首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Outside-in signaling of beta(3) integrins induces and requires phosphorylation at tyrosine 747 (Tyr(747)) and tyrosine 759 (Tyr(759)) of the beta(3) subunit, but the mechanism for this requirement is unclear. On the other hand, a key consequence of integrin signaling, cell spreading, is inhibited by calpain cleavage of beta(3) cytoplasmic domain. Here we show that beta(3) tyrosine phosphorylation inhibits calpain cleavage. Mutating both tyrosines to phenylalanine sensitizes beta(3) to calpain cleavage. Furthermore, phosphorylation at Tyr(747) and Tyr(759) of beta(3) in the focal adhesion sites and the leading edge of spreading platelets was differentially regulated. Selective dephosphorylation of Tyr(759) is associated with calpain cleavage at Tyr(759). Thus, one mechanism by which tyrosine phosphorylation promotes integrin signaling and cell spreading is its inhibition of calpain cleavage of the beta(3) cytoplasmic domain.  相似文献   

2.
The cytoplasmic domain of beta(3) integrin contains tyrosines at positions 747 and 759 in domains that have been implicated in regulation of alpha(v)beta(3) function and that serve as potential substrates for Src family kinases. The phosphorylation level of beta(3) integrin was modulated using a temperature-sensitive v-Src kinase. Increased beta(3) phosphorylation abolished alpha(v)beta(3)- but not alpha(5)beta(1)-mediated adhesion to fibronectin. alpha(v)beta(3)-Mediated cell adhesion was restored by the expression of beta(3) containing Y747F or Y759F mutations but not by wild type beta(3) integrin. Thus, phosphorylation of the cytoplasmic domain of beta(3) is a negative regulator of alpha(v)beta(3)-fibronectin binding strength.  相似文献   

3.
Outside-in signaling mediated by the integrin alpha(IIb)beta(3) (GPIIbIIIa) is critical to platelet function and has been shown to involve the phosphorylation of tyrosine residues on the cytoplasmic tail of beta(3). To identify proteins that bind directly to phosphorylated beta(3), we utilized an affinity column consisting of a peptide modeled on the tyrosine-phosphorylated cytoplasmic domain of beta(3). Tandem mass spectrometric sequencing and immunoblotting demonstrated that Shc was the primary protein binding to phosphorylated beta(3). To determine the involvement of Shc in outside-in alpha(IIb)beta(3) signaling, the phosphorylation of Shc during platelet aggregation was examined; transient Shc phosphorylation was observed when thrombin-stimulated platelets were allowed to aggregate or when aggregation was induced by an LIBS (ligand-induced binding site) antibody, D3. Moreover, Shc was co-immunoprecipitated with tyrosine-phosphorylated beta(3) in detergent lysates of aggregated platelets. Using purified, recombinant protein, it was found that the binding of Shc to monophosphorylated (C-terminal tyrosine) and diphosphorylated beta(3) peptides was direct, demonstrating Shc recognition motifs on phospho-beta(3). Aggregation-induced Shc phosphorylation was also observed to be robust in platelets from wild-type mice, but not in those from mice expressing (Y747F,Y759F) beta(3), which are defective in outside-in alpha(IIb)beta(3) signaling. Thus, Shc is the primary downstream signaling partner of beta(3) in its tyrosine phosphorylation outside-in signaling pathway.  相似文献   

