首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 811 毫秒
1.
1. Male and female Djungarian hamsters (Phodopus sungorus) were gonadectomized or sham-operated after 12 weeks of exposure to short photoperiods (10L:14D). Half of the animals were single housed and transferred to a cold environment (7 degrees C) at week 13 of short days and half were transferred to cold at week 21. The time courses of short photoperiod induced seasonal changes in body weight, pelage color stage, and daily torpor were monitored periodically until the experiment was terminated after 34 weeks of short days. 2. The total duration of short photoperiod exposure was of primary importance compared to the duration of cold exposure in regulating seasonal changes in the frequency of daily torpor, body weight and pelage color exhibited by male and female Djungarian hamsters; that is, the change from long to short days was much more effective as a seasonal time cue than was the onset of cold exposure. 3. Gonadectomy did not prevent the occurrence of seasonal torpor in hamsters of either sex, indicating that these cycles are regulated by a time measuring mechanism (seasonal clock) that is largely independent of the gonadal cycle. However, castration did influence certain aspects of the body weight and torpor cycles exhibited by male hamsters. 4. Some castrated animals showed a delay in terminating the torpor season lending further support to the hypothesis that the spontaneous recrudescence of the testes which occurs toward the end of the torpor season may play a role in the termination of torpor in males.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Torpor was monitored daily in adult male and female European hamsters (Cricetus cricetus) induced to hibernate by exposure to a cold environment (6 degrees C). The effect of photoperiodic manipulations or administration of exogenous gonadal steroids was examined in gonadectomized or intact hamsters. 1. Gonadal regression occurred in all short day, but only in some long day, cold-exposed hamsters. Entry into hibernation was not observed until reproductive regression had occurred. Thus, gonadal atrophy appears to be a necessary precondition for hibernation. 2. Castrated hamsters in the short day cold condition showed a significantly greater incidence of torpor than those in the long day cold condition. Hence, photoperiod affected torpor independently of its effect on the gonadal cycle. 3. Testosterone, when administered via silastic capsules at near physiological levels, completely inhibited torpor in gonadectomized male and female hamsters hibernating in the short day cold condition. 4. In ovariectomized females, torpor was unaffected by progesterone treatment, but partially inhibited by estradiol. A greater inhibition of torpor was observed when estradiol-primed females were administered both estradiol and progesterone simultaneously. Thus, the effect of both hormones may be functionally comparable to that of the single testicular hormone. 5. Estradiol inhibited torpor to a greater extent in intact and ovariectomized female hamsters hibernating in long days than those in short days, suggesting an effect of photoperiod on responsiveness to estradiol. These results indicate an inverse relationship between the gonadal and hibernation cycles, and a probable role for gonadal steroids to influence the timing of the hibernation season. However, non-gonadal factors must also be involved in controlling hibernation, since photoperiod affected the incidence of torpor in gonadectomized animals and because hamsters were able to terminate hibernation in the absence of gonadal hormones.  相似文献   

3.
Siberian hamsters undergo torpor during the short days of winter and in response to glucoprivation or food restriction. We tested whether the area postrema and the adjacent nucleus of the solitary tract (hereafter the AP), which monitor metabolic fuel availability, also control the onset of torpor. Siberian hamsters that had manifested torpor spontaneously or had entered torpor in response to 2-deoxy-D-glucose (2-DG) treatment were subjected to area postrema ablations (APx). Hamsters continued to display torpor postoperatively; most features of torpor were unaffected by APx. The AP is not necessary for expression of torpor elicited by short day lengths or metabolic challenge. In contrast, decreases in food intake manifested by hamsters treated with 2-DG were counteracted by APx. In Siberian hamsters, the AP appears to mediate effects of 2-DG on food intake but not torpor.  相似文献   

