首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activated epidermal growth factor receptors (EGFRs) recruit intracellular proteins that mediate receptor signaling and endocytic trafficking. Rin1, a multifunctional protein, has been shown to regulate EGFR internalization (1). Here we show that EGF stimulation induces a specific, rapid, and transient membrane recruitment of Rin1 and that recruitment is dependent on the Src homology 2 (SH2) domain of Rin1. Immunoprecipitation of EGFR is accompanied by co-immunoprecipitation of Rin1 in a time- and ligand-dependent manner. Association of Rin1 and specifically the SH2 domain of Rin1 with the EGFR was dependent on tyrosine phosphorylation of the intracellular domain of the EGFR. The recruitment of Rin1, observed by light microscopy, indicated that although initially cytosolic, Rin1 was recruited to both plasma membrane and endosomes following EGF addition. Moreover, the expression of the SH2 domain of Rin1 substantially impaired the internalization of EGF without affecting internalization of transferrin. Finally, we found that Rin1 co-immunoprecipitated with a number of tyrosine kinase receptors but not with cargo endocytic receptors. These results indicate that Rin1 provides a link via its SH2 domain between activated tyrosine kinase receptors and the endocytic pathway through the recruitment and activation of Rab5a.  相似文献   

2.
Activated epidermal growth factor receptors recruit various intracellular proteins leading to signal generation and endocytic trafficking. Although activated receptors are rapidly internalized into the endocytic compartment and subsequently degraded in lysosomes, the linkage between signaling and endocytosis is not well understood. Here we show that EGF stimulation of NR6 cells induces a specific, rapid and transient activation of Rab5a. EGF also enhanced translocation of the Rab5 effector, early endosomal autoantigen 1 (EEA1), from cytosol to membrane. The activation of endocytosis, fluid phase and receptor mediated, by EGF was enhanced by Rab5a expression, but not by Rab5b, Rab5c, or Rab5a truncated at the NH(2) and/or COOH terminus. Dominant negative Rab5a (Rab5:N34) blocked EGF-stimulated receptor-mediated and fluid-phase endocytosis. EGF activation of Rab5a function was dependent on tyrosine residues in the COOH-terminal domain of the EGF receptor (EGFR). Removal of the entire COOH terminus by truncation (c'973 and c'991) abrogated ligand-induced Rab5a activation of endocytosis. A "kinase-dead" EGFR failed to stimulate Rab5a function. However, another EGF receptor mutant (c'1000), with the kinase domain intact and a single autophosphorylation site effectively signaled Rab5 activation. These results indicate that EGFR and Rab5a are linked via a cascade that results in the activation of Rab5a and that appears essential for internalization. The results point to an interdependent relationship between receptor activation, signal generation and endocytosis.  相似文献   

3.
Tyrosine autophosphorylation within the cytoplasmic tail of EGF-receptor is a key event, which in turn recruits several factors including Shc, Grb2 and Rin1 that are essential activities for receptor-mediated endocytosis and signaling. In this study, we demonstrated that treatment with AG1478, an EGF-receptor kinase inhibitor, blocked the formation of Rab5-positive endosomes as well as the activation of Rab5 upon addition of EGF. We also found that EGF-receptor catalytically inactive mutant failed to activate Rab5 upon EGF stimulation. Additionally, endosomal co-localization of Rab5 and EGF-receptor was inhibited by AG1478. Interestingly, AG1478 inhibitor did not block the formation of enlarged Rab5-positive endosomes in cells expressing Rab5 GTP hydrolysis defective mutant (Rab5:Q79L). AG1478 inhibitor also blocked the in vitro endosome fusion in a concentration-dependent manner, and more importantly, Rab5:Q79L mutant rescued it. Furthermore, addition of Rin1, a Rab5 guanine nucleotide exchange factor, partially restored endosome fusion in the presence of AG1478 inhibitor. Consistent with these observations, we also observed that Rin1 was unable to localize to membranes upon EGF-stimulation in the presence of AG1478 inhibitor. These results constitute first evidence that the enzymatic activity of a tyrosine kinase receptor is required endosome fusion via the activation of Rab5.  相似文献   

