首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The brain peptide human growth hormone releasing factor (1-40) (GRF), which stimulates adenylate cyclase activity in the anterior pituitary, is the predominant hormone signal for pituitary growth hormone (GH) release. Activators of protein kinase C such as teleocidin and 4 beta-phorbol 12-myristate 13-acetate (PMA) double the cyclic AMP accumulation induced by GRF, with no apparent effect on GRF potency; an inactive 4-alpha-PMA has no such action in cultured anterior pituitary cells. This PMA potentiation can be measured as early as 60 s, is maximal by 15 min, and wanes such that by 3-4 h there is no such amplifying effect of PMA. PMA, phorbol 12,13-dibutyrate, and teleocidin ED50 values for potentiating GRF activity are similar to those obtained for direct protein kinase C activation. The major inhibitory peptide somatostatin reduced both GRF- and GRF + PMA-stimulated cyclic AMP accumulation. Pertussis toxin totally blocked this somatostatin action without affecting the degree of maximal GRF potentiation achieved with PMA. Thus, the pertussis toxin target(s) are required for somatostatin inhibition of the cyclic AMP generating system, but may not be involved in the PMA potentiation of GRF-stimulated cyclic AMP accumulation.  相似文献   

2.
The effect of the potent tumor promoter 12-0-tetradeconylphorbol-13-acetate (TPA) on the cyclic AMP metabolism of B16 mouse melanoma cells was examined. TPA (10?7M) slightly increased the growth rate and inhibited melanin production by these cells. Although TPA had little effect on basal or hormone stimulated cyclic AMP levels, it did significantly suppress cyclic AMP-dependent protein kinase activity from treated cells in a dose-dependent fashion. Other phorbol ester and non-phorbol ester tumor promoters also suppressed cyclic AMP-dependent protein kinase activity while the non-promoter, phorbol, did not alter cyclic AMP-dependent protein kinase activity.  相似文献   

3.
The hypophysiotrophic hormone corticotropin releasing factor (CRF) stimulates the anterior pituitary corticotroph to export stress hormones such as adrenocorticotrophic hormone (ACTH). In rat anterior pituitary cells, CRF-induced elevation of cyclic AMP was profoundly potentiated (by an order of magnitude) by stimulators of protein kinase C. This effect occurred within minutes, was concentration dependent, and exhibited the appropriate pharmacological specificity to attribute the effects to protein kinase C. Phorbol myristate acetate (PMA), phorbol dibutyrate (PDB) and teleocidin were active with appropriate EC50's, while 4-alpha-PMA was inactive. PMA and PDB were also ACTH secretagogues in their own right. We suggest that protein kinase C can modulate CRF receptor coupling to the adenylate cyclase holoenzyme in anterior pituitary cells.  相似文献   

4.
A single dose of growth hormone (10 mg/kg, i.p.) was injected into male weanling rats (50--60 g), and the temporal changes in cyclic AMP concentration, protein kinase activation, and ornithine decarboxylase activation were measured in the liver and adrenal gland. The level of cyclic AMP did not change significantly from control values in either liver or adrenal following growth hormone administration. Cyclic AMP-dependent protein kinase(s); however, was markedly activated in liver and adrenal within 30 min. Protein kinase remained activated for more than 4 hr in the liver, while activation of protein kinase in the adrenal returned to control value within 2 hr. Ornithine decarboxylase activity was elevated 20-fold in liver within 4 hr of injection and was increased 7- to 8-fold in be adrenal within l hr. These observations are discussed with regard to the generality of the role of cyclic AMP as the second messenger for target-specifici trophic hormone action and the significance of protein kinase activiation as an index of the cyclic nucleotide involvement in the growth response.  相似文献   

