首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increasing biomass in Amazonian forest plots   总被引:6,自引:0,他引:6  
A previous study by Phillips et al. of changes in the biomass of permanent sample plots in Amazonian forests was used to infer the presence of a regional carbon sink. However, these results generated a vigorous debate about sampling and methodological issues. Therefore we present a new analysis of biomass change in old-growth Amazonian forest plots using updated inventory data. We find that across 59 sites, the above-ground dry biomass in trees that are more than 10 cm in diameter (AGB) has increased since plot establishment by 1.22 +/- 0.43 Mg per hectare per year (ha(-1) yr(-1), where 1 ha = 10(4) m2), or 0.98 +/- 0.38 Mg ha(-1) yr(-1) if individual plot values are weighted by the number of hectare years of monitoring. This significant increase is neither confounded by spatial or temporal variation in wood specific gravity, nor dependent on the allometric equation used to estimate AGB. The conclusion is also robust to uncertainty about diameter measurements for problematic trees: for 34 plots in western Amazon forests a significant increase in AGB is found even with a conservative assumption of zero growth for all trees where diameter measurements were made using optical methods and/or growth rates needed to be estimated following fieldwork. Overall, our results suggest a slightly greater rate of net stand-level change than was reported by Phillips et al. Considering the spatial and temporal scale of sampling and associated studies showing increases in forest growth and stem turnover, the results presented here suggest that the total biomass of these plots has on average increased and that there has been a regional-scale carbon sink in old-growth Amazonian forests during the previous two decades.  相似文献   

2.
Previous work has shown that tree turnover, tree biomass and large liana densities have increased in mature tropical forest plots in the late twentieth century. These results point to a concerted shift in forest ecological processes that may already be having significant impacts on terrestrial carbon stocks, fluxes and biodiversity. However, the findings have proved controversial, partly because a rather limited number of permanent plots have been monitored for rather short periods. The aim of this paper is to characterize regional-scale patterns of 'tree turnover' (the rate with which trees die and recruit into a population) by using improved datasets now available for Amazonia that span the past 25 years. Specifically, we assess whether concerted changes in turnover are occurring, and if so whether they are general throughout the Amazon or restricted to one region or environmental zone. In addition, we ask whether they are driven by changes in recruitment, mortality or both. We find that: (i) trees 10 cm or more in diameter recruit and die twice as fast on the richer soils of southern and western Amazonia than on the poorer soils of eastern and central Amazonia; (ii) turnover rates have increased throughout Amazonia over the past two decades; (iii) mortality and recruitment rates have both increased significantly in every region and environmental zone, with the exception of mortality in eastern Amazonia; (iv) recruitment rates have consistently exceeded mortality rates; (v) absolute increases in recruitment and mortality rates are greatest in western Amazonian sites; and (vi) mortality appears to be lagging recruitment at regional scales. These spatial patterns and temporal trends are not caused by obvious artefacts in the data or the analyses. The trends cannot be directly driven by a mortality driver (such as increased drought or fragmentation-related death) because the biomass in these forests has simultaneously increased. Our findings therefore indicate that long-acting and widespread environmental changes are stimulating the growth and productivity of Amazon forests.  相似文献   

3.
The growth of the global terrestrial sink of carbon dioxide has puzzled scientists for decades. We propose that the role of land management practices—from intensive forestry to allowing passive afforestation of abandoned lands—have played a major role in the growth of the terrestrial carbon sink in the decades since the mid twentieth century. The Forest Transition, a historic transition from shrinking to expanding forests, and from sparser to denser forests, has seen an increase of biomass and carbon across large regions of the globe. We propose that the contribution of Forest Transitions to the terrestrial carbon sink has been underestimated. Because forest growth is slow and incremental, changes in the carbon density in forest biomass and soils often elude detection. Measurement technologies that rely on changes in two‐dimensional ground cover can miss changes in forest density. In contrast, changes from abrupt and total losses of biomass in land clearing, forest fires and clear cuts are easy to measure. Land management improves over time providing important present contributions and future potential to climate change mitigation. Appreciating the contributions of Forest Transitions to the sequestering of atmospheric carbon will enable its potential to aid in climate change mitigation.  相似文献   

