首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our laboratory has previously shown that replication of a small plasmid, p174, containing the genetically defined Epstein-Barr virus (EBV) latent origin of replication, oriP, initiates within oriP at or near a dyad symmetry (DS) element and terminates specifically at a family of repeated sequences (FR), also located within oriP. We describe here an analysis of the replication of intact approximately 170-kb EBV genomes in four latently infected cell lines that uses two-dimensional gel replicon mapping. Initiation was detected at oriP in all EBV genomes examined; however, some replication forks appear to originate from alternative initiation sites. In addition, pausing of replication forks was observed at the two clusters of EBV nuclear antigen 1 binding sites within oriP and at or near two highly expressed viral genes 0.5 to 1 kb upstream of oriP, the EBV-encoded RNA (EBER) genes. In the Raji EBV genome, the relative abundance of these stalled forks and the direction in which they are stalled indicate that most replication forks originate upstream of oriP. We thus searched for additional initiation sites in the Raji EBV and found that the majority of initiation events were distributed over a broad region to the left of oriP. This delocalized pattern of initiation resembles initiation of replication in several well-characterized mammalian chromosomal loci and is the first described for any viral genome. EBV thus provides a unique model system with which to investigate factors influencing the selection of replication initiation and termination sites in mammalian cells.  相似文献   

2.
The EBNA1 protein of Epstein–Barr virus (EBV) activates latent-phase DNA replication by an unknown mechanism that involves binding to four recognition sites in the dyad symmetry (DS) element of the viral latent origin of DNA replication. Since EBV episomes are assembled into nucleosomes, we have examined the ability of Epstein–Barr virus nuclear antigen 1 (EBNA1) to interact with the DS element when it is assembled into a nucleosome core particle. EBNA1 bound to its recognition sites within this nucleosome, forming a ternary complex, and displaced the histone octamer upon competitor DNA challenge. The DNA binding and dimerization region of EBNA1 was sufficient for nucleosome binding and destabilization. Although EBNA1 was able to bind to nucleosomes containing two recognition sites from the DS element positioned at the edge of the nucleosome, nucleosome destabilization was only observed when all four sites of the DS element were present. Our results indicate that the presence of a nucleosome at the viral origin will not prevent EBNA1 binding to its recognition sites. In addition, since four EBNA1 recognition sites are required for both nucleosome destabilization and efficient origin activation, our findings also suggest that nucleosome destabilization by EBNA1 is important for origin activation.  相似文献   

3.
The Epstein-Barr virus nuclear antigen 1 (EBNA1) protein binds and activates the latent replication origin (oriP) of the Epstein-Barr virus. We have been studying EBNA1 to determine how it activates replication at oriP. Here we demonstrate that upon binding of EBNA1 to oriP, two thymine residues become reactive to potassium permanganate (KMnO4), indicating a helical distortion at these sites. The KMnO4-reactive thymines are 64 bp apart in the region of dyad symmetry of oriP. Dimethyl sulfate protection studies indicated that EBNA1 binds on the opposite face of the helix from the reactive thymines. The nature of the helical distortion induced by EBNA1 and its possible significance to the initiation of replication are discussed.  相似文献   

4.
The EBNA1 protein of Epstein-Barr virus (EBV) activates DNA replication by binding to multiple copies of its 18-bp recognition sequence present in the Epstein-Barr virus latent origin of DNA replication, oriP. Using electrophoretic mobility shift assays, we have localized the minimal DNA binding domain of EBNA1 to between amino acids 470 and 607. We have also demonstrated that EBNA1 assembles cooperatively on the dyad symmetry subelement of oriP and that this cooperative interaction is mediated by residues within the minimal DNA binding and dimerization domain of EBNA1.  相似文献   

