增加,MJA尤其明显。  相似文献   

3.
植物生长物质在水稻生长发育研究中的应用   总被引:2,自引:0,他引:2  
概述了主要植物生长物质在水稻生长发育中的作用机理及应用情况,对使用植物生长物质存在的问题进行了讨论和展望.  相似文献   

4.
Whether seeds germinate or maintain dormancy is decided upon through very intricate physiological processes. Correct timing of these processes is most important for the plants life cycle. If moist conditions are encountered, a low dormancy level causes pre‐harvest sprouting in various crop species, such as wheat, corn and rice, this decreases crop yield and negatively impacts downstream industrial processing. In contrast, a deep level of seed dormancy prevents normal germination even under favourable conditions, resulting in a low emergence rate during agricultural production. Therefore, an optimal seed dormancy level is valuable for modern mechanised agricultural systems. Over the past several years, numerous studies have demonstrated that diverse endogenous and environmental factors regulate the balance between dormancy and germination, such as light, temperature, water status and bacteria in soil, and phytohormones such as ABA (abscisic acid) and GA (gibberellic acid). In this updated review, we highlight recent advances regarding the molecular mechanisms underlying regulation of seed dormancy and germination processes, including the external environmental and internal hormonal cues, and primarily focusing on the staple crop species. Furthermore, future challenges and research directions for developing a full understanding of crop seed dormancy and germination are also discussed.  相似文献   

5.
Summary Cupressus macrocarpa and C. arizonica were examined for callus and cell culture production in vitro. Both species produced callus on agar-solidified MSCY medium supplemented with vitamins, antioxidants, 0.14 μM kinetin (KIN), and 10 μM 2,4-dichlorophenoxyacetic acid (2,4-D). Suspension cultures of both species were established in liquid MSCY medium. Seiridin (SE) and iso-seiridin (ISE), two phytotoxic butenolides produced by Seiridium cardinale, S. cupressi, and S. unicorne, the causal agents of many canker diseases of cypress, were tested on callus or cell suspension cultures. In the medium without other plant growth regulators (PGR), SE promoted cell proliferation of cypress better than ISE, for callus initiation, callus maintenance, and cell suspension cultures. The growth rates of cypress callus tissues and suspension cultures of both cypress species on media containing 50–150 μM SE or ISE were measured. At concentrations of 50 μM and higher, growth rates increased exponentially with the SE concentration. A comparison with KIN and 2,4-D indicated that 50 μM SE promoted growth of callus tissues and cell suspension cultures more than 100 μM ISE. SE can also interact with, or counteract, KIN and 2,4-D. It was demonstrated that SE could replace KIN in the medium for C. arizonica. SE could be involved in cell enlargement and proliferation processes. The less susceptible cypress species (C. arizonica) had a high content of terpenoids than that of the more susceptible species (C. macrocarpa). SE could be a useful tool as a phytohormonal-like regulator to manipulate physiological changes at the cellular level and as an elicitor of sensitivity or tolerance of cypress germplasm to the phytotoxin.  相似文献   

6.
The objective of the present study was to determine the potential plant growth-promoting action of bacterial endophytes isolated from arid land-dwelling plants under normal conditions. Overall, five bacterial endophytes LK11 (Sphingomonas sp. LK11), TP5 (Bacillus subtilis), MPB5.3 (B. subtilis subsp. Subtilis), S9 (B. subtilis subsp. Subtilis), and TP1 (Serratia marcescens) were evaluated based on morphological characteristics after isolation and purification. Phytohormonal analysis of these endophytes predicted indole acetic acid (IAA) production 12.31?±?0.45?, 6.8?±?0.59, and 10.5?±?1.02?μM/mL in the culture broths of LK11, MPB5.3, and TP1, respectively. Under controlled greenhouse conditions, these endophytes were inoculated into soybean, and their growth-promoting characteristics were compared with those of non-phytohormone-producing endophytes. In terms of plant growth promotion, among IAA-producing endophytes, LK11 and TP1 greatly improved physiological characteristics such as shoot/root length, fresh/dry weight, and chlorophyll contents. However, the non-phytohormone-producing endophytes TP5 and S9 did not show a growth-promoting effect. Based on these results, plants inoculated with LK11 and TP1 along with a control were subjected to endogenous hormonal analysis and showed a significant increase in abscisic acid (457.30–398.55 vs. 205.93 ng/g D.W.) and a decrease in jasmonic acid content (50.07–85.07 vs. 93.90 ng/g D.W.), respectively. Total gibberellin content was found to significantly increase in endophyte-inoculated plants (155.43–146.94?ng/g D.W.) as compared to that in controls (113.76 ng/g D.W.). In summary, bacterial endophytes might be used to enhance crop plant physiological characteristics isolated from arid land-inhabiting plants under normal conditions.  相似文献   