4.
In the Amazon, deforestation and climate change lead to increased vulnerability to forest degradation, threatening its existing carbon stocks and its capacity as a carbon sink. We use satellite L-Band Vegetation Optical Depth (L-VOD) data that provide an integrated (top-down) estimate of biomass carbon to track changes over 2011–2019. Because the spatial resolution of L-VOD is coarse (0.25°), it allows limited attribution of the observed changes. We therefore combined high-resolution annual maps of forest cover and disturbances with biomass maps to model carbon losses (bottom-up) from deforestation and degradation, and gains from regrowing secondary forests. We show an increase of deforestation and associated degradation losses since 2012 which greatly outweigh secondary forest gains. Degradation accounted for 40% of gross losses. After an increase in 2011, old-growth forests show a net loss of above-ground carbon between 2012 and 2019. The sum of component carbon fluxes in our model is consistent with the total biomass change from L-VOD of 1.3 Pg C over 2012-2019. Across nine Amazon countries, we found that while Brazil contains the majority of biomass stocks (64%), its losses from disturbances were disproportionately high (79% of gross losses). Our multi-source analysis provides a pessimistic assessment of the Amazon carbon balance and highlights the urgent need to stop the recent rise of deforestation and degradation, particularly in the Brazilian Amazon.  相似文献   

5.
Tropical forests are carbon-dense and highly productive ecosystems. Consequently, they play an important role in the global carbon cycle. In the present study we used an individual-based forest model (FORMIND) to analyze the carbon balances of a tropical forest. The main processes of this model are tree growth, mortality, regeneration, and competition. Model parameters were calibrated using forest inventory data from a tropical forest at Mt. Kilimanjaro. The simulation results showed that the model successfully reproduces important characteristics of tropical forests (aboveground biomass, stem size distribution and leaf area index). The estimated aboveground biomass (385 t/ha) is comparable to biomass values in the Amazon and other tropical forests in Africa. The simulated forest reveals a gross primary production of 24 tcha-1yr-1. Modeling above- and belowground carbon stocks, we analyzed the carbon balance of the investigated tropical forest. The simulated carbon balance of this old-growth forest is zero on average. This study provides an example of how forest models can be used in combination with forest inventory data to investigate forest structure and local carbon balances.  相似文献   

6.
During the last two decades, inventory data show that droughts have reduced biomass carbon sink of the Amazon forest by causing mortality to exceed growth. However, process-based models have struggled to include drought-induced responses of growth and mortality and have not been evaluated against plot data. A process-based model, ORCHIDEE-CAN-NHA, including forest demography with tree cohorts, plant hydraulic architecture and drought-induced tree mortality, was applied over Amazonia rainforests forced by gridded climate fields and rising CO2 from 1901 to 2019. The model reproduced the decelerating signal of net carbon sink and drought sensitivity of aboveground biomass (AGB) growth and mortality observed at forest plots across selected Amazon intact forests for 2005 and 2010. We predicted a larger mortality rate and a more negative sensitivity of the net carbon sink during the 2015/16 El Niño compared with the former droughts. 2015/16 was indeed the most severe drought since 1901 regarding both AGB loss and area experiencing a severe carbon loss. We found that even if climate change did increase mortality, elevated CO2 contributed to balance the biomass mortality, since CO2-induced stomatal closure reduces transpiration, thus, offsets increased transpiration from CO2-induced higher foliage area.  相似文献   

