首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of carbohydrate in the morphogenesis of vesicular stomatitis virus was studied, using the antibiotic tunicamycin to inhibit glycosylation. It has been reported previously (Gibson et al., J. Biol. Chem. 254:3600-3607, 1979) that the San Juan strain of vesicular stomatitis virus requires carbohydrate for efficient migration of the glycoprotein (G) to the cell surface and for virion formation, whereas the prototype or Orsay strain of vesicular stomatitis virus is less stringent in its carbohydrate requirement at 30 degrees C. However, there are many differences between the two strains. We found that mutational changes within the G protein of the same strain of virus (prototype or Orsay) alters the requirement for carbohydrate at 30 degrees C. Group V or G protein mutants tsO45 and tsO44, like their prototype parent, did not require carbohydrate for efficient morphogenesis. In contrast, the G protein of another group V mutant, tsO110, was totally dependent upon carbohydrate addition for migration to the cell surface. Furthermore, no tsO110 particles were released in the absence of glycosylation. The wild-type prototype strain did require carbohydrate at 39.5 degrees C for insertion of the G protein into the plasma membrane and virion formation. However, a pseudorevertant of tsO44 (tsO44R), unlike the prototype parent, no longer exhibited this temperature-sensitive requirement for carbohydrate. At 39.5 degrees C in the presence of tunicamycin, tsO44R-infected cells released normal yields of particles and the unglycosylated G reached the cell surface very efficiently. In contrast to tsO110, which absolutely requires carbohydrate, mutational change in the tsO44R G protein has eliminated the requirement for carbohydrate. Thus, simple mutational changes, as opposed to many changes in the molecule, are sufficient to alter the carbohydrate requirement.  相似文献   

2.
We have studied the effects of inhibiting the initial steps in processing of asparagine-linked oligosaccharides on the formation of vesicular stomatitis virus (VSV). Our data show that conditions which prevent the removal of glucose can block the growth of this virus. Our conclusion that inhibition of VSV synthesis is due specifically to an effect on the ability of the virus glycoprotein, G, to mature to a correct functional conformation is based on the following observations: (i) two drugs, deoxynojirimycin and castanospermine , both of which selectively inhibit the processing glucosidases, affected virus growth; (ii) only one of the two strains (San Juan and Orsay ) of VSV tested was affected and that strain, VSV(San Juan), is known to have a G protein highly sensitive to alterations in oligosaccharide structure; (iii) the effect was to make the formation of VSV(San Juan) temperature-sensitive, a result previously observed with alterations in the oligosaccharides on G protein; (iv) a cell variant missing glucosidase II activity also became temperature-sensitive in its ability to produce VSV(San Juan) but not VSV( Orsay ). Although inhibition of glucosidase activity by 1- deoxynojirimycin caused a 10-fold drop in virion formation, transport of G protein to the plasma membrane was not altered. The growth of VSV(San Juan) at 40 degrees C was not affected when subsequent steps in the processing pathway were blocked. These data indicate that by the time the glucose residues are removed G has attained a stable conformation.  相似文献   

3.
In this report we have extended our studies on a panel of vesicular stomatitis virus G proteins with altered glycosylation sites. These mutant proteins were generated by oligonucleotide-directed mutagenesis of the coding sequence to create new consensus sites for asparagine-linked oligosaccharide addition. We report that the intracellular transport of most of the mutant proteins is temperature-sensitive, implying a polypeptide folding step is affected. In addition, we find that the nonglycosylated G protein and those mutant proteins which lack oligosaccharides at the normal positions are subject to aberrant intermolecular disulfide bonding, leading to the accumulation of large complexes in the endoplasmic reticulum. These results imply that carbohydrate plays an indirect role in the intracellular transport of G protein.  相似文献   