5.
The role of the cyclic AMP-protein kinase system in mediating the steroidogenic effect of ACTH, prostaglandin E1 and dibutyryl cyclic AMP, induced similar stimulations of protein kinase activity, cyclic AMP was studied using human adrenal cells isolated from normal and adrenocortical secreting tumors. At high concentrations of ACTH, complete activation of protein kinase of normal adrenal cells was observed within 3 min, at the time when cyclic AMP production was slightly increased and there was still no stimulation of steroidogenesis. At supramaximal concentrations, ACTH, PGE1 and dibutyryl cyclic AMP and cortisol productions in adrenal cells isolated from normal and from one adrenocortical tumor. In one tumor in which the adenylate cyclase activity was insensitive to ACTH, the hormone was unable to stimulate protein kinase or steroidogenesis, but the cells responded to both PGE1 and dibutyryl cyclic AMP. In another tumor in which the adenylate cyclase was insensitive to PGE1, this compound also did not increase protein kinase activity or steroidogenesis, but both parameters were stimulated by ACTH and dibutyryl cyclic AMP. After incubation of normal adrenal cells with increasing concentrations of ACTH (0.01-100 nM) marked differences were found between cyclic AMP formation and cortisol production. However at the lowest concentrations of ACTH exerting an effect on steroid production a close linked correlation was found between protein kinase activation and cortisol production, but half-maximal and maximal cortisol production occurs at lower concentration of ACTH than was necessary to induce the same stimulation of protein kinase. Similar findings were found after incubating the adrenal cells with dibutyryl cyclic AMP (0.01-10 mM). The results implicate an important role of the cyclic AMP-protein kinase system during activation of adrenal cell steroidogenesis by low concentrations of steroidogenic compounds.  相似文献   

6.
Calcium channels in the heart play a major role in cardiac function. These channels are modulated in a variety of ways, including protein phosphorylation. Cyclic AMP-mediated phosphorylation is the best understood phosphorylation mechanism which regulates calcium influx into cardiac cells. Binding of an agonist (e.g., a catecholamine) to the appropriate receptor stimulates production of cyclic AMP by adenylate cyclase. The cyclic AMP may subsequently bind to and activate a cyclic AMP-dependent protein kinase, which then can phosphorylate a number of substrates, including the calcium channel (or a closely-associated regulatory protein). This results in stimulation of the calcium channels, greater calcium influx, and increased contractility. The cyclic AMP system is not the only protein kinase system in the heart. Thus, the possibility exists that other protein kinases may also regulate the calcium channels and, hence, cardiac function. Recent evidence suggests that cyclic GMP-mediated phosphorylation may play a role opposite to cyclic AMP-mediated phosphorylation, i.e., inhibition of the calcium current rather than stimulation. Other recent evidence also suggests that a calcium/calmodulin-dependent protein kinase and calcium/phospholipid-dependent protein kinase (protein kinase C) may also regulate the myocardial calcium channels. Thus, protein phosphorylation may be a general mechanism whereby calcium channels and cardiac function are modulated under a variety of conditions.  相似文献   

7.
We reported in anterior pituitary cells that hormone stimulation of cyclic AMP levels is amplified by agents that activate protein kinase C (e.g., phorbol esters). We utilized the 235-1 pituitary cell line to explore the mechanism of this response. PGE1- and forskolin-stimulated cyclic AMP accumulation and adenylate cyclase activity are enhanced by exposing viable cells to phorbol esters. Adenylate cyclase activity in the presence of PGE1 demonstrated a biphasic stimulatory, then inhibitory response to increasing GTP concentrations; phorbol esters attenuated this inhibition. These data support the hypothesis that protein kinase C can covalently change the functional state of the adenylate cyclase holoenzyme, amplifying its response to certain hormones.  相似文献   