7.
岷江上游亚高山林区老龄林地上生物量动态变化   总被引:2,自引:0,他引:2  
张国斌  刘世荣  张远东  缪宁  王晖 《生态学报》2008,28(7):3176-3184
中国川西亚高山森林中的天然林大部分为成过熟的老龄林,对其生物量动态研究有助于了解其碳储量的动态变化规律.利用全国森林资源连续清查的27个固定样地数据,基于地上各器官生物量与树干胸径(D)和树高(h)的异速生长方程,估算了岷江上游亚高林山老龄林地上生物量密度的动态变化特征及其时空变化规律.结果表明,(1)从1988~2002年期间,老龄林地上生物量密度净增量为(27.311±15.580)Mg·hm-2,平均每年增长率为(1.930±1.091 )Mg·hm-2·a-1,平均每年枯损率为(2 271±1.424)Mg·hm-2·a-1;(2)地上生物量变化受各径级保留木生长量、枯损量及进界生长量影响,其中20~40cm径级保留木生长量与生物量净增量最大,>80cm径级生物量增量最小,40~60cm和60~80cm径级生物量在调查期间净增量出现负增长.(3)岷江上游老龄林地上生物量动态变化具有时空异质性,同一样地在不同调查间隔期或同一调查期间不同样地间生物量变化不同,不仅有增量数值大小差异,还表现为生物量增量的正负差异.  相似文献   

8.
杉木林年龄序列地下碳分配变化   总被引:5,自引:0,他引:5       下载免费PDF全文
  森林地下碳分配在森林碳平衡和碳吸存中具有重要作用, 而揭示人工林生长过程中地下碳分配变化对于人工林碳汇估算和碳汇管理等有重要意义。通过采用年龄序列方法研究了杉木(Cunninghamia lanceolata)林生长过程中地下碳分配变化特点。年龄序列为福建省南平7 a生(幼龄林)、16 a生(中龄林)、21 a生(近熟林)、41 a生(成熟林)和88 a生(老龄林)的杉木林。细根净生产力测定采用连续土芯法, 根系呼吸测定采用壕沟法, 生物量增量测定采用异速生长方程, 地上年凋落物量采用凋落物收集框测定。结果表明: 杉木林细根净生产力在中龄林前没有显著差异, 维持在较高水平; 但此后则显著下降。细根净生产力/地上凋落物量比值随林龄增加而显著下降。老龄林的根系呼吸显著低于其它林龄林分, 根系呼吸与细根生物量间呈显著线性相关。中龄林和近成熟林的地下碳分配(Total belouground carbon allocation, TBCA)显著高于幼龄林和成熟林, 而老龄林的则最低。中龄林、近成熟林和成熟林的地上部分净生产力/TBCA比值显著高于幼龄林和老龄林, 而杉木林的根系碳利用效率(RCUE)则呈现出随林龄增加而降低的趋势。  相似文献   

9.
M. GLOOR  O. L. PHILLIPS  J. J. LLOYD  S. L. LEWIS  Y. MALHI  T. R. BAKER  G. LÓPEZ‐GONZALEZ  J. PEACOCK  S. ALMEIDA  A. C. ALVES De OLIVEIRA  E. ALVAREZ  I. AMARAL  L. ARROYO  G. AYMARD  O. BANKI  L. BLANC  D. BONAL  P. BRANDO  K.‐J. CHAO  J. CHAVE  N. DÁVILA  T. ERWIN  J. SILVA  A. Di FIORE  T. R. FELDPAUSCH  A. FREITAS  R. HERRERA  N. HIGUCHI  E. HONORIO  E. JIMÉNEZ  T. KILLEEN  W. LAURANCE  C. MENDOZA  A. MONTEAGUDO  A. ANDRADE  D. NEILL  D. NEPSTAD  P. NÚÑEZ VARGAS  M. C. PEÑUELA  A. PEÑA CRUZ  A. PRIETO  N. PITMAN  C. QUESADA  R. SALOMÃO  MARCOS SILVEIRA  M. SCHWARZ  J. STROPP  F. RAMÍREZ  H. RAMÍREZ  A. RUDAS  H. Ter STEEGE  N. SILVA  A. TORRES  J. TERBORGH  R. VÁSQUEZ  G. Van Der HEIJDEN 《Global Change Biology》2009,15(10):2418-2430
Positive aboveground biomass trends have been reported from old-growth forests across the Amazon basin and hypothesized to reflect a large-scale response to exterior forcing. The result could, however, be an artefact due to a sampling bias induced by the nature of forest growth dynamics. Here, we characterize statistically the disturbance process in Amazon old-growth forests as recorded in 135 forest plots of the RAINFOR network up to 2006, and other independent research programmes, and explore the consequences of sampling artefacts using a data-based stochastic simulator. Over the observed range of annual aboveground biomass losses, standard statistical tests show that the distribution of biomass losses through mortality follow an exponential or near-identical Weibull probability distribution and not a power law as assumed by others. The simulator was parameterized using both an exponential disturbance probability distribution as well as a mixed exponential–power law distribution to account for potential large-scale blowdown events. In both cases, sampling biases turn out to be too small to explain the gains detected by the extended RAINFOR plot network. This result lends further support to the notion that currently observed biomass gains for intact forests across the Amazon are actually occurring over large scales at the current time, presumably as a response to climate change.  相似文献   