4.
1. The daily torpor was measured by oxygen uptake in Djungarian hamsters during adaptation to a short photoperiod (SP: 10L, 14D) at 20 degrees C. In these constant conditions the torpor presented metabolic characteristics and a daily time course independent of the duration of adaptations to SP. 2. The frequency of torpor bouts increased during SP exposure and its maximum was reached after about 130 days. The frequency of torpor was greater in males than in females. 3. The incidence of torpor was increased by constant dark exposure and this is discussed as a protective mechanism for the individual animal's ability to survive. 4. The temporal organization of daily torpor was demonstrated to be directly synchronized by the day-night cycle and to be controlled by an endogenous circadian function.  相似文献   

5.
Siberian hamsters as young as 16 and 28 d displayed torpor in response to treatment with 2,500 mg/kg 2-deoxy-D-glucose and reduced food availability, respectively. In addition, most food-restricted hamsters displayed increased locomotor activity and elevated body temperatures in the 3 h immediately preceding daily food delivery. This anticipatory activity disappeared within a few days of reimposition of ad lib. feeding. Torpor first appeared spontaneously at approximately 13 wk of age in hamsters fed ad lib. and maintained in short day lengths. The onset of this "spontaneous" torpor was unaffected by the hamsters' history of food restriction before age 2 mo. Siberian hamsters born late in the breeding season can conserve energy by undergoing torpor immediately after weaning when they contend with food shortages and concurrent energetic challenges imposed by growth requirements and low ambient temperatures.  相似文献   

6.
A photoperiod with a short photophase induces a winterlike phenotype in Siberian hamsters that includes a progressive decrease in food intake and body mass and reproductive organ regression, as well as reversible hypothermia in the form of short-duration torpor. Torpor substantially reduces energy utilization and is not initiated until body mass, fat stores, and serum leptin concentrations are at their nadir. Because photoperiod-dependent torpor is delayed until fat reserves are lowest, leptin concentrations may be a permissive factor for torpor onset. This conjecture was tested by implanting osmotic minipumps into Siberian hamsters manifesting spontaneous torpor; the animals received a constant release of leptin or vehicle for 14 days. Exogenous leptin treatment eliminated torpor in a significant proportion of treated hamsters, whereas treatment with the vehicle did not. Similarly, endogenous serum leptin concentrations were markedly reduced in all animals undergoing daily torpor. Although simply reducing leptin concentrations below a threshold value is not sufficient for torpor initiation, reduced leptin concentrations nevertheless appear necessary for its occurrence. It is proposed that drastically reduced leptin concentrations provide a "starvation signal" to an as yet unidentified central mechanism mediating torpor initiation.  相似文献   

7.
After approximately 10 wk of exposure to decreasing day lengths, Siberian hamsters (Phodopus sungorus) begin to display spontaneous torpor bouts several times each week. Torpor is associated with reduced daily energy expenditure and lower food consumption and ameliorates the thermoregulatory challenges of winter. We tested the extent to which the energy savings conferred by daily torpor depend on the presence of an insulative pelage. Female hamsters were housed in a winter day length (8L:16D) at 5 degrees C; daily food intake and torpor characteristics were recorded for 5 wk in shaved (furless) or normal hamsters. Torpor-bout incidence decreased by 62% in furless hamsters, but the duration of individual bouts and the minimum body temperature attained during torpor were unaffected by loss of pelage. Body temperature declined more rapidly during entry into torpor and increased more slowly during arousal from torpor in furless than in control hamsters. Energy savings per torpor bout, assessed by the amount of food consumed on days that included a torpor bout, was substantially greater in normal than in furless hamsters (16.0% vs. 3.3%); this difference likely reflects the increased cost of thermoregulation during torpor, as well as the increased caloric expenditure incurred by furless hamsters during arousal from torpor. An insulative pelage may be a prerequisite for the energetic benefits derived from heterothermy in this species.  相似文献   