7.
Salicylic acid (SA), a plant hormone plays an important role in induction of plant defense against a variety of biotic and abiotic stresses through morphological, physiological and biochemical mechanisms. A series of experiments were carried out to evaluate the biochemical response of the chickpea (Cicer arietinum L.) plants to a range of SA concentrations (1, 1.5, and 2 mM). Water treated plants were maintained as control. Activities of peroxidase (POD) and polyphenol oxidase (PPO) were evaluated and amounts of total phenols, hydrogen peroxide (H2O2), and proteins were calculated after 96 h of treatment. Plants responded very quickly to SA at 1.5 mM and showed higher induction of POD and PPO activities, besides the higher accumulation of phenols, H2O2 and proteins. Plants treated with SA at 2 mM showed phytotoxic symptoms. These results suggest that SA at 1.5 mM is safe to these plants and could be utilized for the induction of plant defense.  相似文献   

8.
9.
研究表明:与白光对照相比,蓝光明显抑制水稻幼苗的生长,并使幼苗体内的自由态IAA、GA1、玉米素和二氢玉米素含量下降,ABA含量和乙烯释放量则明显增加。说明蓝光对水稻幼苗生长的影响与其体内激素状况有关。  相似文献   

10.
In wheat (Triticum durum Desf., cv. Bezenchukskaya 139) seedlings, an increase in irradiance from 20 to 400 μmol/(m2 s) PAR enhanced transpiration and increased stomatal conductance by three times on the background of reduced relative water content (RWC). After this treatment, leaves quickly ceased to grow and became even shrunk later. In 40 or 50 min, leaf growth was resumed. At this period, we observed an increase in hydraulic conductivity and RWC and also in leaf extensibility. As soon as 10 min after treatment, some changes in hormone content were noted. In the zones of leaf growth and its mature part, zeatin and zeatin riboside were accumulated, whereas ABA accumulation was observed in the zone of leaf growth and in the roots. The results obtained indicate that leaf expansion at increased irradiance was related to changes in cell-wall extensibility and hydraulic conductivity. The first effect could be due to cytokinin accumulation, whereas the second one, to ABA accumulation.  相似文献   

11.
    
Plants respond to infection by accumulating many compounds some of which may function in disease resistance. These include: phytoalexins, antifungal proteins, chitinases, glucanases, esterases, proteaes, phospholipases, lipoxygenases, ribonucleases, peroxidases, phenoloxidases, lignin, callose, hydroxyproline and glycine-rich glycoproteins, phenolic cross-linked polysachcarides, melanin-like pigments, salicylic acid, jasmonic acid, ethylene, peptides, oligosaccharides, hydrogen peroxide and active oxygen species. Though specific avirulence genes, elicitors and elicitor receptors have been reported, the production of defense-related compounds is nonspecific and can be elicited by pathogens, pathogen products and many organics and inorganics. The molecular implications of this specificity/nonspecificity and their significance to disease resistance and practical disease control will be discussed.  相似文献   

12.
The objective of this study was to describe the physiological condition of bare-root pedunculate oak (Quercus robur L.) seedlings at the time of lifting for cold storage or planting in 1996/1997 and 1997/1998. Dormancy intensity and other physiological measurements and field performance were assessed. Heat treatments were used to assess the taproot resistance to stress using root electrolyte leakage, but the results indicated that the plants were least resistant when mostdormant. Root electrolyte leakage and root growth potential were lowest during the deep dormancy stage and increased again as shoot dormancy was released, coinciding with the period that the plants were most resistant to storage stresses. Dry weight fraction of the shoots was a good indicator of storability, but the other measures were less useful. Despite good survival rates, shoot quality was poor for seedlings lifted early (October) or late (April, May) in the lifting season.  相似文献   

13.
    