10.
Extreme climatic events and land‐use change are known to influence strongly the current carbon cycle of Amazonia, and have the potential to cause significant global climate impacts. This review intends to evaluate the effects of both climate and anthropogenic perturbations on the carbon balance of the Brazilian Amazon and to understand how they interact with each other. By analysing the outputs of the Intergovernmental Panel for Climate Change (IPCC) Assessment Report 4 (AR4) model ensemble, we demonstrate that Amazonian temperatures and water stress are both likely to increase over the 21st Century. Curbing deforestation in the Brazilian Amazon by 62% in 2010 relative to the 1990s mean decreased the Brazilian Amazon's deforestation contribution to global land use carbon emissions from 17% in the 1990s and early 2000s to 9% by 2010. Carbon sources in Amazonia are likely to be dominated by climatic impacts allied with forest fires (48.3% relative contribution) during extreme droughts. The current net carbon sink (net biome productivity, NBP) of +0.16 (ranging from +0.11 to +0.21) Pg C year?1 in the Brazilian Amazon, equivalent to 13.3% of global carbon emissions from land‐use change for 2008, can be negated or reversed during drought years [NBP = ?0.06 (?0.31 to +0.01) Pg C year?1]. Therefore, reducing forest fires, in addition to reducing deforestation, would be an important measure for minimizing future emissions. Conversely, doubling the current area of secondary forests and avoiding additional removal of primary forests would help the Amazonian gross forest sink to offset approximately 42% of global land‐use change emissions. We conclude that a few strategic environmental policy measures are likely to strengthen the Amazonian net carbon sink with global implications. Moreover, these actions could increase the resilience of the net carbon sink to future increases in drought frequency.  相似文献   

11.
Several widespread changes in the ecology of old-growth tropical forests have recently been documented for the late twentieth century, in particular an increase in stem turnover (pan-tropical), and an increase in above-ground biomass (neotropical). Whether these changes are synchronous and whether changes in growth are also occurring is not known. We analysed stand-level changes within 50 long-term monitoring plots from across South America spanning 1971-2002. We show that: (i) basal area (BA: sum of the cross-sectional areas of all trees in a plot) increased significantly over time (by 0.10 +/- 0.04 m2 ha(-1) yr(-1), mean +/- 95% CI); as did both (ii) stand-level BA growth rates (sum of the increments of BA of surviving trees and BA of new trees that recruited into a plot); and (iii) stand-level BA mortality rates (sum of the cross-sectional areas of all trees that died in a plot). Similar patterns were observed on a per-stem basis: (i) stem density (number of stems per hectare; 1 hectare is 10(4) m2) increased significantly over time (0.94 +/- 0.63 stems ha(-1) yr(-1)); as did both (ii) stem recruitment rates; and (iii) stem mortality rates. In relative terms, the pools of BA and stem density increased by 0.38 +/- 0.15% and 0.18 +/- 0.12% yr(-1), respectively. The fluxes into and out of these pools-stand-level BA growth, stand-level BA mortality, stem recruitment and stem mortality rates-increased, in relative terms, by an order of magnitude more. The gain terms (BA growth, stem recruitment) consistently exceeded the loss terms (BA loss, stem mortality) throughout the period, suggesting that whatever process is driving these changes was already acting before the plot network was established. Large long-term increases in stand-level BA growth and simultaneous increases in stand BA and stem density imply a continent-wide increase in resource availability which is increasing net primary productivity and altering forest dynamics. Continent-wide changes in incoming solar radiation, and increases in atmospheric concentrations of CO2 and air temperatures may have increased resource supply over recent decades, thus causing accelerated growth and increased dynamism across the world's largest tract of tropical forest.  相似文献   

