首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Seedlings of Ceratonia siliqua L., an evergreen sclerophyll species native to the Mediterranean region, were grown in 30-cm deep tubes of John Innes II potting compost in a growth cabinet maintained at 15° C during a 12-h day where PAR was 400 mol m–2 s–1. After a period of acclimatisation to the conditions in the cabinet during which plants were watered every day, water was withheld from the soil in some tubes for 24 days. These conditions may be regarded as a simulation of the natural situation. Estimates of leaf and root water potential and solute potential, leaf growth and root development were made at intervals during the soil drying cycle on both watered and unwatered plants. Water potential and solute potential measurements were made both on young expanding and on fully expanded leaves. During the experimental period, root growth of C. siliqua was not much affected by soil drying, and roots in both the watered and the unwatered columns penetrated to the bottom of the soil tubes by the end of the drying treatment. Expanded leaves showed significant limitation in stomatal conductance as soil drying progressed. Leaf water potential of fully expanded leaves of unwatered plants declined substantially. In contrast, water potential of young expanding leaves on unwatered plants declined to only a limited extent and turgor was sustained. As the soil dried, stomatal conductance of young leaves was always higher than that of mature leaves; also, placticity and elasticity of young leaves slowly decreased whereas mature leaves became stiff. Changing leaf cell wall properties may determine different patterns of water use as the leaves age. A mechanism of continuous diffusion of water through the soil towards the tip and pumping towards the young leaves is proposed.  相似文献   

2.
Numerous white surface proliferations appeared in cultures of Ceratonia siliqua L. grown three to four weeks on medium containing 0.5 mg l-1 BA and 0.1 mg l-1 IBA. It was histologically confirmed that these proliferations were hypertrophied lenticels. Proliferations appeared first at the basal shoot internode and gradually spread acropetally, covering eventually the whole shoot except the uppermost internodes. Increase of BA concentration in the medium increased both the number of hypertrophied lenticels per shoot and the shoot multiplication index.Abbreviations BA 6-benzylamino-purine - IBA indole-3-butyric acid Dubravka Bojovi-Cveti deceased July 8, 1991.  相似文献   

3.
Seedlings of Ceratonia siliqua L. were grown for 1 year in the field under ambient or ambient plus supplemental UV-B radiation (corresponding to 15% ozone depletion over Patras) and received two levels of additional irrigation during the summer dry period. The experiment was started during February 1998 and two major samplings were performed, the first at the end of the dry period (September 1998) and the second at the end of the experiment (January 1999). Plants receiving additional irrigation showed significantly higher leaf number, plant height and chlorophyll content at the end of the summer, but these differences were abolished at the final harvest. Plants growing under enhanced UV-B radiation had significantly fewer leaves and less nitrogen content at the end of the dry period, but these effects were also abolished at the final harvest, during which significant UV-B induced increases in stem dry mass were observed. None of the other measured parameters (mean leaf area, leaf dry mass, leaf thickness, UV-B absorbing compounds, phenolics, tannins and photochemical efficiency of PSII) were affected by either treatment. Combined UV-B / water effects were not significant. We may conclude that although some minor responses to enhanced UV-B radiation were evident, C. siliqua is resistant against UV-B radiation damage at the level applied.  相似文献   

4.
Rates of photosynthesis and leaf conductance of the leaves of carob trees ( Ceratonia siliqua L.) growing in natural conditions were measured during the course of the seasons to define the effects of the main climatic factors limiting growth in the region: temperature during the winter and water in the summer. The highest photosynthetic rates were measured in spring and autumn and could reach 25 μmol m−2 s−1 with optimal temperature and available water. Due to lower temperatures (4 to 6°C in the night) these values were frequently around 15 μmol m−2 s−1 during winter, but the strongest depression was due to prolonged drought in summer. However a reduction in photosynthesis rate down to 5 μmol m−2 s−1 occurred only after depletion of all the available water in the soil layer up to a depth of 50 cm. In the end of the summer, leaf conductance and water potential were in the order of 20 mmol m−2 s−1 and −3 MPa respectively. Compared to other trees that make up the Mediterranean sclerophyll forest, the photosynthetic activity of carob is high, and the tree tolerates a considerable depletion of soil water.  相似文献   