8.
Ageing can progress at different rates according to an individual's physiological state. Natural hypothermia, including torpor and hibernation, is a common adaptation of small mammals to survive intermittent or seasonal declines in environmental conditions. In addition to allowing energy savings, hypothermia and torpor have been associated with retarded ageing and increased longevity. We tested the hypothesis that torpor use slows ageing by measuring changes in the relative telomere length (RTL) of Djungarian hamsters, Phodopus sungorus, a highly seasonal rodent using spontaneous daily torpor, over 180 days of exposure to a short-day photoperiod and warm (approx. 20°C) or cold (approx. 9°C) air temperatures. Multi-model inference showed that change in RTL within individuals was best explained by positive effects of frequency of torpor use, particularly at low body temperatures, as well as the change in body mass and initial RTL. Telomere dynamics have been linked to future survival and proposed as an index of rates of biological ageing. Our results therefore support the hypothesis that daily torpor is associated with physiological changes that increase somatic maintenance and slow the processes of ageing.  相似文献   

9.
We investigated the correlation between torpor frequency and capacity for non-shivering thermogenesis (NST) in Siberian hamsters (Phodopus sungorus) during 25 weeks of acclimation to cold and short days. We hypothesized that torpor use is conditioned on the development of brown adipose tissue (BAT) capacity for NST. We found that (1) the degree of noradrenaline (NA)-induced hyperthermia was positively correlated with torpor frequency and its length and depth, and (2) the maximum response to NA occurred at the time of day when hamsters naturally arouse from torpor. The present study quantifies the correlation between torpor frequency and NST capacity and we suggest that a well-developed NST capacity is a prerequisite for the occurrence of torpor.  相似文献   

10.
Siberian hamsters (Phodopus sungorus) have the ability to express daily torpor and decrease their body temperature to approximately 15 degrees C, providing a significant savings in energy expenditure. Daily torpor in hamsters is cued by winterlike photoperiods and occurs coincident with the annual nadirs in body fat reserves and chronic leptin concentrations. To better understand the neural mechanisms underlying torpor, Siberian hamster pups were postnatally treated with saline or MSG to ablate arcuate nucleus neurons that likely possess leptin receptors. Body temperature was studied telemetrically in cold-acclimated (10 degrees C) male and female hamsters moved to a winterlike photoperiod (10:14-h light-dark cycle) (experiments 1 and 2) or that remained in a summerlike photoperiod (14:10-h light-dark cycle) (experiment 3). In experiment 1, even though other photoperiodic responses persisted, MSG-induced arcuate nucleus ablations prevented the photoperiod-dependent torpor observed in saline-treated Siberian hamsters. MSG-treated hamsters tended to possess greater fat reserves. To determine whether reductions in body fat would increase frequency of photoperiod-induced torpor after MSG treatment, hamsters underwent 2 wk of food restriction (70% of ad libitum) in experiment 2. Although food restriction did increase the frequency of torpor in both MSG- and saline-treated hamsters, it failed to normalize the proportion of MSG-treated hamsters undergoing photoperiod-dependent torpor. In experiment 3, postnatal MSG treatments reduced the proportion of hamsters entering 2DG-induced torpor-like hypothermia by approximately 50% compared with saline-treated hamsters (38 vs. 72%). In those MSG-treated hamsters that did become hypothermic, their minimum temperature during hypothermia was significantly greater than comparable saline-treated hamsters. We conclude that 1) arcuate nucleus mechanisms mediate photoperiod-induced torpor, 2) food-restriction-induced torpor may also be reduced by MSG treatments, and 3) arcuate nucleus neurons make an important, albeit partial, contribution to 2DG-induced torpor-like hypothermia.  相似文献   

11.
The grey mouse lemur (Microcebus murinus) is a small nocturnal primate exhibiting daily torpor. In constant ambient temperature (22-24 degrees C), body temperature (Tb) and locomotor activity were monitored by telemetry in animals exposed to short (SP: 10 h light/day) or long (LP: 14 light/day) photoperiods. They were first fed ad libitum for 8 days and then subjected to 80% restricted feeding for 8 more days. During ad libitum feeding, locomotor activity was significantly lower in SP-exposed animals than in LP-exposed animals. Whatever the photoperiod, animals entered daily hypothermia within the first hours following the light onset. Depth of daily hypothermia increased irregularly under SP exposure, whereas minimal daily Tb was constantly above 35 degrees C under LP exposure. After the transfer from long photoperiod to short photoperiod corresponding to the induction of seasonal fattening, locomotor activity and depth of controlled daily hypothermia did not change significantly. In contrast, food restriction led to a significant increase in locomotor activity and in frequency of daily torpor (Tb<33 degrees C) and body temperature reached minimum values averaging 25 degrees C. However, SP-exposed animals exhibited lower minimal daily Tb and higher torpor duration than LP exposed animals. Therefore, daily torpor appears as a rapid response to food restriction occurring whatever the photoperiod, although enhanced by short photoperiod.  相似文献   