5.
Epstein-Barr nuclear antigen 1 (EBNA1) activates DNA replication from the Epstein-Barr virus latent origin, oriP. This activation involves the direct interaction of EBNA1 dimers with multiple sites within the two noncontiguous functional elements of the origin, the family of repeats (FR) element and the dyad symmetry (DS) element. The efficient interaction of EBNA1 dimers bound to these two elements in oriP results in the formation of DNA loops in which the FR and DS elements are bound together through EBNA1. In order to elucidate the mechanism by which EBNA1 induces oriP DNA looping, we have investigated the DNA sequences and EBNA1 amino acids required for EBNA1-mediated DNA looping. Using a series of truncation mutants of EBNA1 produced in baculovirus and purified to apparent homogeneity, we have demonstrated that the EBNA1 DNA binding and dimerization domain is not sufficient to mediate oriP DNA looping and that an additional region(s) located between amino acids 346 and 450 is required. Single EBNA1-binding sites, separated by 930 bp of plasmid DNA, were also shown to support EBNA1-mediated looping, indicating that the formation of large EBNA1 complexes, such as those observed on oriP FR and DS elements, is not a requirement for looping.  相似文献   

6.
D J Hsieh  S M Camiolo    J L Yates 《The EMBO journal》1993,12(13):4933-4944
Replication of the circular, 170 kb genome of Epstein-Barr virus (EBV) during latent infection is performed by the cellular replication machinery under cell-cycle control. A single viral protein, EBNA1, directs the cellular replication apparatus to initiate replication within the genetically defined replication origin, oriP, at a cluster of four EBNA1 binding sites, referred to here as the physical origin of bidirectional replication, or OBR. A second cluster of EBNA1 binding sites within oriP, the 30 bp repeats, serves an essential role as a replication enhancer and also provides a distinct episome maintenance function that is unrelated to replication. We examined the functional elements of oriP for binding by EBNA1 and possibly other proteins in proliferating Raji cells by generating in vivo footprints using two reagents, dimethylsulfate (DMS) and KMnO4. We also employed deoxyribonuclease I (DNase I) with permeabilized cells. The in vivo and permeabilized cell footprints at the EBNA1 binding sites, particularly those obtained using DMS, gave strong evidence that all of these sites are bound by EBNA1 in asynchronously dividing cells. No consistent evidence was found to suggest binding by other proteins at any other sites within the functional regions of oriP. Thymines at symmetrical positions of the OBR within oriP were oxidized when cells were treated with permanganate, suggestive of bends or other distortions of DNA structure at these positions; binding of EBNA1 in vitro to total DNA from Raji cells induced reactivity to permanganate at identical positions. The simplest interpretation of the results, which were obtained using asynchronously dividing cells, is that EBNA1 binds to its sites at oriP and holds the OBR in a distorted conformation throughout most of the cell cycle, implying that replication is initiated by a cellular mechanism and is not limited by an availability of EBNA1 for binding to oriP.  相似文献   

7.
The 165-kb circularized chromosome of Epstein-Barr virus (EBV) is replicated in latently infected cells once per cell cycle by host proteins during S phase. Replication initiates at multiple sites on latent EBV chromosomes, including within a 1.8-kb region called oriP, which can provide both replication and stabilization for recombinant plasmids in the presence of the EBV-encoded protein, EBNA-1. Replication initiates at or near the dyad symmetry component (DS) of oriP, which depends on multiple EBNA-1 binding sites for activity. To test the importance of the replication function of oriP, the DS was deleted from the viral genome. EBV mutants lacking the DS and carrying a selectable gene could establish latent infections in BL30 cells, in which circular, mutant viral chromosomes were stably maintained. Analysis of replication fork movement using two-dimensional gel electrophoresis showed that the deletion of the DS reduced the initiation events to an undetectable level within the oriP region so that this segment was replicated exclusively by forks entering the region from either direction. A significant slowing or stalling of replication forks that occurs normally at the approximate position of the DS was also eliminated by deletion of the DS. The results confirm the DS as both a replication origin and a place where replication forks pause. Since the replication function of oriP is dispensable at least in certain cell lines, the essential role of EBNA-1 for infection of these cell lines is likely to be that of stabilizing the EBV chromosome by associating with the 30-bp repeats of oriP. The results also imply that in established cell lines, the EBV chromosome can be efficiently replicated entirely from origins that are activated by cellular factors. Presumably, initiation of replication at the DS, mediated by EBNA-1, is important for the natural life cycle of EBV, perhaps in establishing latent infections of normal B cells.  相似文献   