4.
Rin1 regulates insulin receptor signal transduction pathways   总被引:1,自引:0,他引:1  
Rin1 is a multifunctional protein containing several domains, including Ras binding and Rab5 GEF domains. The role of Rin1 in insulin receptor internalization and signaling was examined by expressing Rin1 and deletion mutants in cells utilizing a retrovirus system. Here, we show that insulin-receptor-mediated endocystosis and fluid phase insulin-stimulated endocytosis are enhanced in cells expressing the Rin1:wild type and the Rin1:C deletion mutant, which contain both the Rab5-GEF and GTP-bound Ras binding domains. However, the Rin1:N deletion mutant, which contains both the SH2 and proline-rich domains, blocked insulin-stimulated receptor-mediated and insulin-stimulated fluid phase endocytosis. In addition, the expression of Rin1:delta (429-490), a natural occurring splice variant, also blocked both receptor-mediated and fluid phase endocystosis. Furthermore, association of the Rin1 SH2 domain with the insulin receptor was dependent on tyrosine phosphorylation of the insulin receptor. Morphological analysis indicates that Rin1 co-localizes with insulin receptor both at the cell surface and in endosomes upon insulin stimulation. Interestingly, the expression of Rin1:wild type and both deletion mutants blocks the activation of Erk1/2 and Akt1 kinase activities without affecting either JN or p38 kinase activities. DNA synthesis and Elk-1 activation are also altered by the expression of Rin1:wild type and the Rin1:C deletion mutant. In contrast, the expression of Rin1:delta stimulates both Erk1/2 and Akt1 activation, DNA synthesis and Elk-1 activation. These results demonstrate that Rin1 plays an important role in both insulin receptor membrane trafficking and signaling.  相似文献   

5.
The EGFR-mediated signaling pathway regulates multiple biological processes such as cell proliferation, survival and differentiation. Previously APPL1 (adaptor protein containing PH domain, PTB domain and leucine zipper 1) has been reported to function as a downstream effector of EGF-initiated signaling. Here we demonstrate that APPL1 regulates EGFR protein levels in response to EGF stimulation. Overexpression of APPL1 enhances EGFR stabilization while APPL1 depletion by siRNA reduces EGFR protein levels. APPL1 depletion accelerates EGFR internalization and movement of EGF/EGFR from cell surface to the perinuclear region in response to EGF treatment. Conversely, overexpression of APPL1 decelerates EGFR internalization and translocation of EGF/EGFR to the perinuclear region. Furthermore, APPL1 depletion enhances the activity of Rab5 which is involved in internalization and trafficking of EGFR and inhibition of Rab5 in APPL1-depleted cells restored EGFR levels. Consistently, APPL1 depletion reduced activation of Akt, the downstream signaling effector of EGFR and this is restored by inhibition of Rab5. These findings suggest that APPL1 is required for EGFR signaling by regulation of EGFR stabilities through inhibition of Rab5.  相似文献   

6.
Chen X  Wang Z 《EMBO reports》2001,2(1):68-74
Rab5 and phosphatidylinositol 3-kinase (PI3K) have been proposed to co-regulate receptor endocytosis by controlling early endosome fusion. However, in this report we demonstrate that inhibition of epidermal growth factor (EGF)-stimulated PI3K activity by expression of the kinase-deficient PI3K p110 subunit (p110Δkin) does not block the lysosomal targeting and degradation of the EGF receptor (EGFR). Moreover, inhibition of total PI3K activity by wortmannin or LY294002 significantly enlarges EGFR-containing endosomes and dissociates the early-endosomal autoantigen EEA1 from membrane fractions. However, this does not block the lysosomal targeting and degradation of EGFR. In contrast, transfection of cells with mutant Rab5 S34N or microinjection of anti-Rabaptin5 antibodies inhibits EGFR endocytosis. Our results, therefore, demonstrate that PI3K is not universally required for the regulation of receptor intracellular trafficking. The present work suggests that the intracellular trafficking of EGFR is controlled by a novel endosome fusion pathway that is regulated by Rab5 in the absence of PI3K, rather than by the previously defined endosome fusion pathway that is co-regulated by Rab5 and PI3K.  相似文献   