12.
Amazon forests are fire-sensitive ecosystems and consequently fires affect forest structure and composition. For instance, the legacy of past fire regimes may persist through some species and traits that are found due to past fires. In this study, we tested for relationships between functional traits that are classically presented as the main components of plant ecological strategies and environmental filters related to climate and historical fires among permanent mature forest plots across the range of local and regional environmental gradients that occur in Amazonia. We used percentage surface soil pyrogenic carbon (PyC), a recalcitrant form of carbon that can persist for millennia in soils, as a novel indicator of historical fire in old-growth forests. Five out of the nine functional traits evaluated across all 378 species were correlated with some environmental variables. Although there is more PyC in Amazonian soils than previously reported, the percentage soil PyC indicated no detectable legacy effect of past fires on contemporary functional composition. More species with dry diaspores were found in drier and hotter environments. We also found higher wood density in trees from higher temperature sites. If Amazon forest past burnings were local and without distinguishable attributes of a widespread fire regime, then impacts on biodiversity would have been small and heterogeneous. Alternatively, sufficient time may have passed since the last fire to allow for species replacement. Regardless, as we failed to detect any impact of past fire on present forest functional composition, if our plots are representative then it suggests that mature Amazon forests lack a compositional legacy of past fire.  相似文献   

13.
Canada's boreal forests, which occupy approximately 30% of boreal forests worldwide, play an important role in the global carbon budget. However, there is little quantitative information available regarding the spatiotemporal changes in the drought-induced tree mortality of Canada's boreal forests overall and their associated impacts on biomass carbon dynamics. Here, we develop spatiotemporally explicit estimates of drought-induced tree mortality and corresponding biomass carbon sink capacity changes in Canada's boreal forests from 1970 to 2020. We show that the average annual tree mortality rate is approximately 2.7%. Approximately 43% of Canada's boreal forests have experienced significantly increasing tree mortality trends (71% of which are located in the western region of the country), and these trends have accelerated since 2002. This increase in tree mortality has resulted in significant biomass carbon losses at an approximate rate of 1.51 ± 0.29 MgC ha−1 year−1 (95% confidence interval) with an approximate total loss of 0.46 ± 0.09 PgC year−1 (95% confidence interval). Under the drought condition increases predicted for this century, the capacity of Canada's boreal forests to act as a carbon sink will be further reduced, potentially leading to a significant positive climate feedback effect.  相似文献   

14.
Zhang G B  Liu S R  Zhang Y D  Miao N  Wang H 《农业工程》2008,28(7):3176-3184
Biomass estimation of old-growth forests in the upper Minjiang River (UMR) is important in quantifying carbon (C) sequestration and C sink size because majority of the natural forests in UMR are mature or over-mature. Based on the forest resource data from 27 fixed sampling plots that have been surveyed consecutively, the dynamics of the aboveground biomass density (AGBD) were characterized by the allometric relationships, and the space-time variations of the C sink size in the sub-alpine old-growth forests of UMR were explored. Our results showed that 1) the net increase in AGBD was (27.311 ± 15.580) Mg·hm?2 and the mean annual growth rate and mean annual death rate were (1.930 ± 1.091) and (2.271 ± 1.424) Mg·hm?2·a?1 during 1988–2002, respectively. 2) The aboveground biomass (AGB) largely depended on the growth and death rates of the trees with different diameters at the breast height (DBH) classes and the recruitment rate from one DBH class to another as well. The largest increment component of AGB came from the DBH class of 20 to 40 cm, whereas the minimum increment component of AGB was above 80 cm in DBH. The net negative increment of AGB occurred at DBH classes of 40–60 and 60–80 cm. 3) There were space-time variations of AGB in the alpine old-growth forests, indicated by AGB changing over time in the same sampling plot and varying among the locations or plots during the same sampling period. These variations were not only reflected in numerical value but also in positive or negative biomass increment.  相似文献   