12.
Daily rhythms of pineal and serum melatonin content were characterized for adult female Turkish hamsters (Mesocricetus brandti) exposed to long days (16L:8D, 22 degrees C) or after transfer to short days (10L:14D, 22 degrees C). The nocturnal peak of pineal melatonin content was found to be approximately 3 b greater in duration on short than on long days. Changes in levels of serum melatonin closely paralleled those of pineal melatonin. Thus, an effect of photoperiod on synthesis and secretion of pineal melatonin was demonstrated. In a separate experiment, female hamsters were induced to hibernate by exposure to a short-day, cold environment (10L:14D, 6 degrees C). During the 4 to 5-mo hibernation season, Turkish hamsters are known to display 4 to 8-day hours of torpor (body temperature = 7-9 degrees C) alternating with 1 to 3-day intervals of euthermia (body temperature = 35-37 degrees C). Little evidence of nocturnal synthesis or secretion of pineal melatonin was detected in females sampled during torpor. However, animals sampled during the first day after arousal from a torpor bout displayed melatonin rhythms no different in phase or amplitude from those seen in females held at 22 degrees C. Thus, despite the absence of pineal melatonin output during torpor, the pineal gland of hibernating Turkish hamsters produces an appropriately phased, rhythmic melatonin signal during intervals of euthermia.  相似文献   

13.
Thyroid hormones (TH) play a key role in regulation of seasonal as well as acute changes in metabolism. Djungarian hamsters (Phodopus sungorus) adapt to winter by multiple changes in behaviour and physiology including spontaneous daily torpor, a state of hypometabolism and hypothermia. We investigated effects of systemic TH administration and ablation on the torpor behaviour in Djungarian hamsters adapted to short photoperiod. Hyperthyroidism was induced by giving T4 or T3 and hypothyroidism by giving methimazole (MMI) and sodium perchlorate via drinking water. T3 treatment increased water, food intake and body mass, whereas MMI had the opposite effect. Continuous recording of body temperature revealed that low T3 serum concentrations increased torpor incidence, lowered Tb and duration, whereas high T3 serum concentrations inhibited torpor expression. Gene expression of deiodinases (dio) and uncoupling proteins (ucp) were analysed by qPCR in hypothalamus, brown adipose tissue (BAT) and skeletal muscle. Expression of dio2, the enzyme generating T3 by deiodination of T4, and ucps, involved in thermoregulation, indicated a tissue specific response to treatment. Torpor per se decreased dio2 expression irrespective of treatment or tissue, suggesting low intracellular T3 concentrations during torpor. Down regulation of ucp1 and ucp3 during torpor might be a factor for the inhibition of BAT thermogenesis. Hypothalamic gene expression of neuropeptide Y, propopiomelanocortin and somatostatin, involved in feeding behaviour and energy balance, were not affected by treatment. Taken together our data indicate a strong effect of thyroid hormones on torpor, suggesting that lowered intracellular T3 concentrations in peripheral tissues promote torpor.  相似文献   