5.
6.
Summary Somatic embryos of carob (Ceratonia siliqua L.) were induced from cotyledonary segments excised from immature seeds when cultured on Murashige and Skoog media supplemented with several combinations of 6-benzylaminopurine (BA) and indole-3-butyric acid (IBA). The best frequencies of induction (33.8%) were obtained when 4.4 μM BA and 0.5 μM IBA were used. Shoots were also sporadically formed in the same media. When IBA was replaced by other auxins in the induction media, only α-naphthaleneacetic acid (NAA) and indole-3-acetic acid (IAA) could induce somatic embryogenesis, although at lower rates than IBA. 2,4-Dichlorophenoxyacetic acid and 4-amino-3,5,6-trichloropicolinic acid were completely ineffective. Besides culture media composition, the developmental stage of the explants at the time of culture showed a strong influence on somatic embryogenesis induction, with cotyledons from stage II pods providing the highest levels of induction. By contrast, the genotype of the explant did not determine a significant role in the induction process. Attempts to achieve somatic embryo germination were mostly unsuccessful, since only shoot development was observed; the highest frequencies of development occurred on media containing only gibberellic acid (3.0 μM). For plant regeneration, the developed shoots were further rooted on IBA-supplemented media, and the plantlets obtained were transferred to soil, where c. 88% of them survived. Histological observations showed the presence of morphologically normal and abnormal somatic embryos, the latter displaying an abnormal pattern of vascular bundles. Ultrastructural analysis showed that the cells of the globular embryos had a dense cytoplasm, whereas those not involved in somatic embryo formation showed signs of senescence. Histological studies were also used to distinguish between somatic embryos and shoots originated in the same media.  相似文献   

7.
The effect of adding organic manure to three soils with differing textures on changes in leaf water potential (LWP) and yield of barley (cv. Loyola) was investigated under controlled growth-chamber conditions. Cattle manure was applied to the soils in pots at rates equivalent to 0, 15, 25, 50 and 100 t ha-1. Plants were subjected to water stress by withholding water at three different stages of grwoth.The results show that the addition of cattle manure significantly increased (p<-0.05) the organic carbon (OC) content of all the soils. LWP remained consistently high during the entire growing period in the control plants. As stress progressed, LWP in the stressed plants decreased. However, treatments with high OC contents had significantly higher LWP compared to those which had less. The former plants experienced less water stress than the latter.Yields were higher in the control than stressed plants. Within the stressed plants however, treatments with high OC content had significantly higher yields. An effect of soil texture was also noted. Generally, the influence of manure application on LWP and yields were more pronounced in sand and loam than clay soils.  相似文献   

8.
The relative importance of changes in leaf expansion rate (LER) and leaf conductance (g1) in the control of crop transpiration depends primarily on their sensitivity to soil water deficits. The aim of this paper was to quantify the responses of LER and g1 to soil water deficits in sunflower (Helianthus annuus L.) under conditions of moderate (spring) and high (summer) evaporative demand. Soil water content, g1, and LER were measured in dryland (DRY) and daily-irrigated (WET) crops established on a deep sandy-loam (Typic Xerofluvent) in a Mediterranean environment. There was no difference between g1 of DRY and WET plants (p>0.20) in contrast with a highly significant difference in LER (p<0.001). Even under the harsh conditions of the summer experiment, g1 did not respond to water deficit in a ten-day period in which LER of DRY plants was reduced to approx. 30% of that measured in WET controls. This field study indicates that g1 plays at most a minor role in the control of sunflower transpiration in the pre-anthesis period and confirms the importance of leaf expansion in the regulation of gas exchange of expanding canopies subjected to soil water deficits.  相似文献   

9.
Seasonal changes in water relations, production and mineral composition were studied in a sward ofCynodon dactylon (L). Pers. subjected to water deficits during a dry summer, and at recovery in autumn. The experiment was carried out under Mediterranean field conditions. Water deficits during summer reduced total dry matter production by 60%, but in autumn there were no differences between treatments. Compared to well-watered sward, the sward grown under drought showed an increase in potassium, calcium and nitrogen of 55, 10 and 10% respectively. These differences decreased with the arrival of autumn rains. Leaf osmotic potential (ΨΠ) fell during the dry summer to −2.8 MPa in well-watered plants and to −4.2 MPa in stressed plants. In autumn there were no differences between treatments. Nevertheless, relative water content (RWC) only decreased to 0.86 in droughted plants. In summer potassium contributed to the osmotic adjustment. In contrast, under water deficits a decrease of 71% in sodium and, to a lesser but significant extent decreases in phosphorus, magnesium and chlorine was observed. Nitrogen, phosphorus and sulphur showed low concentrations during summer and increased in autumn.  相似文献   