8.
Prostaglandin E1 (PGE1) has a stimulatory effect both on the growth and the expression of differentiated function of Madin Darby Canine Kidney (MDCK) cells in a hormonally defined medium (Medium K-1). While the stimulatory effect of PGE1 on MDCK cell growth is observed in subconfluent cultures, the effect of PGE1 on differentiated function (i.e., dome formation) is observed at confluency. PGE1 may possibly affect growth and such differentiated functions by separate mechanisms. In order to examine this possibility, dibutyryl cyclic AMP resistant variants of MDCK were selected. All of the variants were partially resistant to the growth inhibitory effects of dibutyryl cyclic AMP and theophylline. The cyclic AMP dependent protein kinase activity of four of the five variant clones studied was significantly reduced as compared with normal MDCK cells. The dependence of the kinase activity of several of the dibutyryl cyclic AMP resistant variants (DBr2 and DBr3) on the cyclic AMP concentration in the reaction mixture was compared with that of normal MDCK cells. At all of the cyclic AMP concentrations tested DBr2 and DBr3 cells had reduced protein kinase activity as compared with normal MDCK cells. This reduced activity could be attributed to a decrease in the Vmax for kinase in the two variants, rather than to a change in the Km of kinase for cyclic AMP. The cyclic AMP phosphodiesterase activity of dibutyryl cyclic AMP resistant variants was also studied. Unlike PGE1 independent clone 1, DBr2 and DBr3 cells did not differ significantly from normal MDCK cells with regard to their ability to degrade cyclic AMP. The growth and functional responsiveness of DBr2 and DBr3 cells to PGE1 was also examined. DBr2 and DBr3 cells were shown to retain a normal growth response to PGE1. However the capacity of DBr2 and DBr3 cells to form domes in response to PGE1 was dramatically reduced as compared with normal MDCK cells. Nevertheless DBr3 cells were shown to still retain the capacity to form domes in response to other inducers. The effect of PGE1 on one of the functional parameters involved in dome formation (the activity of the Na+/K+ATPase) was examined. The rate of ouabain-sensitive Rb+ uptake was observed to be elevated in confluent monolayers of normal MDCK cells maintained in Medium K-1, as compared with monolayers maintained in Medium K-1 minus PGE1.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
In quiescent cultures of Swiss 3T3 cells, platelet-derived growth factor or fibroblast growth factor known to induce both protein kinase C activation and Ca2+ mobilization raised c-fos mRNA. This action of the growth factors was mimicked by the specific activators for protein kinase C, such as phorbol esters and a membrane-permeable synthetic diacylglycerol, and also by the Ca2+ ionophores, such as A23187 and ionomycin. Prostaglandin E1 known to elevate cyclic AMP also raised c-fos mRNA, and this action was mimicked by 8-bromo-cyclic AMP, dibutyryl cyclic AMP and forskolin. These results suggest that expression of the c-fos gene is regulated by three different intracellular messenger systems, protein kinase C, Ca2+ and cyclic AMP, in Swiss 3T3 cells.  相似文献   

10.
5-hydroxytryptamine (5-HT) is a mitogen for fibroblasts, vascular smooth muscle cells, renal mesangial cells, and jejunal crypt cells. The human carcinoid cell line (termed BON) that we established in our laboratory from a pancreatic carcinoid tumor produces and secretes 5-HT. In this study, therefore, we examined the effect of 5-HT on growth of BON cells. Furthermore, by use of selective 5-HT receptor antagonists, we examined receptor and post-receptor mechanisms by which 5-HT-induced responses were produced. 5-HT stimulated growth of BON cells. 5-HT stimulated phosphatidylinositol (PI) hydrolysis in a dose-dependent fashion and inhibited cyclic AMP production in a dose-dependent fashion. The 5-HT1A/1B receptor antagonist, SDZ 21-009, prevented the reduction of cyclic AMP production evoked by 5-HT and inhibited the mitogenic action of 5-HT. The 5-HT1C/2 receptor antagonist, mesulergine, competitively inhibited PI hydrolysis, but did not affect the mitogenic action of 5-HT. The mitogenic action of 5-HT and the reduction of cyclic AMP production evoked by 5-HT were also inhibited by pertussis toxin. These results suggest that 5-HT is an autocrine growth factor for BON cells and that mitogenic mechanism of 5-HT involves receptor-mediated inhibition of the production of cyclic AMP which may be linked to pertussis toxin-sensitive GTP binding protein. 8-bromo-cyclic AMP inhibited growth of BON cells whereas 8-bromo-cyclic GMP had no effect on cell growth. Involvement of protein kinase A in BON cell growth regulation was confirmed by the observation that a cAMP-dependent protein kinase antagonist (Rp-cAMPS) could stimulate BON cell growth.  相似文献   

11.
R S Boyd  M Wallis 《FEBS letters》1989,251(1-2):99-103
Tetradecanoyl phorbol acetate (TPA) stimulates growth hormone (GH) and prolactin secretion from ovine anterior pituitary cells. Pretreatment of the cells with TPA abolishes this effect, presumably due to down-regulation of protein kinase C. Such pretreatment did not alter effects of thyrotropin-releasing hormone or dopamine on prolactin secretion, suggesting no involvement of protein kinase C. Pretreatment with TPA attenuated actions of GH-releasing hormone on GH release (but not actions on cyclic AMP levels), possibly due to depletion of cellular stores of GH. Such pretreatment also attenuated inhibition of GH release by somatostatin, possibly due to phosphorylation of receptors or associated proteins by protein kinase C.  相似文献   