14.
Summary In Djungarian hamsters,Phodopus sungorus, daily torpor occurs spontaneously in winter in the presence of abundant food, but individuals show different tendencies to enter torpor. The results show that in hamsters fed rodent chow ad libitum individual torpor frequencies were negatively correlated with both food consumption and the amount of nocturnal locomotor activity. Provision of cafeteria diet at ambient temperatures below thermoneutrality significantly lowered torpor frequencies and induced body weight gains. However, in hamsters fed seeds with a high fat or carbohydrate content (i.e., sunflower seeds or wheat, respectively) neither a decrease of torpor frequencies nor an increase of body weights was observed. The results suggest that in Djungarian hamsters, daily torpor is an intrinsic component of energy balance control and is functionally linked to individual physiological adjustments of food consumption and foraging activity. In addition, the employment of daily torpor can be affected by social interactions, since the long-term pattern of alternations between torpor and normothermia was found to be synchronized in breeding pairs caged together.Abbreviations T a ambient temperature - DIT diet-induced thermogenesis  相似文献   

15.
Siberian hamsters (Phodopus sungorus) undergo bouts of daily torpor during which body temperature decreases by as much as 20 degrees C and provides a significant savings in energy expenditure. Natural torpor in this species is normally triggered by winterlike photoperiods and low ambient temperatures. Intracerebroventricular injection of neuropeptide Y (NPY) reliably induces torporlike hypothermia that resembles natural torpor. NPY-induced torporlike hypothermia is also produced by intracerebroventricular injections of an NPY Y1 receptor agonist but not by injections of an NPY Y5 receptor agonist. In this research, groups of cold-acclimated Siberian hamsters were either coinjected with a Y1 receptor antagonist (1229U91) and NPY or were coinjected with a Y5 receptor antagonist (CGP71683) and NPY in counterbalanced designs. Paired vehicle + NPY induced torporlike hypothermia in 92% of the hamsters, whereas coinjection of Y1 antagonist + NPY induced torporlike hypothermia in 4% of the hamsters. In contrast, paired injections of vehicle + NPY and Y5 antagonist + NPY induced torporlike hypothermia in 100% and 91% of the hamsters, respectively. Although Y5 antagonist treatment alone had no effect on body temperature, Y1 antagonist injections produced hyperthermia compared with controls. Both Y1 antagonist and Y5 antagonist injections significantly reduced food ingestion 24 h after treatment. We conclude that activation of NPY 1 receptors is both sufficient and necessary for NPY-induced torporlike hypothermia.  相似文献   

16.
17.
In their natural habitat, Djungarian hamsters are faced with dramatic seasonal changes. This requires various morphological and physiological adaptations allowing cope with harsh climate and food shortage, particularly in winter. These seasonal changes are controlled by the photoperiod and can be observed also in the laboratory at room temperature. The aim of the present study was to investigate if the efficiency of thermoregulation also depends on the photoperiod. For this reason, Djungarian hamsters were transferred to short-day conditions (SDC) with 8 h light and 16 h darkness. Two-thirds of the animals were classified as responders showing the typical seasonal changes – decrease of body mass, fur change, testes regression, vagina closing. The total activity per day did not change but, the nocturnal activity was spread over the longer dark time. The body temperature decreased, and the animals showed regular daily torpor. To investigate the thermoregulatory efficiency, body temperatures were correlated with motor activity. The obtained regression coefficients describe formally the effect of motor activity on body temperature, a measure for the efficiency of thermoregulation. In SDC, the coefficients were elevated, both during rest and activity, i.e. the same amount of activity did produce a larger increase in body temperature. Under field conditions, this might be an additional mechanism to compensate the bigger in winter heat loss. Also, the high coefficients may support the increase in body temperature at the end of a torpor phase by a bout of motor activity. The results show that, seasonal changes of thermoregulatory efficiency are an effective accessory way to cope with different temperatures in hamsters’ natural environment.  相似文献   