15.
The magnitude of the carbon sink in second-growth forests is expected to vary with successional biomass dynamics resulting from tree growth, recruitment, and mortality, and with the effects of climate on these dynamics. We compare aboveground biomass dynamics of dry and wet Neotropical forests, based on monitoring data gathered over 3–16 years in forests covering the first 25 years of succession. We estimated standing biomass, annual biomass change, and contributions of tree growth, recruitment, and mortality. We also evaluated tree species’ contributions to biomass dynamics. Absolute rates of biomass change were lower in dry forests, 2.3 and 1.9 Mg ha?1 y?1, after 5–15 and 15–25 years after abandonment, respectively, than in wet forests, with 4.7 and 6.1 Mg ha?1 y?1, in the same age classes. Biomass change was largely driven by tree growth, accounting for at least 48% of biomass change across forest types and age classes. Mortality also contributed strongly to biomass change in wet forests of 5–15 years, whereas its contribution became important later in succession in dry forests. Biomass dynamics tended to be dominated by fewer species in early-successional dry than wet forests, but dominance was strong in both forest types. Overall, our results indicate that biomass dynamics during succession are faster in Neotropical wet than dry forests, with high tree mortality earlier in succession in the wet forests. Long-term monitoring of second-growth tropical forest plots is crucial for improving estimates of annual biomass change, and for enhancing understanding of the underlying mechanisms and demographic drivers.  相似文献   

16.
Temperate forest ecosystems have recently been identified as an important net sink in the global carbon budget. The factors responsible for the strength of the sinks and their permanence, however, are less evident. In this paper, we quantify the present carbon sequestration in Thuringian managed coniferous forests. We quantify the effects of indirect human‐induced environmental changes (increasing temperature, increasing atmospheric CO2 concentration and nitrogen fertilization), during the last century using BIOME‐BGC, as well as the legacy effect of the current age‐class distribution (forest inventories and BIOME‐BGC). We focused on coniferous forests because these forests represent a large area of central European forests and detailed forest inventories were available. The model indicates that environmental changes induced an increase in biomass C accumulation for all age classes during the last 20 years (1982–2001). Young and old stands had the highest changes in the biomass C accumulation during this period. During the last century mature stands (older than 80 years) turned from being almost carbon neutral to carbon sinks. In high elevations nitrogen deposition explained most of the increase of net ecosystem production (NEP) of forests. CO2 fertilization was the main factor increasing NEP of forests in the middle and low elevations. According to the model, at present, total biomass C accumulation in coniferous forests of Thuringia was estimated at 1.51 t C ha?1 yr?1 with an averaged annual NEP of 1.42 t C ha?1 yr?1 and total net biome production of 1.03 t C ha?1 yr?1 (accounting for harvest). The annual averaged biomass carbon balance (BCB: biomass accumulation rate‐harvest) was 1.12 t C ha?1 yr?1 (not including soil respiration), and was close to BCB from forest inventories (1.15 t C ha?1 yr?1). Indirect human impact resulted in 33% increase in modeled biomass carbon accumulation in coniferous forests in Thuringia during the last century. From the forest inventory data we estimated the legacy effect of the age‐class distribution to account for 17% of the inventory‐based sink. Isolating the environmental change effects showed that these effects can be large in a long‐term, managed conifer forest.  相似文献   

17.
Using long-term (22 years) measurements from a young and an old-growth subtropical forest in southern China, we found that both forests accumulated carbon from 1982 to 2004, with the mean carbon accumulation rate at 227 ± 59 g C m−2 year−1 for young forest and 115 ± 89 g C m−2 year−1 for the old-growth forest. Allocation of the accumulated carbon was quite different between these two forests: the young forest accumulated a significant amount of carbon in plant live biomass, whereas the old-growth forest accumulated a significant amount of carbon in the soil. From 1982 to 2004, net primary productivity (NPP) increased for the young forest, and did not change significantly for the old-growth forest. The increase in NPP of the young forest resulted from recruitment of some dominant tree species characteristic of the subtropical mature forest in the region and an increase in tree density; decline of NPP of the old-growth forest was caused by increased mortality of the dominant trees.  相似文献   