12.
G J Law  K P Ray  M Wallis 《FEBS letters》1984,166(1):189-193
A synthetic form of human pancreatic growth hormone releasing factor (GRF-44-NH2) was shown to be a potent stimulator of growth hormone (GH) secretion and cellular cyclic AMP levels in cultured sheep pituitary cells. A small dose-dependent stimulation of prolactin secretion was also observed. Somatostatin (0.5 microM) completely blocked the maximal GRF (1 nM)-stimulated secretion without a significant effect on cyclic AMP levels. Dopamine (0.1 microM) inhibited the GRF-elevated GH secretion by 50% and lowered cyclic AMP levels by 30%. Dopamine (0.1 microM) inhibition of basal prolactin secretion was not affected by GRF (1 nM). The data support the hypothesis that cyclic AMP is involved in the action of GRF but suggest that somatostatin can inhibit GRF-induced secretion of GH independently of cyclic AMP.  相似文献   

13.
1. An assay, based on competition between adenosine 3':5'-cyclic monophosphate (cyclic AMP) and cyclic [(3)H]AMP for binding to a rabbit skeletal muscle protein, has been used to measure tissue contents of cyclic AMP. The assay has a sensitivity of 0.05pmol of cyclic AMP. Cyclic GMP and cyclic CMP have 0.5%, and cyclic IMP 6.5%, of the ability of cyclic AMP to displace cyclic [(3)H]AMP from binding protein; AMP, ADP and ATP have no effect. 2. By using this method, the cyclic AMP content of ox pituitary slices exposed to prostaglandin was determined; release of growth hormone was measured by radioimmunoassay. 3. Release of growth hormone was increased by 45min incubation in 1mum-prostaglandin E(2) in the absence of theophylline, or in 10nm-prostaglandin E(2), 0.1mum-prostaglandin A(1) or 1mum-prostaglandin B(1) in the presence of 0.5mm-theophylline. 4. Pituitary cyclic AMP content was increased by 10min incubation in 1mum-prostaglandin E(2) in the absence of theophylline, or in 0.1mum-prostaglandin E(2) in the presence of 0.5mm-theophylline. 5. The maximum increase in cyclic AMP content was observed 10min, and significant changes in growth hormone release 30min, after introduction of prostaglandin E(2). 6. The increase in pituitary cyclic AMP content, but not in the rate of release of growth hormone, was observed in the absence of external Ca(2+). 7. The stimulation of release of growth hormone by prostaglandin was decreased by preincubation of tissue for 2h in colchicine (100mum) or cytochalasin B (10mug/ml). 8. These results support the suggestion that increased release of growth hormone after treatment with prostaglandin is the result of increased tissue cyclic AMP content, and possibly involves a microfilamentous or microtubular protein.  相似文献   

14.
1. Protein kinase activity was measured in islets of Langerhans that had been incubated in the presence of agents known to affect insulin release. 2. Glucagon, theophylline, caffeine and 3-isobutyl-1-methylxanthine, agents that raise cyclic AMP concentrations in islet cells and stimulate insulin release, increased protein kinase activity. Adrenaline and diazoxide, agents that decrease cyclic AMP concentrations and inhibit insulin secretion, decreased the activity. 3. The increase in protein kinase activity produced by different concentrations of 3-isobutyl-1-methylxanthine was apparently related to the increase in intracellular concentrations of cyclic AMP. 4. The sulphonylureas, tolbutamide and glibenclamide, agents that increase insulin release, also increased the protein kinase activity; however, leucine, arginine and xylitol, which also stimulate insulin release, were without effect on the kinase activity. 5. Increasing the glucose concentration of the incubation medium from 2 to 20mm had no effect on protein kinase activity. Further, the ability of 3-isobutyl-1-methylxanthine to increase the protein kinase activity was not affected by the glucose concentration of the incubation medium. 6. These results suggest that agents which affect insulin secretion by altering cyclic AMP concentrations may exert their effects on hormone release by altering the activity of a cyclic AMP-dependent protein kinase in islet cells.  相似文献   