8.
Epstein-Barr virus (EBV) replicates its genome as a licensed plasmid in latently infected cells. Although replication of this plasmid is essential for EBV latent infection, its synthesis still fails for 16% of the templates in S phase. In order to understand these failures, we sought to determine whether the affinity of the initiator protein (EBNA1) for its binding sites in the origin affects the efficiency of plasmid replication. We have answered this question by using several engineered origins modeled upon the arrangement of EBNA1-binding sites found in DS, the major plasmid origin of EBV. The human TRF2 protein also binds to half-sites in DS and increases EBNA1's affinity for its own sites; we therefore also tested origin efficiency in the presence or absence of these sites. We have found that if TRF2-half-binding sites are present, the efficiency of supporting the initiation of DNA synthesis and of establishing a plasmid bearing that origin directly correlates with the affinity of EBNA1 for that origin. Moreover, the presence of TRF2-half-binding sites also increases the average level of EBNA1 and ORC2 bound to those origins in vivo, as measured by chromatin immunoprecipitation. Lastly, we have created an origin of DNA synthesis from high-affinity EBNA1-binding sites and TRF2-half-binding sites that functions severalfold more efficiently than does DS. This finding indicates that EBV has selected a submaximally efficient origin of DNA synthesis for the latent phase of its life cycle. This enhanced origin could be used practically in human gene vectors to improve their efficiency in therapy and basic research.  相似文献   

9.
OriP, the latent origin of Epstein-Barr virus (EBV), consists of two essential elements: the dyad symmetry (DS) and the family of repeats (FR). The function of these elements has been predominantly analyzed in plasmids transfected into transformed cells. Here, we examined the molecular functions of DS in its native genomic context and at an ectopic position in the mini-EBV episome. Mini-EBV plasmids contain 41% of the EBV genome including all information required for the proliferation of human B cells. Both FR and DS function independently of their genomic context. We show that DS is the most active origin of replication present in the mini-EBV genome regardless of its location, and it is characterized by the binding of the origin recognition complex (ORC) allowing subsequent replication initiation. Surprisingly, the integrity of oriP is not required for the formation of the pre-replicative complex (pre-RC) at or near DS. In addition we show that initiation events occurring at sites other than the DS are also limited to once per cell cycle and that they are ORC-dependent. The deletion of DS increases initiation from alternative origins, which are normally used very infrequently in the mini-EBV genome. The sequence-independent distribution of ORC-binding, pre-RC-assembly, and initiation patterns indicates that a large number of silent origins are present in the mini-EBV genome. We conclude that, in mini-EBV genomes lacking the DS element, the absence of a strong ORC binding site results in an increase of ORC binding at dispersed sites.  相似文献   

10.
11.
12.
During latency, Epstein-Barr virus (EBV) is stably maintained as a circular plasmid that is replicated once per cell cycle and partitioned at mitosis. Both these processes require a single viral protein, EBV nuclear antigen 1 (EBNA1), which binds two clusters of cognate binding sites within the latent viral origin, oriP. EBNA1 is known to associate with cellular metaphase chromosomes through chromosome-binding domains within its amino terminus, an association that we have determined to be required not only for the partitioning of oriP plasmids but also for their replication. One of the chromosome-binding domains of EBNA1 associates with a cellular nucleolar protein, EBP2, and it has been proposed that this interaction underlies that ability of EBNA1 to bind metaphase chromosomes. Here we demonstrate that EBNA1's chromosome-binding domains are AT hooks, a DNA-binding motif found in a family of proteins that bind the scaffold-associated regions on metaphase chromosomes. Further, we demonstrate that the ability of EBNA1 to stably replicate and partition oriP plasmids correlates with its AT hook activity and not its association with EBP2. Finally, we examine the contributions of EBP2 toward the ability of EBNA1 to associate with metaphase chromosomes in human cells, as well as support the replication and partitioning of oriP plasmids in human cells. Our results indicate that it is unlikely that EBP2 directly mediates these activities of EBNA1 in human cells.  相似文献   