4.
P E Kaptur  B J McCreedy  Jr    D S Lyles 《Journal of virology》1992,66(9):5384-5392
We mapped the in vivo phosphorylation sites for the matrix (M) protein of the Orsay and San Juan strains of vesicular stomatitis virus, Indiana serotype, using limited proteolysis and phosphoamino acid analysis. M protein was solubilized from 32P-labeled virions by using detergent and high-salt conditions, then treated with either trypsin or Staphylococcus aureus V8 protease, and analyzed by polyacrylamide gel electrophoresis and autoradiography to determine which fragments contained phosphate residues. The M protein fragment extending from amino acid 20 to the carboxy terminus contained approximately 70% of the control 32P label, while the fragment extending from amino acid 35 to the carboxy terminus had only trace amounts of label. These data indicate that the major phosphorylation site was between amino acids 20 and 34 in the Orsay strain M protein. Phosphoamino acid analysis of M protein by thin-layer electrophoresis showed the presence of phosphothreonine and phosphoserine and that phosphothreonine continued to be released after prolonged vapor-phase acid hydrolysis. These data identify Thr-31 as the primary in vivo phosphate acceptor for M protein of the Orsay strain of vesicular stomatitis virus. The San Juan strain M protein has serine at position 32, which may also be an important phosphate acceptor. In addition, phosphorylation at Ser-2, -3, or -17 occurs to a greater extent in the San Juan strain M protein than in the Orsay strain M protein. The subcellular distribution of phosphorylated M protein was investigated to determine a probable intracellular site(s) of phosphorylation. Phosphorylated M protein was associated primarily with cellular membranes, suggesting phosphorylation by a membrane-associated kinase. Virion M protein was phosphorylated to a greater extent than membrane-bound M protein, indicating that M protein phosphorylation occurs at a late stage in virus assembly. Phosphorylation of wild-type and temperature-sensitive mutant M protein was studied in vivo at the nonpermissive temperature. The data show that phosphorylated M protein was detected only in wild-type virus-infected cells and virions, suggesting that association with nucleocapsids may be required for M protein phosphorylation or that misfolding of mutant M protein at the nonpermissive temperature prevents phosphorylation.  相似文献   

5.
We have analyzed the requirement for the expression of the major surface glycoprotein (G protein) of vesicular stomatitis virus (VSV) on target cells for recognition and lysis by anti-VSV cytotoxic T lymphocytes (CTL). In addition, we have attempted to determine if the carbohydrate moieties on the G protein are required for recognition and lysis by anti-VSV CTL. When VSV (Orsay) is grown at 30 degrees C in the presence of tunicamycin (TM), glycosylation of G protein is inhibited; however, nonglycosylated G protein is found on the surface of the cell and active virus particles are produced. In contrast, VSV (Orsay) grown at 39 degrees C in the presence of TM produces low titers of virus and the presence of G protein on the surface of cells is not detectable. The susceptibility of these target cells to lysis by anti-VSV CTL was analyzed. The results suggest that expression of the G protein is required for target cell lysis by anti-VSV CTL. However, the presence of the carbohydrate moieties on the G protein are nt an absolute requirement for recognition by anti-VSV CTL. VSV-infected target cells incubated in the presence of TM were lysed by anti-VSV CTL up to 50 to 80% of the infected target cell control. This result suggests either that some clones of anti-VSV CTL recognize carbohydrate moieties or that carbohydrate moieties play some as yet undefined nonantigenic role in the recognition of the target antigen by the CTL receptor.  相似文献   

6.
A temperature-sensitive mutant (ts gamma 1) of the Cocal serotype of vesicular stomatitis virus synthesizes at the permissive temperature (32 degrees C) a glycoprotein G whose size is smaller (Mr 68,000) than the wild-type (Mr 71,000) and that renders the virion thermolabile. At the nonpermissive temperature (39 degrees C), reduced amounts of noninfectious virus-like particles deficient in G protein were produced. The size of the intracellular G protein was further decreased (Mr 64,000) at the nonpermissive temperature. Biochemical studies including sugar labeling, tryptic peptide analysis, and NH2-terminal sequence analysis of the various glycoproteins suggest that at 32 degrees C a G protein containing a single glycosidic moiety is synthesized. The G protein containing only 1 oligosaccharide residue is transported to the cell surface and is incorporated in infectious virus particles. In contrast, the G protein synthesized at 39 degrees C is nonglycosylated and fails to reach the cell surface. These results suggest that glycosylation of G protein is essential for its transport to the cell surface, and the presence of a single carbohydrate chain is sufficient for this purpose.  相似文献   