10.
Summary The responses of two egg-plant varieties to irrigation rhythm and water supply based on daily potential evapotranspiration were performed on St-Paul silt loam.Results showed that a shorter irrigation rhythm gives the best production in terms of fruit yield (Table 1). Daily irrigation gives a leaf blade with a lower specific weight than the bi-weekly irrigation rhythm during the whole sampling period (Fig. 1).When we compared 4 quantities of water representing 40 to 100% of the potential evapotranspiration, the best results in terms of fruit yield were obtained with the irrigation giving 80% of the potential evapotranspiration (Table 2). But there is no significant difference between the specific leaf weights (Fig. 2).When we observed the varietal behaviour we found that the cultivar Violette de Barbentane gives a production 20% higher than that of Ronde de Valence. But the water potential and transpiration resistance of leaves are not very different for the two varieties (Figs. 5 and 6).The results about the influence of varieties come from one part of the study by M. Pochard and Serieys of the Station of Genetics.  相似文献   

11.
Soil water status and its effect on plant water status are commonly evaluated for water stress diagnosis in annual crops. We investigated the application of this method to vineyards, using the fraction of transpirable soil water (FTSW) to characterise the soil water deficit experienced by the plant. The stability of the relationship between FTSW and predawn leaf water potential (Ψp) was analysed over two years (2000–2001), in two contrasted soils in vineyards in south eastern France, both planted with the cultivar Syrah, but grafted on different rootstocks (SO4 and 140Ru). FTSW was determined from soil moisture measurements performed with a neutron probe down to 2.5 m, under the rows and between the rows (3 replicates in each case). Vertical and horizontal variations in soil water content were analysed and the upper and lower limits of total vine’s transpirable soil water (TTSW) were calculated for each soil. The lower limit was also compared with the value of soil moisture content determined at −1.5 MPa in the laboratory. FTSW could be calculated for the soil depth analysed, without distinguishing horizontal position (row or inter-row). The lower limit of TTSW for vine was higher than the soil water content at −1.5 MPa, except in the upper horizons (0–0.2 m) which are prone to soil evaporation. A single relationship between Ψp and FTSW was obtained for the two vineyards and for the two years of measurement. This relationship was similar to that established by Lebon et al. (2003) on Gewürztraminer/SO4 in a vineyard in northern France. FTSW can therefore be used as an indicator of the water deficit experienced in vineyards, provided that TTSW is correctly estimated.  相似文献   

12.
Almond plants (Amygdalus communis L.) of the Garrigues variety were grown in the field drip irrigated and rainfed. Leaf water potential (Ψ) and leaf conductance (g1) were determined throughout one growing season. Pre-dawn measurement for Ψ in the irrigated treatment was consistent through the growing season, whereas in the rainfed treatment it decreased gradually. Ψ values at midday (Ψ minimum) was closely dependent on atmospheric evaporative demand, and their recovery was quicker in the wet treatment than in the dry. The g1 values were higher in the wet than dry treatments, decreasing in both cases by leaf ageing. Maximum values for g1 were reached when evaporative demand was highest in the day. The relationship between Ψ and g1 revealed a decrease in the hysteresis throughout the growing season, being most marked in the dry treatment. The results highlight the close dependence of Ψ and g1 on evaporative demand, leaf ageing and irrigtion treatment during the growing season.  相似文献   