18.
There is considerable interest in understanding the fate of the Amazon over the coming century in the face of climate change, rising atmospheric CO2 levels, ongoing land transformation, and changing fire regimes within the region. In this analysis, we explore the fate of Amazonian ecosystems under the combined impact of these four environmental forcings using three terrestrial biosphere models (ED2, IBIS, and JULES) forced by three bias‐corrected IPCC AR4 climate projections (PCM1, CCSM3, and HadCM3) under two land‐use change scenarios. We assess the relative roles of climate change, CO2 fertilization, land‐use change, and fire in driving the projected changes in Amazonian biomass and forest extent. Our results indicate that the impacts of climate change are primarily determined by the direction and severity of projected changes in regional precipitation: under the driest climate projection, climate change alone is predicted to reduce Amazonian forest cover by an average of 14%. However, the models predict that CO2 fertilization will enhance vegetation productivity and alleviate climate‐induced increases in plant water stress, and, as a result, sustain high biomass forests, even under the driest climate scenario. Land‐use change and climate‐driven changes in fire frequency are predicted to cause additional aboveground biomass loss and reductions in forest extent. The relative impact of land use and fire dynamics compared to climate and CO2 impacts varies considerably, depending on both the climate and land‐use scenario, and on the terrestrial biosphere model used, highlighting the importance of improved quantitative understanding of all four factors – climate change, CO2 fertilization effects, fire, and land use – to the fate of the Amazon over the coming century.  相似文献   

19.
Uncertainty about the mechanisms driving biomass change at broad spatial scales limits our ability to predict the response of forest biomass storage to global change. Here we use a spatially representative network of 874 forest plots in New Zealand to examine whether commonly hypothesised drivers of forest biomass and biomass change (diversity, disturbance, nutrients and climate) differ between old-growth and secondary forests at a national scale. We calculate biomass stocks and net biomass change for live above-ground biomass, below-ground biomass, deadwood and litter pools. We combine these data with plot-level information on forest type, tree diversity, plant functional traits, climate and disturbance history, and use structural equation models to identify the major drivers of biomass change. Over the period 2002–2014, secondary forest biomass increased by 2.78 (1.68–3.89) Mg ha?1 y?1, whereas no significant change was detected in old-growth forests (+0.28; ?0.72 to 1.29 Mg ha?1 y?1). The drivers of biomass and biomass change differed between secondary and old-growth forests. Plot-level biomass change of old-growth forest was driven by recent disturbance (large tree mortality within the last decade), whereas biomass change of secondary forest was determined by current biomass and past anthropogenic disturbance. Climate indirectly affected biomass change through its relationship with past anthropogenic disturbance. Our results highlight the importance of disturbance and disturbance history in determining broad-scale patterns of forest biomass change and suggest that explicitly modelling processes driving biomass change within secondary and old-growth forests is essential for predicting future changes in global forest biomass.  相似文献   

20.
We developed a process‐based model of forest growth, carbon cycling and land‐cover dynamics named CARLUC (for CARbon and Land‐Use Change) to estimate the size of terrestrial carbon pools in terra firme (nonflooded) forests across the Brazilian Legal Amazon and the net flux of carbon resulting from forest disturbance and forest recovery from disturbance. Our goal in building the model was to construct a relatively simple ecosystem model that would respond to soil and climatic heterogeneity that allows us to study the impact of Amazonian deforestation, selective logging and accidental fire on the global carbon cycle. This paper focuses on the net flux caused by deforestation and forest re‐growth over the period from 1970 to 1998. We calculate that the net flux to the atmosphere during this period reached a maximum of ~0.35 PgC yr?1 (1 PgC= 1 × 1015 gC) in 1990, with a cumulative release of ~7 PgC from 1970 to 1998. The net flux is higher than predicted by an earlier study ( Houghton et al., 2000 ) by a total of 1 PgC over the period 1989–1998 mainly because CARLUC predicts relatively high mature forest carbon storage compared with the datasets used in the earlier study. Incorporating the dynamics of litter and soil carbon pools into the model increases the cumulative net flux by~1 PgC from 1970 to 1998, while different assumptions about land‐cover dynamics only caused small changes. The uncertainty of the net flux, calculated with a Monte‐Carlo approach, is roughly 35% of the mean value (1 SD).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号