In the present study, a consortium of two rhizobacteria Bacillus amyloliquefaciens Bk7 and Brevibacillus laterosporus B4, termed ‘BB’, biochemical elicitors salicylic acid and β‐aminobutyric acid (SB) and their mixture (BBSB) were investigated for cold and drought stress tolerance in rice plants. After withholding water for 16 days, rice plants treated with BBSB showed 100% survival, improved seedling height (35.4 cm), shoot number (6.12), and showed minimum symptoms of chlorosis (19%), wilting (4%), necrosis (6%) and rolling of leaves. Similarly, BB inoculation enhanced plant growth and reduced overall symptoms in rice seedlings subjected to 0 ± 5 °C for 24 h. Our results imply several mechanisms underlying BB‐ and BBSB‐elicited stress tolerance. In contrast to the control, both treatments significantly decreased leaf monodehydroascorbate (MDA) content and electrolyte leakage, and increased leaf proline and cholorophyll content. Moreover, activities of antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT) increased 3.0‐ and 3.6‐fold, respectively. Moreover, expression of OsMYB3R‐2, OsDIL, OsDREB1A and OsCDPK13 genes was significantly up‐regulated, suggesting that these genes play important roles in abiotic stress tolerance of rice. In addition, bacterial strains Bk7 and B4 were able to produce high amounts of IAA and siderophores, and colonise the plant roots, while only strain Bk7 exhibited the capability to form biofilms and solubilise inorganic phosphate. This study indicates that the BB and BBSB bio‐formulations can be used to confer induced systematic tolerance and improve the health of rice plants subject to chilling and drought stress.  相似文献   

14.
    
Phytohormones play an essential role in plant growth and development in response to environmental stresses. However, plant hormones require a complex signaling network combined with other signaling pathways to perform their proper functions. Thus, multiple phytohormonal signaling pathways are a prerequisite for understanding plant defense mechanism against stressful conditions. MicroRNAs (miRNAs) are master regulators of eukaryotic gene expression and are also influenced by a wide range of plant development events by suppressing their target genes. In recent decades, the mechanisms of phytohormone biosynthesis, signaling, pathways of miRNA biosynthesis and regulation were profoundly characterized. Recent findings have shown that miRNAs and plant hormones are integrated with the regulation of environmental stress. miRNAs target several components of phytohormone pathways, and plant hormones also regulate the expression of miRNAs or their target genes inversely. In this article, recent developments related to molecular linkages between miRNAs and phytohormones were reviewed, focusing on drought stress.  相似文献   

15.
    
Gibberellins (GAs), which form a large family of phytohormones involved in almost every step of plant life and development, were discovered almost a century ago. The molecular characterization of GA metabolism and signalling mechanisms now provides explanations for the multiple crosstalk and the integration of external signals required for plants to adapt their development and growth to environmental conditions. In this review, we present the molecular elements of GA metabolism and signalling pathways, with emphasis on the key role of the GA/GID1/DELLA complex as a conserved developmental integrator. Further, we discuss how the GA signalling pathway, together with feedback regulation on GA metabolism, contributes to the integration of endogenous and exogenous signals to provide an adaptive output.  相似文献   

16.
17.
18.
《Plant Ecology & Diversity》2013,6(2-3):231-240
Background: Population structure and dynamics in natural ecosystems can be affected by seed viability and dormancy. However, how the endogenous contents of phytohormones and vitamin E in seeds relative to the environment affect viability and dormancy is not yet fully understood.

Aims: We studied seed viability and germination capacity in two populations of the Mediterranean shrub, Cistus albidus, exposed to contrasting environmental conditions.

Methods: We measured seed viability and germination capacity and endogenous contents of abscisic acid (ABA), gibberellins and vitamin E in seeds collected from two populations, in two environmentally contrasting environments in north-eastern Spain.

Results: Plants growing in the natural site produced seeds with lower germination percentage but similar viability, indicating higher seed dormancy. Enhanced seed dormancy was paralleled with higher contents of ABA and lower contents of gibberellins (GAs). Contents of tocopherols and tocotrienols were higher in seeds of the natural population. Tocopherol contents in seeds correlated positively with the ratio living:total aerial biomass.

Conclusions: Two Mediterranean populations of C. albidus growing in two sites with contrasting environmental conditions showed marked differences in seed dormancy and germination, which may be explained, at least in part, by differences in seed hormonal contents.  相似文献   

19.
20.
Effects of progressive soil drought on leaf growth, the rate of photosynthesis, and phytohormone contents were followed in the experiments with cucumber (Cucumis sativus L.) plants. Suppression of photosynthesis by drought did not immediately cause growth retardation, because the latter was observed one day earlier than the inhibition of photosynthesis. In the meantime, growth retardation could be caused by a decline in IAA and cytokinin contents, rather than ABA accumulation, because ABA accumulated when the growth has been already suppressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号