13.
徐婷  赵成章  韩玲  郑慧玲  冯威  段贝贝 《生态学报》2017,37(10):3335-3343
植物叶水势和中脉性状是反映叶片水力特性的主要参数,二者之间的关联性对理解植物水分供需平衡的生态适应策略具有重要意义。选择张掖市黑河干流边缘的洪泛平原湿地为实验地,以河岸为起点沿平行河岸线的方向依次设置近水区(样地Ⅰ)、中水区(样地Ⅱ)和远水区(样地Ⅲ)3个水分梯度样地,采用标准化主轴估计方法(standardized major axis estimation,SMA),研究了对水分影响下旱柳(Salix matsudana)叶水势与中脉性状之间的关系。结果表明:随着土壤含水量减少,旱柳林的高度、密度和郁闭度均持续降低,旱柳叶片的中脉密度、净光合速率(Pn)、蒸腾速率(Tr)、光合有效辐射(PAR)和叶片温度(Tleaf)逐渐增加,中脉直径、比叶面积及叶水势、叶绿素含量逐渐减少;不同土壤含水量样地旱柳叶水势与中脉性状间的相关性存在差异(P0.05),在样地Ⅰ和样地Ⅲ叶水势与中脉密度呈极显著负相关关系(P0.01),在样地Ⅱ两者之间呈显著负相关关系(P0.05);旱柳叶水势与中脉直径在3个水分梯度样地均呈显著正相关关系(P0.05)。随着湿地土壤含水量减少,旱柳采取降低叶水势、增加中脉密度并减少中脉直径的资源投资策略,反映了该物种在异质生境中具有较强的叶片性状可塑性,从而有利于其适应特殊的湿地生境。  相似文献   

14.
We studied the water relations of 6 shrub and 3 tree species typical of the mediterranean climate region of central Spain to identify differential responses to water stress between and within species, and to determine if free proline concentration in leaves could be used as a water stress indicator. Predawn and midday water potentials (w) on a seasonal basis, relative water content (RWC), leaf mass per area, foliar nitrogen and free proline concentrations were measured. The lowest water potentials were observed at the end of the summer, with recovery to higher water potentials in the fall and winter seasons. Species differed regarding the annual w fluctuation. Thymus zygis, Halimium viscosum, Genista hirsuta and Juniperus oxycedrus exhibited the most negative midday and predawn w (both less than -6 MPa) with a large magnitude of response to changing conditions in soil moisture of the upper horizon of the soil. Lavandula pedunculata and Cistus ladanifer showed a moderate response. Quercus rotundifolia, Quercus faginea and Retama sphaerocarpa showed a modest response. The w of different size individuals of Quercus rotundifolia and Cistus ladanifer were compared. The annual w fluctuation was greater in small individuals as compared to large individuals. In every species, there was an increase in proline concentration of bulk leaf tissues when predawn w dropped below -5 MPa. Small plants of Cistus ladanifer reached lower water potentials and also higher concentration of proline than bigger plants. Proline could possibly be used as a drought stress indicator in every species except Q. rotundifolia. It is suggested that in addition to water stress avoidance due to deep root systems, some mechanisms of water stress tolerance may operate among shrub and tree species of central Spain.  相似文献   

15.
未来气候变化将影响光合环境资源供给,尤其是水分和光能。为深入了解植物对气候变化的适应性,使用LI-6800便携式光合仪,于2021年5—10月份(完全展叶期)测定了北京山区广布灌木黄栌(Cotinus coggygria)叶片的光响应曲线,分析其水分利用效率(WUE=最大净光合速率[Pnmax]/气孔导度[gs])和光能利用效率(LUE)的季节变化特征及影响因子。结果显示:黄栌叶片WUE在5—6月份呈下降趋势,7—10月份比较稳定;LUE在5—7月份呈上升趋势,8—10月份比较稳定。WUE和LUE的生长季平均值分别为98.25μmol/mol和0.06 mol/mol,变异系数分别为22%和17%,两者呈负相关(R2=0.86;P<0.01)。环境因子中,WUE和LUE主要受土壤含水量(SWC)影响,WUE随SWC增加呈线性降低趋势,而LUE随SWC增加呈线性增加趋势。SWC每增加0.1 m3/m3,Pnmax和gs分别线性增加...  相似文献   

16.
The total flavonoid content of leaf extracts (70% ethanol) from fig (Ficus carica L.), carob (Ceratonia siliqua L.) and pistachio (Pistacia lentiscus L.) plants were determined by using reverse phase high-performance liquid chromatography (HPLC)-and analyzed by UV/VIS array and electrospray ionization (ESI)-mass spectrometry (MS) detectors. As a base for comparison, flavonoid type and level were also determined in extracts from soybeans and grape seeds. It was found that the major flavonoids in Ficus are quercetin and luteolin, with a total of 631 and 681 mg/kg extract, respectively. In Ceratonia leaves, nine different flavonoids were detected. The major one was myricetin (1486 mg/kg extract), with a similar level in Pistacia (1331 mg/kg extract, myricetin). The present study is the first to report the presence of the isoflavone genistein in the Pistacia leaf, which was discovered to consist of about a third of the genistein level detected in soybean.  相似文献   