7.
The biosynthesis and secretion of a glycosylated, K-type immunoglobulin light chain (K-46) was studied in a mouse myeloma tumor, mineral oil plasmacytoma-46B. Viable single cell suspensions were prepared from excised tumors and optimal conditions were established for incorporation of amino acid and carbohydrate precursors into the protein synthesized and secreted by the cells. The glucose analog, 2-deoxy-D-glucose, was utilized as an inhibitor of glycosylation to determine the role of glycosylation in the biosynthesis, intracellular transport, and export of the protein from the cell. It was determined that 6 mM 2-deoxyglucose prevents the incorporation of glucosamine, mannose, and galactose into secreted protein, but permits the incorporation of leucine at approximately 40% of control values. The nonglycosylated protein, secreted in the presence of 2-deoxyglucose, was characterized as a nonglycosylated form of K-46 light chain by the following criteria: (a) electrophoresis in polyacrylamide gels containing sodium dodecyl sulfate, (b) reactivity of the nonglycosylated protein with antisera prepared against native, fully glycosylated, K-46 light chain, (c) analysis of the protein by gel filtration techniques, (d) behavior of the protein on lectin-derivatized Sepharose, and (e) analysis of tryptic peptides derived from the protein. We have concluded that 2-deoxyglucose-inhibited cells synthesize and secrete the normal polypeptide chain of K-46 devoid of its carbohydrate side chain indicating that glycosylation is not an essential step in the biosynthesis, intracellular transport, or export of this protein that is normally synthesized and secreted in a glycosylated form. Under conditions of 2-deoxyglucose inhibition, the nonglycosylated form of K-46 light chain constitutes a significantly greater proportion of accumulated intracellular protein, suggesting that the biosynthesis of the polypeptide chain of K-46 light chain proceeds at a nearly normal rate, but that the absence of the carbohydrate side chain of the protein retards, but does not prevent, the intracellular transport of the protein and its export from the tumor cell.  相似文献   

8.
We investigated the role of glycosylation in intracellular transport and cell surface expression of the vesicular stomatitis virus glycoprotein (G) in cells expressing G protein from cloned cDNA. The individual contributions of the two asparagine-linked glycans of G protein to cell surface expression were assessed by site-directed mutagenesis of the coding sequence to eliminate one or the other or both of the glycosylation sites. One oligosaccharide at either position was sufficient for cell surface expression of G protein in transfected cells, and the rates of oligosaccharide processing were similar to the rate observed for wild-type protein. However, the nonglycosylated G protein synthesized when both glycosylation sites were eliminated did not reach the cell surface. This protein did appear to reach a Golgi-like region, as determined by indirect immunofluorescence microscopy, however, and was modified with palmitic acid. It was also apparently not subject to increased proteolytic breakdown.  相似文献   

9.
Pulse-chase experiments in conjunction with subcellular fractionation and quantitative immunoprecipitation have been used to study the intracellular transport of four secretory proteins, albumin, transferrin, prealbumin and retinol-binding protein, in isolated rat hepatocytes. The proteins were found to be transported from the endoplasmic reticulum (ER) to the Golgi complex (GC) at greatly different rates (t1/2 = 14-137 min), indicating that transport of secretory proteins between these organelles is effected by a selective, possibly receptor-mediated process and not through bulk phase transfers. The transport from the Golgi complex to the medium was rapid for all proteins (t1/2 approximately 15 min) and possibly occurred at the same rate. Consistent with these kinetic data, the amount of a rapidly transported protein (albumin) in the GC fraction was found to be high (relative to its amount in the ER fraction) whereas the amount of a slowly transported protein (transferrin) in the GC fraction was found to be low, as determined by radioimmunoassays.  相似文献   