7.
Rin1, the prototype of a new family of multidomain Rab5 exchange factors, has been shown to play an important role in the endocytosis of the epidermal growth factor receptor (EGFR). Herein, we examined the role of Rin1 in the down-regulation of EGFR following EGF stimulation. We observed that overexpression of Rin1 accelerates EGFR degradation in EGF-stimulated cells. In concordance, depletion of endogenous Rin1 by RNA interference resulted in a substantial reduction of EGFR degradation. We showed that Rin1 interacts with signal-transducing adaptor molecule 2 (STAM2), a protein that associates with hepatocyte growth factor-regulated substrate and plays a key role in the endosomal sorting machinery. Green fluorescent protein (GFP)-Rin1 co-localizes with hemagglutinin (HA)-STAM2 and with endogenous hepatocyte growth factor-regulated substrate. Furthermore, wild type STAM2, but not a deletion mutant lacking the SH3 domain, co-immunoprecipitates with endogenous Rin1. This interaction is dependent on the proline-rich domain (PRD) of Rin1 as Rin1DeltaPRD, a mutant lacking the PRD, does not interact with STAM2. Moreover, EGFR degradation was not accelerated by expression of the Rin1DeltaPRD mutant. Together these results suggest that Rin1 regulates EGFR degradation in cooperation with STAM, defining a novel role for Rin1 in regulating endosomal trafficking.  相似文献   