15.
A number of potential models for the interaction of cyclic AMP with protein kinase (RC or R2C2) have been examined. These include: Model 1, the simultaneous binding of cyclic AMP and release of C (catalytic subunit) from an independent RC protomer; Model 2, dissociation of an independent RC protomer prior to cyclic AMP binding to R (regulatory subunit); Model 3, cyclic AMP binding to RC prior to the dissociation of C; Model 4, random binding of cyclic AMP and dissociation of C with an interaction factor alpha less than 1; Model 5, release of 2C concomitant with the binding of one cyclic AMP to R2C2 followed by binding of the second cyclic AMP to the vacant R subunit; and Model 6, the simultaneous binding of cyclic AMP and release of C from one RC protomer resulting in a greater "affinity" of the other RC protomer for cyclic AMP, i.e., a cooperative version of Model 1. All the above models yield [cyclic AMP]0.5 values that increase with increasing protein concentration and Hill plots with average slopes equal to or less than 1.0 in the usual experimental range (10 to 90% of saturation). The Hill plots can be nonlinear, but for each model the exact shape of the plot changes in a characteristic (diagnostic) manner with changing protein concentration. Skeletal muscle protein kinase yields relatively linear Hill plots with napp values greater than 1.0. Consequently, Models 1 to 6 are not likely candidates. However, Model 2 is an excellent alternative model for proteins that display "negative cooperativity" with respect to the binding of a ligand. The properties of several "linear", "tetrahedral", and "all-or-nothing" cooperative models have also been examined. These include Models 7, A, B, and C and 8, A, B, and C which are cooperative versions of Models 2 and 3, respectively, and Model 9, a cooperative version of random Model 4. Model 9 is the most general model from which all others can be derived. Models 9 and 7, A, B, and C in which the prior dissociation of C greatly enhances or is an absolute requirement for cyclic AMP binding to R, are likely candidates for skeletal muscle protein kinase. All four of these models are capable of yielding Hill plots with average slopes greater than 1, and napp values that decrease with increasing protein concentration (in agreement with published data). In addition, in all four models the tight binding of MgATP to R2C2 yields decreased napp values and increased [cyclic AMP]0.5 values (also consistent with published data).  相似文献   

16.
A variant of B-16 F1 mouse melanoma was selected for its ability to survive and replicate in the presence of melanocyte-stimulating hormone (MSH). Although the variant (MR-4) was completely resistant to growth inhibition by MSH, cyclic AMP was still able to block cell replication. Tyrosinase activity in MR-4 cells was considerably lower than in B-16 F1 cells. MSH induced a twofold to three-fold increase in tyrosinase activity in both cell types, but the absolute activity in MR-4 remained significantly less than in the parental cells. MR-4 cells were also found to have a markedly depressed cyclic AMP-dependent protein kinase activity relative to B-16 F1 cells. The protein kinase from both cell types was stimulated by cyclic AMP, but the level of MR-4 kinase activity at maximal cyclic AMP concentrations remained considerably lower than B-16 F1 kinase activity under the same conditions. In both cell types adenylate cyclase activity was markedly stimulated by MSH. When equal numbers of viable F1 and MR-4 cells were injected subcutaneously into C57/B1 mice, the MR-4 cells formed tumors earlier and killed the host sooner than the parental F1 cells. We conclude that the biochemical alteration which allows MR-4 cells to replicate in the presence of MSH is a low level of tyrosinase activity, which in turn may be the result of low cyclic AMP-dependent protein kinase activity.  相似文献   

17.
When Chinese Hamster Ovary (CHO) cells, incubated in serum-free medium, are exposed to gonadotropins a transient increase in the intracellular concentration of cyclic AMP is observed. Maximum accumulation of cyclic AMP is noted 30 minutes after addition of either human chorionic gonadotropin (hCG) or follicle stimulating hormone (FSH). Within one to two hours after hormone addition, the intracellular concentrations of cyclic AMP have returned to basal levels. The enhancement of intracellular cyclic AMP levels by hCG is hormone concentration dependent, with maximal stimulation observed at 10 micrograms/ml hCG. The exogenous addition of gonadotropins also slows the growth rate of CHO cells. This effect on growth seems to be mediated through cyclic AMP since the growth rate of a mutant of CHO cells defective in the catalytic subunit of cyclic AMP dependent protein kinase is only slightly decreased.  相似文献   