10.
Oligonucleotide-directed mutagenesis was used to construct chimeric cDNAs that encode the extracellular and transmembrane domains of the vesicular stomatitis virus glycoprotein (G) linked to the cytoplasmic domain of either the immunoglobulin mu membrane heavy chain, the hemagglutinin glycoprotein of influenza virus, or the small glycoprotein (p23) of infectious bronchitis virus. Biochemical analyses and immunofluorescence microscopy demonstrated that these hybrid genes were correctly expressed in eukaryotic cells and that the hybrid proteins were transported to the plasma membrane. The rate of transport to the Golgi complex of G protein with an immunoglobulin mu membrane cytoplasmic domain was approximately sixfold slower than G protein with its normal cytoplasmic domain. However, this rate was virtually identical to the rate of transport of micron heavy chain molecules measured in the B cell line WEHI 231. The rate of transport of G protein with a hemagglutinin cytoplasmic domain was threefold slower than wild type G protein and G protein with a p23 cytoplasmic domain, which were transported at similar rates. The combined results underscore the importance of the amino acid sequence in the cytoplasmic domain for efficient transport of G protein to the cell surface. Also, normal cytoplasmic domains from other transmembrane glycoproteins can substitute for the G protein cytoplasmic domain in transport of G protein to the plasma membrane. The method of constructing precise hybrid proteins described here will be useful in defining functions of specific domains of viral and cellular integral membrane proteins.  相似文献   

11.
The respiratory syncytial virus (RSV) 1A protein was previously identified as a 7.5-kilodalton (kDa) nonglycosylated species that, on the basis of its predicted sequence determined from the sequence of its mRNA, contains a hydrophobic central domain that was suggestive of membrane interaction. Here, four major, structurally distinct intracellular species of the 1A protein were identified in cells infected by RSV or by a recombinant vaccinia virus expressing the 1A gene. The four species of 1A were: (i) the previously described, nonglycosylated 7.5-kDa species that appeared to be the full-length, unmodified 1A protein; (ii) a nonglycosylated 4.8-kDa species that was carboxy-coterminal with the 7.5-kDa species and might be generated by translational initiation at the second AUG in the sequence; (iii) a 13- to 15-kDa species that contained one or two N-linked carbohydrate side chains of the high-mannose type; and (iv) a 21- to 30-kDa glycosylated species that appeared to be generated from the 13- to 15-kDa species by further modification of the N-linked carbohydrate. All four forms of the 1A protein were synthesized and processed on intracellular membranes, and several lines of biochemical evidence showed that all four species were integral membrane proteins. Thus, the 1A protein is a third RSV integral membrane protein and is present as such in both glycosylated and nonglycosylated forms. With the use of antiserum raised against a synthetic peptide representing the C terminus of the 1A protein, indirect immunofluorescence showed that the 1A protein was expressed at the cell surface. Antibody-antigen complexes formed at the surface of intact infected cells were immunoprecipitated, showing that the 7.5-kDa, 13- to 15-kDa, and 21- to 30-kDa, but not the 4.8-kDa, species, were accessible to extracellular antibodies. Thus, the 1A protein is a candidate to be a viral surface antigen. The small size, gene map location integral membrane association, and cell surface expression of the 1A protein strongly suggested that it is a counterpart to the SH protein that has been described for simian virus type 5. We suggest that, in the future, the RSV 1A protein be given the same designation, namely, SH.  相似文献   

12.
13.
The membrane-spanning domain of the vesicular stomatitis virus glycoprotein (G protein) consists of a continuous stretch of 20 uncharged and mostly hydrophobic amino acids. We examined the effects of two mutations which change the amino acid sequence in this domain. These mutations were generated by oligonucleotide-directed mutagenesis of a cDNA clone encoding the G protein, and the altered G proteins were then expressed in animal cells. Replacement of an isoleucine residue in the center of this domain with a strongly polar but uncharged amino acid (glutamine) had no effect on membrane anchoring or transport of the protein to the cell surface. Replacement of this same isoleucine residue with a charged amino acid (arginine) generated a G protein that still spanned intracellular membranes but was not transported efficiently to the cell surface. The protein accumulated in the Golgi region in about 50% of the cells, and about 20% of the cells had detectable protein levels in a punctate pattern on the cell surface. In the remaining cells the protein accumulated in a vesicular pattern throughout the cytoplasm. Models which might explain the abnormal behavior of this protein are discussed.  相似文献   