13.
The Epstein-Barr virus (EBV) latent origin of plasmid replication (oriP) contains two essential regions, a family of repeats with 20 imperfect copies of a 30-bp sequence and a dyad symmetry element with four similar 30-bp repeats. Each of the repeats has an internal palindromic sequence and can bind EBNA 1, a protein that together with oriP constitutes the only viral element necessary for EBV maintenance and replication. Using single-strand-specific nucleases, we have probed plasmids containing oriP-derived sequences for the presence of secondary structural elements. Multiple single-stranded structures were detected within the oriP region. Of the two essential elements of oriP, the family of repeats seemed to extrude these structures at a much higher frequency than did sequences within the dyad symmetry region. Though negative supercoiling was found to stabilize the single-stranded structures, they showed significant stability even after linearization of the oriP plasmids. Two major single-stranded structures detected involved approximately 12 bp of DNA. These loci could be transiently unwound regions that form because of negative supercoiling and the high A + T content of this region of DNA, or they could be cruciform structures extruded within the palindromic sequences of oriP that may be important sites for protein-DNA interactions in the EBV oriP.  相似文献   

14.
Metazoan genomes contain thousands of replication origins, but only a limited number have been characterized so far. We developed a two-step origin-trapping assay in which human chromatin fragments associated with origin recognition complex (ORC) in vivo were first enriched by chromatin immunoprecipitation. In a second step, these fragments were screened for transient replication competence in a plasmid-based assay utilizing the Epstein-Barr virus latent origin oriP. oriP contains two elements, an origin (dyad symmetry element [DS]) and the family of repeats, that when associated with the viral protein EBNA1 facilitate extrachromosomal stability. Insertion of the ORC-binding human DNA fragments in oriP plasmids in place of DS enabled us to screen functionally for their abilities to restore replication. Using the origin-trapping assay, we isolated and characterized five previously unknown human origins. The assay was validated with nascent strand abundance assays that confirm these origins as active initiation sites in their native chromosomal contexts. Furthermore, ORC and MCM2-7 components localized at these origins during G(1) phase of the cell cycle but were not detected during mitosis. This finding extends the current understanding of origin-ORC dynamics by suggesting that replication origins must be reestablished during the early stages of each cell division cycle and that ORC itself participates in this process.  相似文献   

15.
The replication and stable maintenance of latent Epstein-Barr virus (EBV) DNA episomes in human cells requires only one viral protein, Epstein-Barr nuclear antigen 1 (EBNA1). To gain insight into the mechanisms by which EBNA1 functions, we used a yeast two-hybrid screen to detect human proteins that interact with EBNA1. We describe here the isolation of a protein, EBP2 (EBNA1 binding protein 2), that specifically interacts with EBNA1. EBP2 was also shown to bind to DNA-bound EBNA1 in a one-hybrid system, and the EBP2-EBNA1 interaction was confirmed by coimmunoprecipitation from insect cells expressing these two proteins. EBP2 is a 35-kDa protein that is conserved in a variety of organisms and is predicted to form coiled-coil interactions. We have mapped the region of EBNA1 that binds EBP2 and generated internal deletion mutants of EBNA1 that are deficient in EBP2 interactions. Functional analyses of these EBNA1 mutants show that the ability to bind EBP2 correlates with the ability of EBNA1 to support the long-term maintenance in human cells of a plasmid containing the EBV origin, oriP. An EBNA1 mutant lacking amino acids 325 to 376 was defective for EBP2 binding and long-term oriP plasmid maintenance but supported the transient replication of oriP plasmids at wild-type levels. Thus, our results suggest that the EBNA1-EBP2 interaction is important for the stable segregation of EBV episomes during cell division but not for the replication of the episomes.  相似文献   

16.
Latent Epstein-Barr virus (EBV) is maintained by the virus replication origin oriP that initiates DNA replication with the viral oriP-binding factor EBNA1. However, it is not known whether oriP's replicator activity is regulated by virus proteins or extracellular signals. By using a transient replication assay, we found that a low level of expression of viral signal transduction activator latent membrane protein 1 (LMP1) suppressed oriP activity. The binding site of the tumor necrosis factor receptor-associated factor (TRAF) of LMP1 was essential for this suppressive effect. Activation of the TRAF signal cascade by overexpression of TRAF5 and/or TRAF6 also suppressed oriP activity. Conversely, blocking of TRAF signaling with dominant negative mutants of TRAF5 and TRAF6, as well as inhibition of a downstream signal mediator p38 MAPK, released the LMP1-induced oriP suppression. Furthermore, activation of TRAF6 signal cascade by lipopolysaccharides (LPS) resulted in loss of EBV from Burkitt's lymphoma cell line Akata, and inhibition of p38 MAPK abolished the suppressive effect of LPS. These results suggested that the level of oriP activity is regulated by LMP1 and extracellular signals through TRAF5- and TRAF6-mediated signal cascades.  相似文献   