18.
Ontogenic relationships between levels of cyclic AMP-binding activity and protein kinase activity were examined in subcellular fractions of the cerebellum during the first 3 weeks of neonatal life. A progressive increase in cyclic AMP levels was paralleled by an increase in cyclic AMP bindign by the nuclear and cytosol fractions, but not by the mitochondrial or microsomal fractions. Utilization of heat-stable protein kinase inhibitor permtited distinction of the cyclic AMP-dependent from the cyclic AMP-independent form of the protein kinase population. Cyclic AMP-dependent protein kinase increased between days 4 and 20 to represent a progressively greater proportion of the protein kinase population. In all subcellular fractions alterations of cyclic AMP-dependent protein kinase during neonatal development paralleled changes in binding of cyclic AMP to protein in these fractions. In both the nuclear and cytosol fractions cyclic AMP-dependent protein kinase activity increased progressively between days 4 and 20, i.e. 64 ± 6 to 176 ± 16 and 79 ± 12 to 340 ± 12 pmol/min per mg protein, respectively. Cyclic AMP-dependent protein kinase activity in the mitochondrial fraction declined during the postnatal period studied, and in the microsomal fraction it rose to a non-sustained peak at 14 days and fell thereafter. Unlike the cyclic AMP-dependent form, cyclic AMP-independent protein kinase activity did not follow the ontogenetic pattern of cyclic AMP-binding activity. The specific activity of nuclear cyclic AMP-independent protein kinase did not change during days 4–20, and a non-sustained rise of cyclic AMP-independent protein kinase activity in both cytosol and microsomal fractions during the 7th–12th day tended to parallel more closely known patterns of postnatal proliferative growth. The findings reported herein indicate that the ontogenic pattern of cyclic AMP-dependent protein kinase varies between different subcellular fractions of the neonatal cerebellum, that these patterns parallel the changes in cyclic AMP-bidign activity, and suggest that the component parts of the cyclic AMP system may develop as a functional unit.  相似文献   

19.
Cyclic AMP-independent protein kinase activities from Ehrlich ascites tumor cells, partially purified by DEAE-cellulose and phosphocellulose chromatography were inhibited by quercetin. The cyclic AMP in the tumor ascites cells and the cyclic AMP-dependent protein kinase activity from this tumor and from bovine and mouse tissues were unaffected by this drug. Since we reported that quercetin elevates cyclic AMP level in Ehrlich ascites tumor cells, this bioflavonoid may have a dual effect on the protein kinae activities in these cells, thus, increasing the cyclic AMP-dependent and decreasing the cyclic AMP-independent protein kinase activities.  相似文献   

20.
Nerve growth factor-stimulated mitogen-activated protein kinase (pp42/44MAP) kinase was characterized by sequential column chromatography on DEAE-Sephacel, phenyl-Sepharose CL4B, and S-200. The kinase displayed an apparent molecular mass of 42 kDa and reacted with an antiphosphotyrosine antibody. Peptide mapping of myelin basic protein revealed the presence of one phosphopeptide that was phosphorylated on Thr-97. pp42/44MAP kinase activity was dependent on Mg2+ and inhibited by K252a both in vitro and in vivo. Nerve growth factor-stimulated kinase activation was diminished by down-regulation of protein kinase C with 200 nM 12-phorbol 13-myristate acetate or with staurosporine (1 nM), a protein kinase C inhibitor. Genistein, a protein tyrosine kinase inhibitor, blocked nerve growth factor-mediated neurite extension as well as diminished activation of pp42/44MAP kinase. Our data demonstrate that activation of this kinase system by nerve growth factor displays a requirement for both protein kinase C as well as protein tyrosine kinase. In addition, other agents that are capable of promoting neurite outgrowth in PC12 cells, such as fibroblast growth factor or dibutyryl cyclic AMP, do so independently of activating this kinase system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号