17.
Mature apricot (Prunus armeniaca L. cv. Búlida) trees, growing under field conditions, were submitted to two drip irrigation treatments: a control (T1), irrigated to 100 % of seasonal crop evapotranspiration (ETc), and a continuous deficit (T2), irrigated to 50 % of the control throughout the year. The behaviour of leaf water potential and its components, leaf conductance and net photosynthesis were studied at three different times during the growing season, when they revealed a diurnal and seasonal pattern in response to water stress, evaporative demand of the atmosphere and leaf age. The deficit-irrigated trees showed, among other effects, a pronounced decrease in leaf water potential (ψw), decreased in leaf conductance (gs) and no osmotic adjustment. For this reason, gl and ψw can be considered good indicators of mature apricot tree water status and can therefore be used for irrigation scheduling.  相似文献   

18.
Leaf explants harvested from shoot proliferating cultures and intact plants of Liquidambar styraciflua Variegata were placed on solidified Woody Plant medium supplemented with 0.1 mgl-1 (0.5 M) naphthaleneacetic acid and 2.5 mgl-1 (11.1 M) benzyladenine to initiate shoot meristems directly. Leaves from intact plants produced over 4 times more adventitious shoots than leaves from in vitro shoots and had a greater tendency to form shoots on the lamina. The relative developmental age of leaf tissue used dramatically influenced the shoot organogenic response observed for leaf explants from intact plants of L. styraciflua Variegata and Moraine.-Leaves that were either 20% or 50% of full size and still actively expanding were superior to other developmental stages for shoot organogenesis. As developmental leaf age increased throughout the period of leaf expansion, the number of shoots forming on the petiole stub remained constant, whereas shoot formation on the lamina increased 8 fold. Shoots derived from Variegata leaves rooted well and grew normally as plants. Differences in rooting ability and plant size could be detected between groups that had been separated according to explant source (in vitro vs. intact plant) and the location of shoot formation (petiole vs. lamina).  相似文献   

19.
Stimulation of leaf expansion by an exogenous cytokinin was studied in isolated leaf discs of sweet pepper with emphasis on the assimilate utilization of the tissue. Leaf discs were floated on solutions containing sucrose and plant growth regulators. Benzyladenine (BA) promoted the area expansion rate of the leaf discs. Sucrose at 100 mM resulted in increased area expansion rate compared with 10 mM sucrose. However, the increased sucrose concentration had no influence on the effect of BA. Over a period of 24 h, treatment with BA did not result in any change of sucrose uptake nor of the partitioning of assimilated carbon in the leaf discs. Neither did BA treatment affect the activity of acid invertase (EC 3.2.1.26) or pyrophosphate-dependent phosphofructokinase (EC 2.7.1.90) in the leaf discs. We conclude that the observed promotion of leaf area expansion by exogenous BA is not mediated through the uptake of sucrose or the carbohydrate metabolism of the leaf tissue.Abbreviations BA N6-benzyladenine - GA3 gibberellic acid - PPi-PFK pyrophosphate-dependent phosphofructokinase (EC 2.7.1.90) This study was supported by grants from the Danish Research Counsil (SJVF 13-4148 and 13-4547 to P.U. SJVF 13-4146 and 13-4494 to T.H.N.) and from The Research Center for Plant Biotechnology to P.U.  相似文献   

20.
Influence of temperature and water potential on root growth of white oak   总被引:11,自引:0,他引:11  
Root growth of white oak ( Quercus alba L.) was observed under field conditions using a rhizotron. The effects of temperature, soil water potential, and leaf water potential were evaluated on three measures of root growth and development: root elongation rate, number of growing roots, and root growth intensity (sum of projected root area compared to the total root viewing area). Root elongation rate was linearly related to changes in soil temperature and soil water potential. At soil temperatures less than 17deg;C, temperature was the dominant factor affecting rate of growth, bat at temperatures greater than 17°C soil water potential became the important factor. Unlike root elongation rate, the number of growing roots and root growth intensity increased at cold soil temperatures (8°C) and at soil water potentials of-0.3 to -0.8 MPa. At high soil water potentials (-0.1 MPa) root elongation rate reached a maximum while the number of growing roots and root growth intensity were low. These differences showed that root growth and development were not exclusively affected by the soil environment. In addition, the relationship between root growth and predawn leaf water potential suggested that root growth was a contributing factor to the drought resistance of white oak.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号