8.
Rin1 is a Rab5 guanine nucleotide exchange factor that plays an important role in Ras-activated endocytosis and growth factor receptor trafficking in fibroblasts. In this study, we show that Rin1 is expressed at high levels in a large number of non-small cell lung adenocarcinoma cell lines, including Hop62, H650, HCC4006, HCC827, EKVX, HCC2935, and A549. Rin1 depletion from A549 cells resulted in a decrease in cell proliferation that was correlated to a decrease in epidermal growth factor receptor (EGFR) signaling. Expression of wild type Rin1 but not the Rab5 guanine nucleotide exchange factor-deficient Rin1 (Rin1Δ) complemented the Rin1 depletion effects, and overexpression of Rin1Δ had a dominant negative effect on cell proliferation. Rin1 depletion stabilized the cell surface levels of EGFR, suggesting that internalization was necessary for robust signaling in A549 cells. In support of this conclusion, introduction of either dominant negative Rab5 or dominant negative dynamin decreased A549 proliferation and EGFR signaling. These data demonstrate that proper internalization and endocytic trafficking are critical for EGFR-mediated signaling in A549 cells and suggest that up-regulation of Rin1 in A549 cell lines may contribute to their proliferative nature.Internalization of epidermal growth factor receptors (EGFR)2 and their subsequent delivery to lysosomes play key roles in attenuating EGF-mediated signaling cascades (1, 2). The proper delivery of EGFR into lysosomes for degradation requires a series of highly regulated targeting and delivery events. Following ligand binding, EGFR is internalized via endocytic vesicles that are subsequently targeted to early endosomes. This targeting event is mediated by the small GTPase, Rab5 (3, 4). Once delivered to the early endosome, receptors that are destined for degradation are incorporated into vesicles that bud into the lumen of the endosome, forming the multivesicular body (reviewed in Refs. 5, 6). Sequestration of the activated cytoplasmic domain of EGFR into the intralumenal vesicles of the multivesicular body effectively terminates receptor signaling (7). Subsequent fusion of the multivesicular body with lysosomes delivers the intralumenal vesicles and their contents into the lumen of the lysosome where they are degraded (reviewed in Refs. 810). Inactivating mutations in Rab5 disrupt the delivery of cell surface receptors, such as EGFR, to early endosomes, thereby inhibiting receptor trafficking to the lysosome and receptor degradation (11, 12). Therefore, activation of Rab5 is a key point of regulation for EGFR signaling.Rab5 cycles between an inactive GDP-bound state and an active GTP-bound state, and Rab5 activation requires the exchange of GDP to GTP. This exchange is catalyzed by guanine nucleotide exchange factors (GEFs) that are specific to the Rab5 family of proteins (reviewed in Ref. 13). Rab5 family GEFs all contain a catalytic vacuolar protein sorting 9 (Vps9) domain that facilitates the GDP to GTP exchange (1417). Many Rab5 GEFs contain other functional domains that are involved in cell signaling events (13). Rin1 is a good example of a multidomain Rab5 GEF. In addition to the Vps9 domain, Rin1 also contains an Src homology 2 domain, a proline-rich domain, and a Ras association domain. Rin1 was originally identified through its ability to interact with active Ras (18), and a role for Rin1 in a number of cell signaling systems has been established, including EGF-mediated signaling (1921). Rin1 directly interacts with the activated EGFR through its Src homology 2 domain (22). Furthermore, Ras occupation of the Rin1 Ras association domain positively impacts the Rab5 GEF activity of Rin1, which promotes EGFR internalization and attenuation in fibroblasts (23). However, Rin1 expression is up-regulated in several types of cancers, including squamous cell carcinoma (24), colorectal cancer (25), and cervical cancer (26), through duplications or rearrangements of the RIN1 locus. These studies suggest that Rin1 may also play a role in enhancing cell proliferation.It is well established that a large percentage of non-small cell lung adenocarcinomas exhibit up-regulation of EGFR and aberrant signaling through the Ras/MAPK pathway (reviewed in Ref. 27). In addition, a recent study examining 188 human lung adenocarcinomas identified that 132 of 188 tumor samples exhibited mutations relating to the Ras/MAPK signaling pathway (28). Accordingly, the role of Rin1 in non-small cell lung adenocarcinoma was addressed. Examination of a panel of non-small cell lung adenocarcinoma lines (including A549) revealed enhanced Rin1 expression relative to a nontransformed lung epithelial cell line (BEAS-2B). Depletion of Rin1 from A549 cells resulted in decreased proliferation. This decrease correlated with a reduction in EGF-activated ERK phosphorylation and the stabilization of cell surface EGFR. These defects were complemented by wild type Rin1 expression but not by mutant Rin1 lacking a functional Vps9 domain, suggesting that the GEF activity of Rin1 is necessary for proper EGFR signaling in A549 cells. In addition, overexpression of Rin1Δ, dominant negative Rab5, and dynamin resulted in similar defects in cell proliferation and EGFR signaling as Rin1 depletion. These data indicate that proper EGFR internalization and trafficking are critical for robust EGFR-mediated signaling and cell proliferation in A549 cells and offer evidence that Rin1 positively regulates cell proliferation in non-small cell lung adenocarcinoma.  相似文献   

9.
Epidermal growth factor (EGF) receptor (EGFR) signal transduction is regulated by endocytosis where many Rab proteins play an important role in the determination of the receptor recycle or degradation. In an effort to better understand how EGF signaling is regulated, we examined the role of Rab21 in regulation of the degradation and signal transduction of the EGFR. Using a transient expression protocol in HEK293T and HeLa cells, we found that Rab21 enhanced the degradation of EGFR through accelerating its internalization in both EGF-independent and EGF-dependent manners. We further demonstrated that Rab21 interacted with EGFR by immunoprecipitation experiments. Interestingly, we observed that overexpression of Rab21 attenuated EGF-mediated mitogen-activated protein kinase (MAPK) signaling by inducing EGFR degradation. Taken together, these data suggest that Rab21 plays a negative role in the EGF-mediated MAPK signaling pathway.  相似文献   