18.
Arousal from deep hibernation is accompanied by a transient rise of melatonin (Mel) in circulation; there are no comparable analyses of Mel concentrations in species that undergo much shallower, shorter duration episodes of daily torpor. Serum Mel concentrations were determined during arousal from both natural daily torpor and torpor induced by 2-deoxy-D-glucose (2-DG) treatment (2,500 mg/kg, intraperitoneal [IP]); blood samples were drawn from the retro-orbital sinus of anesthetized Siberian hamsters. For animals kept in darkness during torpor, Mel concentrations were highest during early arousal when thermogenesis is maximal, and they decreased as body temperature increased during arousal and returned to baseline once euthermia was reestablished. In hamsters kept in the light during the torpor bout, Mel concentrations were elevated above basal values during arousal, but the response was significantly blunted in comparison with values recorded in darkness. Increased Mel concentrations were detected in hamsters only during arousal from torpor (either natural or 2-DG induced) and were not simply a result of the drug treatment; hamsters that remained euthermic or manifested mild hypothermia after drug treatment maintained basal Mel concentrations. We propose that increased Mel production may reflect enhanced sympathetic activation associated with intense thermogenesis during arousal from torpor rather than an adjustment of the circadian rhythm of Mel secretion.  相似文献   

19.
The annual cycle of reproductive activity in the Syrian hamster, Mesocricetus auratus, is the result of interaction between seasonal changes in daylength (photoperiodism) and seasonal changes in responsiveness to daylength (seasonality). The present experiment was designed to investigate the role of the pineal gland and its hormone, melatonin, in the alternation of seasonality (scotosensitivity and scotorefractoriness). Male hamsters were maintained on short daylengths (10L:14D) to establish scotorefractoriness, and then they were transferred to long daylengths (14L:10D) for conversion to scotosensitivity (sensitive to short daylengths). Before transfer to long daylengths, some of the hamsters were pinealectomized and others were sham-operated or unoperated. Some of the pinealectomized hamsters received single daily melatonin or saline injections while on long daylengths. After 14 wk on long daylengths, the hamsters were transferred to short daylengths for 10 wk to test for conversion to scotosensitivity. Pinealectomized hamsters were given three daily melatonin injections while on short daylengths. Such treatment is known to promote gonadal regression in scotosensitive but not in scotorefractory hamsters. Examination of testes after the short daylength interval revealed that exposure of nonpinealectomized hamsters to long daylengths had reestablished scotosensitivity (regressed testes). Pinealectomized hamsters that received no melatonin replacement while on long daylengths remained scotorefractory (enlarged testes), whereas those that received single daily injections of melatonin during long daylengths were found to be scotosensitive. These results indicate that a daily pulse of melatonin during expsoure to long daylengths has an important role in reestablishing responsiveness (scotosensitivity) to short daylengths.  相似文献   

20.
Circadian rhythms of plasma insulin, Cortisol, and glucose concentrations were examined in scotosensitive (reproductively sensitive to inhibitory effects of short daylengths) and scotorefractory male and female Syrian hamsters (Mesocricetus auratus) maintained on short (LD 10:14) and long (LD 14:10) daylengths. The baseline concentration (mean of all values obtained every 4 hr six times of day) of insulin was much greater in female than in male scotosensitive hamsters kept on short daylengths. These differences in insulin concentration may account for the observed heavy fat stores in female and low fat stores in male scotosensitive hamsters kept on short daylengths. The baseline concentrations of Cortisol were approximately equal in both scotosensitive and scotorefractory males held on short and long daylengths, but were relatively low in females held on short daylengths and especially high in scotorefractory females held on long daylengths.

The plasma concentrations of both cortisol and insulin varied throughout the day in many of the groups tested. However, the variations were not equivalent. The circadian variations of cortisol were similar irrespective of sex, seasonal condition and daylength. Peak concentrations generally occurred about 12 hr after light onset. In contrast, the circadian variations of insulin differed markedly. For example in male hamsters, robust daily variations were found in scotosensitive hamsters held on short daylengths but not on long daylengths and in scotorefractory hamsters held on long daylengths but not on short daylengths. Furthermore, the daily peak occurred during the light in the scotosensitive hamsters and during the dark in the scotorefractory animals. Neither the daily feeding pattern (about 60% consumed during dark) nor the daily variations of glucose concentration varied appreciably with seasonal condition or daylength. They do not appear to determine nor directly reflect the variations in cortisol and glucose concentrations. It is postulated that the daily rhythms of cortisol and insulin are regulated by different neural pacemaker systems and that changes in the phase relations of circadian systems account in part for seasonal changes in body fat stores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号