4.
Integrins play an essential role in hemostasis, thrombosis, and cell migration, and they transmit bidirectional signals. Transmembrane/cytoplasmic domains are hypothesized to associate in the resting integrins; whereas, ligand binding and intracellular activating signals induce transmembrane domain separation. However, how this conformational change affects integrin outside-in signaling and whether the α subunit cytoplasmic domain is important for this signaling remain elusive. Using Chinese Hamster Ovary (CHO) cells that stably expressed different integrin αIIbβ3 constructs, we discovered that an αIIb cytoplasmic domain truncation led to integrin activation but not defective outside-in signaling. In contrast, preventing transmembrane domain separation abolished both inside-out and outside-in signaling regardless of removing the αIIb cytoplasmic tail. Truncation of the αIIb cytoplasmic tail did not obviously affect adhesion-induced outside-in signaling. Our research revealed that transmembrane domain separation is a downstream conformational change after the cytoplasmic domain dissociation in inside-out activation and indispensable for ligand-induced outside-in signaling. The result implicates that the β TM helix rearrangement after dissociation is essential for integrin transmembrane signaling. Furthermore, we discovered that the PI3K/Akt pathway is not essential for cell spreading but spreading-induced Erk1/2 activation is PI3K dependent implicating requirement of the kinase for cell survival in outside-in signaling.  相似文献   

5.
Integrin adhesion receptors can signal in two directions: first, they can regulate cellular behaviors by modulating cellular signaling enzymes ("outside-in signaling"); second, cells can regulate the affinity of integrins ("inside-out signaling") by such pathways. Integrin beta cytoplasmic domains (tails) mediate both types of signaling, and Src family kinases (SFKs) and talin, which bind to beta tails, are important for integrin signaling. Here, we utilized "homology scanning" mutagenesis to identify beta tail mutants selectively defective in c-Src binding and found that amino acid exchanges affecting a combination of an Arg and Thr residue in the integrin beta3 tail control the binding specificity for SFKs but have no effect on talin binding. Using beta tail mutants at these residues, we found that SFK binding to integrin beta tails is dispensable for inside-out signaling but is obligatory for cell spreading, a marker of outside-in signaling. Conversely, we found that point mutations that disrupt talin binding abolish integrin activation, but they do not inhibit SFK binding to the beta3 tail or the initiation of outside-in signaling once the integrins are in a high affinity form. Thus, we show that inside-out and outside-in integrin signaling are mediated by distinct and separable interactions of the integrin beta tails. Furthermore, based on our results, it is possible to discern the relative contributions of the direction of integrin signaling on biological functions in cell culture and, ultimately, in vivo.  相似文献   

6.
A molecular switch that controls cell spreading and retraction   总被引:2,自引:0,他引:2       下载免费PDF全文
Integrin-dependent cell spreading and retraction are required for cell adhesion, migration, and proliferation, and thus are important in thrombosis, wound repair, immunity, and cancer development. It remains unknown how integrin outside-in signaling induces and controls these two opposite processes. This study reveals that calpain cleavage of integrin beta(3) at Tyr(759) switches the functional outcome of integrin signaling from cell spreading to retraction. Expression of a calpain cleavage-resistant beta(3) mutant in Chinese hamster ovary cells causes defective clot retraction and RhoA-mediated retraction signaling but enhances cell spreading. Conversely, a calpain-cleaved form of beta(3) fails to mediate cell spreading, but inhibition of the RhoA signaling pathway corrects this defect. Importantly, the calpain-cleaved beta(3) fails to bind c-Src, which is required for integrin-induced cell spreading, and this requirement of beta(3)-associated c-Src results from its inhibition of RhoA-dependent contractile signals. Thus, calpain cleavage of beta(3) at Tyr(759) relieves c-Src-mediated RhoA inhibition, activating the RhoA pathway that confines cell spreading and causes cell retraction.  相似文献   

7.
Integrin activation is essential for dynamically linking the extracellular environment and cytoskeletal/signaling networks. Activation is controlled by integrins' short cytoplasmic tails (CTs). It is widely accepted that the head domain of talin (talin-H) can mediate integrin activation by binding to two sites in integrin beta's CT; in integrin beta(3) this is an NPLY(747) motif and the membrane-proximal region. Here, we show that the C-terminal region of integrin beta(3) CT, composed of a conserved TS(752)T region and NITY(759) motif, supports integrin activation by binding to a cytosolic binding partner, kindlin-2, a widely distributed PTB domain protein. Co-transfection of kindlin-2 with talin-H results in a synergistic enhancement of integrin alpha(IIb)beta(3) activation. Furthermore, siRNA knockdown of endogenous kindlin-2 impairs talin-induced alpha(IIb)beta(3) activation in transfected CHO cells and blunts alpha(v)beta(3)-mediated adhesion and migration of endothelial cells. Our results thus identify kindlin-2 as a novel regulator of integrin activation; it functions as a coactivator.  相似文献   