10.
11.
The Gab1 protein is tyrosine phosphorylated in response to various growth factors and serves as a docking protein that recruits a number of downstream signaling proteins, including phosphatidylinositol 3-kinase (PI-3 kinase). To determine the role of Gab1 in signaling via the epidermal growth factor (EGF) receptor (EGFR) we tested the ability of Gab1 to associate with and modulate signaling by this receptor. We show that Gab1 associates with the EGFR in vivo and in vitro via pTyr sites 1068 and 1086 in the carboxy-terminal tail of the receptor and that overexpression of Gab1 potentiates EGF-induced activation of the mitogen-activated protein kinase and Jun kinase signaling pathways. A mutant of Gab1 unable to bind the p85 subunit of PI-3 kinase is defective in potentiating EGFR signaling, confirming a role for PI-3 kinase as a downstream effector of Gab1. Inhibition of PI-3 kinase by a dominant-interfering mutant of p85 or by Wortmannin treatment similarly impairs Gab1-induced enhancement of signaling via the EGFR. The PH domain of Gab1 was shown to bind specifically to phosphatidylinositol 3,4,5-triphosphate [PtdIns(3,4,5)P3], a product of PI-3 kinase, and is required for activation of Gab1-mediated enhancement of EGFR signaling. Moreover, the PH domain mediates Gab1 translocation to the plasma membrane in response to EGF and is required for efficient tyrosine phosphorylation of Gab1 upon EGF stimulation. In addition, overexpression of Gab1 PH domain blocks Gab1 potentiation of EGFR signaling. Finally, expression of the gene for the lipid phosphatase PTEN, which dephosphorylates PtdIns(3,4, 5)P3, inhibits EGF signaling and translocation of Gab1 to the plasma membrane. These results reveal a novel positive feedback loop, modulated by PTEN, in which PI-3 kinase functions as both an upstream regulator and a downstream effector of Gab1 in signaling via the EGFR.  相似文献   

12.
Gangliosides are shed by tumor cells and can bind to normal cells in the tumor microenvironment and affect their function. Exposure of fibroblasts to exogenous gangliosides increases epidermal growth factor (EGF)-induced fibroblast proliferation and enhances EGF receptor (EGFR)-mediated activation of the mitogen-activated protein kinase signaling pathway (Li, R., Liu, Y., and Ladisch, S. (2001) J. Biol. Chem. 276, 42782-42792). Here we report that the EGFR itself is the target of this ganglioside effect: Preincubation of normal human dermal fibroblasts with G(D1a) ganglioside enhanced both EGF-induced EGFR autophosphorylation and receptor-tyrosine kinase activity. The enhancement was rapid (within 30 min), not due to alteration of time kinetics of the EGFR response to EGF, and reproduced in purified G(D1a)-enriched cell membranes isolated from ganglioside-preincubated fibroblasts. Evaluating the initial steps underlying activation, EGF binding, and EGFR dimerization, we found that G(D1a) enrichment of the cell membrane increased EGFR dimerization and the effective number of high affinity EGFR without increasing total receptor protein. Unexpectedly, G(D1a) enrichment also triggered increased EGFR dimerization in the absence of growth factor. This resulted in enhanced activation of the EGFR signal transduction cascade when EGF was added. We conclude that membrane ganglioside enrichment of normal fibroblasts (such as by tumor cell ganglioside shedding) facilitates receptor-receptor interactions (possibly by altering membrane topology), causing ligand-independent EGFR dimerization and, in turn, enhanced EGF signaling.  相似文献   

13.
In this study, we initiated experiments to address the structure-function relationship of Rin1. A total of ten substitute mutations were created, and their effects on Rin1 function were examined. Of the ten mutants, four of them (P541A, E574A, Y577F, T580A) were defective in Rab5 binding, while two other Rin1 mutants (D537A, Y561F) partially interacted with Rab5. Mutations in several other residues (Y506F, Y523F, T572A, Y578F) resulted in partial loss of Rab5 function. Biochemical studies showed that six of them (D537A, P541A, Y561F, E574A, Y577F, T580A) were unable to activate Rab5 in an in vitro assay.In addition, Rin1: D537A and Rin1: Y561F mutants showed dominant inhibition of Rab5 function. Consistent with the biochemical studies, we observed that these two Rin1 mutants have lost their ability to stimulate the endocytosis of EGF, form enlarged Rab5-positive endosomes, or support in vitro endosome fusion. Based on these data, our results showed that mutations in the Vps9 domain of Rin1 lead to a loss-of-function phenotype, indicating a specific structure-function relationship between Rab5 and Rin1.  相似文献   