17.
T A Gahn  C L Schildkraut 《Cell》1989,58(3):527-535
Epstein-Barr virus (EBV) oriP contains two components, a dyad symmetry element and a direct repeat element, that, in the presence of EBV nuclear antigen 1, are necessary and sufficient for plasmid replication. We have examined the replicative forms generated by EBV oriP using 2D gel electrophoresis. The patterns obtained from an oriP plasmid in a transfected cell line indicate that the site of initiation of DNA replication is at or very near the dyad symmetry element, while the direct repeats contain a replication fork barrier and the termination site. Thus, replication from oriP proceeds in a predominantly undirectional manner. The patterns obtained from cells immortalized by EBV suggest that replication from oriP proceeds similarly in the viral genome.  相似文献   

18.
The Epstein-Barr virus (EBV) latent origin of DNA replication (oriP) is composed of two elements that contain binding sites for the sole viral gene product required for latent cycle replication, EBNA-1. One of these elements, region I, functions as an EBNA-1-dependent enhancer for RNA polymerase II-transcribed genes, may play a role in plasmid segregation, and is required for origin function in B cells latently infected with EBV. The second element, region II, contains or is very near the site of initiation of DNA replication. A genetic approach was taken to determine the contribution of the EBNA-1 binding sites in oriP to origin function. Although region I is required for the transient replication of plasmids bearing region II in EBV-infected B cells, a plasmid lacking region I but containing region II, was observed to replicate transiently in both D98/Raji and HeLa cells expressing EBNA-1. Thus, binding of EBNA-1 to region I is not absolutely required for the molecular events that lead to initiation of DNA replication at region II. Site-directed mutagenesis of the four EBNA-1-binding sites in region II, individually and in various combinations, demonstrated that only two EBNA-1-binding sites are required for region II function. The results obtained with these mutants, together with the analysis of the replicative ability of plasmids containing insertions between EBNA-1-binding sites, suggested that the spatial relationship of the two sites is critical. Mutants that contain only two EBNA-1-binding sites separated by 26 to 31 bp in region II were not maintained as plasmids over many cell generations and were greatly reduced in their ability to replicate transiently in D98/Raji cells. The EBNA-1-induced bending or untwisting of the DNA in EBNA-1-binding sites 1 and 4 in region II did not, however, demonstrate this spatial constraint. It may be concluded from these results that specific protein-protein interactions between EBNA-1 and/or between EBNA-1 and a cellular protein(s) are required for origin function.  相似文献   

19.
20.
Bashaw JM  Yates JL 《Journal of virology》2001,75(22):10603-10611
oriP is a 1.7-kb region of the Epstein-Barr virus (EBV) chromosome that supports replication and stable maintenance of plasmids in human cells that contain EBV-encoded protein EBNA1. Plasmids that depend on oriP are replicated once per cell cycle by cellular factors. The replicator of oriP is an approximately 120-bp region called DS which depends on either of two pairs of closely spaced EBNA1 binding sites. Here we report that changing the distance between the EBNA1 sites of a functional pair by inserting or deleting 1 or 2 bp abolished replication activity. The results indicated that, while the distance separating the binding sites is critical, the specific nucleotide sequence between them is unlikely to be important. The use of electrophoretic mobility shift assays to investigate binding by EBNA1 to the sites with normal or altered spacing revealed that EBNA1 induces DNA to bend significantly when it binds, with the center of bending coinciding with the center of binding. EBNA1 binding to a functional pair of sites which are spaced 21 bp apart center to center and which thus are in helical phase induces a larger symmetrical bend, which based on electrophoretic mobility approximates the sum of two separate EBNA1-induced DNA bends. The results imply that replication from oriP requires a precise structure in which DNA forms a large bend around two EBNA1 dimers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号