14.
In this report, we have asked whether asparagine-linked oligosaccharides added to new sites in the polypeptide backbone of a model plasma membrane glycoprotein, the vesicular stomatitis virus G protein, can promote its intracellular transport. We modified the coding sequence of G protein lacking the two normal consensus sites for glycosylation by oligonucleotide-directed mutagenesis to create new consensus sites. The expression of the mutant proteins was then analyzed in transfected cells. Six of the eight new sites which were introduced were glycosylated, and an oligosaccharide at two of these new sites promoted transport of G protein which lacked the two normal sites. However, the efficiency of this process was reduced compared to the wild-type protein or to the proteins with only one oligosaccharide at either of the normal sites. In addition, an oligosaccharide at two of the other new sites caused inhibition of transport of the wild-type G protein. The data in this and the following report suggest that carbohydrate plays an indirect role in the intracellular transport of G protein.  相似文献   

15.
Transport of proteins into yeast mitochondria   总被引:1,自引:0,他引:1  
The amino-terminal sequences of several imported mitochondrial precursor proteins have been shown to contain all the information required for transport to and sorting within mitochondria. Proteins transported into the matrix contain a matrix-targeting sequence. Proteins destined for other submitochondrial compartments contain, in addition, an intramitochondrial sorting sequence. The sorting sequence in the cytochrome c1 presequence is a stop-transport sequence for the inner mitochondrial membrane. Proteins containing cleavable presequences can reach the intermembrane space by either of two pathways: (1) Part of the presequence is transported into the matrix; the attached protein, however, is transported across the outer but not the inner membrane (eg, the cytochrome c1 presequence). (2) The precursor is first transported into the matrix; part of the presequence is then removed, and the protein is reexported across the inner membrane (eg, the precursor of the iron-sulphur protein of the cytochrome bc1 complex). Matrix-targeting sequences lack primary amino acid sequence homology, but they share structural characteristics. Many DNA sequences in a genome can potentially encode a matrix-targeting sequence. These sequences become active if positioned upstream of a protein coding sequence. Artificial matrix-targeting sequences include synthetic presequences consisting of only a few different amino acids, a known amphiphilic helix found inside a cytosolic protein, and the presequence of an imported chloroplast protein. Transport of proteins across mitochrondrial membranes requires a membrane potential, ATP, and a 45-kd protein of the mitochondrial outer membrane. The ATP requirement for import is correlated with a stable structure in the imported precursor molecule. We suggest that transmembrane transport of a stably folded precursor requires an ATP-dependent unfolding of the precursor protein.  相似文献   

16.
C A Wilcox  E N Olson 《Biochemistry》1987,26(4):1029-1036
The BC3Hl muscle cell line was previously reported to contain a broad array of fatty acid acylated proteins [Olson, E. N., Towler, D. A., & Glaser, L. (1985) J. Biol. Chem. 260, 3784-3790]. Palmitate was shown to be attached to membrane proteins posttranslationally through thiol ester linkages, whereas myristate was attached cotranslationally, or within seconds thereafter, to soluble and membrane-bound proteins through amide linkages [Olson, E. N., & Spizz, G. (1986) J. Biol. Chem. 261, 2458-2466]. The temporal and subcellular differences between palmitate and myristate acylation suggested that these two classes of acyl proteins might follow different intracellular pathways to distinct subcellular membrane systems or organelles. In this study, we examined the subcellular localization of the major fatty acylated proteins in BC3Hl cells. Palmitate-containing proteins were localized to the plasma membrane, but only a subset of myristate-containing proteins was localized to this membrane fraction. The majority of acyl proteins were nonglycosylated and resistant to digestion with extracellular proteases, suggesting that they were not exposed to the external surface of the plasma membrane. Many proteins were, however, digested during incubation of isolated membranes with proteases, which indicates that these proteins face the cytoplasm. Two-dimensional gel electrophoresis of proteins labeled with [3H]palmitate and [3H]myristate revealed that individual proteins were modified by only one of the two fatty acids and did not undergo both N-linked myristylation and ester-linked palmitylation. Together, these results suggest that the majority of cellular acyl proteins are routed to the cytoplasmic surface of the plasma membrane, and they raise the possibility that fatty acid acylation may play a role in intracellular sorting of nontransmembranous, nonglycosylated membrane proteins.  相似文献   