14.
Signaling through the EGF receptor is regulated by endocytosis. ARAP1 is a protein with Arf guanosine triphosphatase-activating protein (GAP) and Rho GAP domains. We investigated the role of ARAP1 in EGF receptor endocytic trafficking. Following EGF treatment of cells, ARAP1 rapidly and transiently associated with the edge of the cell and punctate structures containing Rab5, rabaptin 5 and EGFR but not early embryonic antigen 1 (EEA1). EGF associated with the ARAP1-positive punctate structures prior to EEA1-positive early endosomes. Recruitment of ARAP1 to the punctate structures required active Rab5 and an additional signal from EGFR. Decreasing ARAP1 levels with small interfering RNA accelerated association of EGF with EEA1 endosomes and degradation of EGFR. Phosphorylation of extracellular-signal-regulated kinase (ERK) and c-Jun-amino-terminal kinase (JNK) was diminished and more transient in cells with reduced levels of ARAP1 than in controls. Based on these findings, we propose that ARAP1 regulates the endocytic traffic of EGFR and, consequently, the rate of EGFR signal attenuation.  相似文献   

15.
16.
17.
18.
Deregulation of the endocytic machinery has been implicated in human cancers. However, the mechanism by which endocytic defects drive cancer development remains to be clarified. Here, we find through a genetic screen in Drosophila that loss of Rab5, a protein required for early endocytic trafficking, drives non-autonomous cell proliferation in imaginal epithelium. Our genetic data indicate that dysfunction of Rab5 leads to cell-autonomous accumulation of Eiger (a TNF homolog) and EGF receptor (EGFR), which causes activation of downstream JNK and Ras signaling, respectively. JNK signaling and its downstream component Cdc42 cooperate with Ras signaling to induce upregulation of a secreted growth factor Upd (an IL-6 homolog) through inactivation of the Hippo pathway. Such non-autonomous tissue growth triggered by Rab5 defect could contribute to epithelial homeostasis as well as cancer development within heterogeneous tumor microenvironment.  相似文献   

19.
Dimerization of epidermal growth factor receptor (EGFR) leads to the activation of its tyrosine kinase. To elucidate whether dimerization is responsible for activation of the intracellular tyrosine kinase domain or just plays a role in the stabilization of the active form, the activated status of wild-type EGFR moiety in the heterodimer with kinase activity-deficient mutant receptors was investigated. The kinase activity of the wild-type EGFR was partially activated by EGF in the heterodimer with intracellular domain deletion (sEGFR) or ATP binding-deficient mutant (K721A) EGFRs, while the wild-type EGFR in the heterodimer of wild-type and phosphate transfer activity-deficient mutant receptor D813N could be fully activated. After treatment with EGF, the ATP binding affinity and the V(max) of the wild-type EGFR increased. In the presence of sEGFR, a similar increase in the affinity for ATP was observed, but V(max) did not change. A two-step activation mechanism for EGFR was proposed: upon binding of EGF, the affinity for ATP increased and then, as a result of interaction between the neighboring tyrosine kinase domain, V(max) increased.  相似文献   

20.
The current activation model of the EGF receptor (EGFR) predicts that binding of EGF results in dimerization and oligomerization of the EGFR, leading to the allosteric activation of the intracellular tyrosine kinase. Little is known about the regulatory mechanism of receptor oligomerization. In this study, we have employed FRET between identical fluorophores (homo-FRET) to monitor the dimerization and oligomerization state of the EGFR before and after receptor activation. Our data show that, in the absence of ligand, ~40% of the EGFR molecules were present as inactive dimers or predimers. The monomer/predimer ratio was not affected by deletion of the intracellular domain. Ligand binding induced the formation of receptor oligomers, which were found in both the plasma membrane and intracellular structures. Ligand-induced oligomerization required tyrosine kinase activity and nine different tyrosine kinase substrate residues. This indicates that the binding of signaling molecules to activated EGFRs results in EGFR oligomerization. Induction of EGFR predimers or pre-oligomers using the EGFR fused to the FK506-binding protein did not affect signaling but was found to enhance EGF-induced receptor internalization. Our data show that EGFR oligomerization is the result of EGFR signaling and enhances EGFR internalization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号