17.
The role of mannan chains in the formation and secretion of active acid phosphatase of yeast (Saccharomyces cerevisiae), a repressible cell surface mannoprotein, was studied in yeast protoplast systems by using tunicamycin at various temperatures. At 30 degrees C, tunicamycin-treated protoplasts did not produce active acid phosphatase; however, at 25 or 20 degrees C they formed and secreted active enzyme. This form of acid phosphatase gave 59-, 57-, and 55-kDa bands on SDS-PAGE which neither bound to concanavalin A Sepharose, nor changed in molecular weight upon treatment with endoglycosidase H, indicating that the peptides are nonglycosylated. The nonglycosylated form, like its glycosylated counterpart, is a dimer on the basis of gel permeation chromatography. The Km for para-nitrophenyl-phosphate and Ki for inorganic phosphate of both glycosylated and nonglycosylated acid phosphatases were almost the same. These results suggested that 1) the conformation of the nonglycosylated acid phosphatase secreted at low temperatures is probably identical with that of the glycosylated one, and 2) the conformation of acid phosphatase is very important for its secretion. The rate of intracellular transport of nonglycosylated acid phosphatase is about one-fourth that of the glycosylated enzyme, indicating that glycosylation facilitates the transport of acid phosphatase proteins.  相似文献   

18.
We have altered the structure of the COOH-terminus of the vesicular stomatitis virus (VSV) glycoprotein (G) by introducing deletions into a cDNA clone encoding G protein. We examined the effects of these deletions on intracellular transport of G protein after expression of the deleted genes in eucaryotic cells under control of the SV40 late promoter. To prevent readthrough of translation into vector sequences, we introduced synthetic DNA linkers containing translation stop codons at the site of the deletion. G proteins that lacked the cytoplasmic domain and most of the transmembrane domain were secreted slowly from the cells. Deletion mutants affecting the structure of the cytoplasmic domain fell into two classes. The first class completely arrested transport of the protein to the cell surface at a stage prior to acquisition of complex oligosaccharides. The second class showed severely reduced rates of complex sugar addition although the proteins were eventually transported to the cell surface. Indirect immunofluorescence microscopy suggested that mutant proteins in both classes may accumulate in the rough endoplasmic reticulum.  相似文献   

19.
DNA sequences were determined for three cDNA clones encoding vesicular stomatitis virus glycoproteins from the tsO45 mutant (which encodes a glycoprotein that exhibits temperature-sensitive cell-surface transport), the wild-type parent strain, and a spontaneous revertant of tsO45. The DNA sequence analysis showed that as many as three amino acid changes could be responsible for the transport defect. By recombining the cDNA clones in vitro and expressing the recombinants in COS cells, we were able to trace the critical lesion in tsO45 to a single substitution of a polar amino acid (serine) for a hydrophobic amino acid (phenylalanine) in a hydrophobic domain. We suggest that this nonconservative substitution may block protein transport by causing protein denaturation at the nonpermissive temperature. Comparison of the predicted glycoprotein sequences from two vesicular stomatitis virus strains suggests a possible basis for the differential carbohydrate requirement in transport of the two glycoproteins.  相似文献   

20.
We describe the expression, in insect cells using the baculovirus system, of two protein fragments derived from the C-terminus of merozoite surface protein 1(MSP-1) of the human malaria parasite Plasmodium falciparum, and their glycosylation and intracellular location. The transport and intracellular localisation of the intact C-terminal MSP-1 fragment, modified by addition of a signal sequence for secretion, was compared with that of a similar control protein in which translation of the GPI-cleavage/attachment site was abolished by insertion of a stop codon into the DNA sequence. Both proteins could only be detected intracellularly, most likely in the endoplasmic reticulum. This lack of transport to the cell surface or beyond, was confirmed for both proteins by immunofluorescence with a specific antibody and characterisation of their N-glycans. The N-glycans had not been processed by enzymes localised in post-endoplasmic reticulum compartments. In contrast to MSP-1, the surface antigen SAG-1 of Toxoplasma gondii was efficiently transported out of the endoplasmic reticulum of insect cells and was located, at least in part, on the cell surface. No GPI-anchor could be detected for either of the MSP-1 constructs or SAG-1, showing that the difference in transport is a property of the individual proteins and cannot be attributed to the lack of a GPI-anchor. The different intracellular location and post-translational modification of recombinant proteins expressed in insect cells, as compared to the native proteins expressed in parasites, and the possible implications for vaccine development are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号