8.
Wang W  Jiang Y  Wang C  Luo BH 《Biochemistry》2011,50(43):9264-9272
Integrin bidirectional signaling is mediated by conformational change. It has been shown that the separation of the α- and β-subunit transmembrane/cytoplasmic tails and the lower legs is required for transmitting integrin bidirectional signals across the plasma membrane. In this study, we address whether the separation of the αβ knee is critical for integrin activation and outside-in signaling. By introducing three disulfide bonds to restrict dissociation of the α-subunit thigh domain and β-subunit I-EGF2 domain, we found that two of them could completely abolish integrin inside-out activation, whereas the other could not. This disulfide-bonded mutant, in the context of the activation mutation of the cytoplasmic domain, had intermediate affinity for ligands and was able to mediate cell adhesion. Our data suggest that there exists rearrangement at the interface between the thigh domain and the I-EGF2 domain during integrin inside-out activation. None of the disulfide-bonded mutants could mediate cell spreading upon adhering to immobilized ligands, suggesting that dissociation of the integrin two knees is required for integrin outside-in signaling. Disrupting the interface by introducing a glycan chain into either subunit is sufficient for high affinity ligand binding and cell spreading.  相似文献   

9.
Rap1b is activated by platelet agonists and plays a critical role in integrin α(IIb)β(3) inside-out signaling and platelet aggregation. Here we show that agonist-induced Rap1b activation plays an important role in stimulating secretion of platelet granules. We also show that α(IIb)β(3) outside-in signaling can activate Rap1b, and integrin outside-in signaling-mediated Rap1b activation is important in facilitating platelet spreading on fibrinogen and clot retraction. Rap1b-deficient platelets had diminished ATP secretion and P-selectin expression induced by thrombin or collagen. Importantly, addition of low doses of ADP and/or fibrinogen restored aggregation of Rap1b-deficient platelets. Furthermore, we found that Rap1b was activated by platelet spreading on immobilized fibrinogen, a process that was not affected by P2Y(12) or TXA(2) receptor deficiency, but was inhibited by the selective Src inhibitor PP2, the PKC inhibitor Ro-31-8220, or the calcium chelator demethyl-1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis. Clot retraction was abolished, and platelet spreading on fibrinogen was diminished in Rap1b-deficient platelets compared with wild-type controls. The defects in clot retraction and spreading on fibrinogen of Rap1b-deficient platelets were not rescued by addition of MnCl(2), which elicits α(IIb)β(3) outside-in signaling in the absence of inside-out signaling. Thus, our results reveal two different activation mechanisms of Rap1b as well as novel functions of Rap1b in platelet secretion and in integrin α(IIb)β(3) outside-in signaling.  相似文献   

10.
Neutrophil beta(2) integrins are activated by inside-out signaling regulating integrin affinity and valency; following ligand binding, beta(2) integrins trigger outside-in signals regulating cell functions. Addressing inside-out and outside-in signaling in hck(-/-)fgr(-/-) neutrophils, we found that Hck and Fgr do not regulate chemoattractant-induced activation of beta(2) integrin affinity. In fact, beta(2) integrin-mediated rapid adhesion, in static condition assays, and neutrophil adhesion to glass capillary tubes cocoated with ICAM-1, P-selectin, and a chemoattractant, under flow, were unaffected in hck(-/-)fgr(-/-) neutrophils. Additionally, examination of integrin affinity by soluble ICAM-1 binding assays and of beta(2) integrin clustering on the cell surface, showed that integrin activation did not require Hck and Fgr expression. However, after binding, hck(-/-)fgr(-/-) neutrophil spreading over beta(2) integrin ligands was reduced and they rapidly detached from the adhesive surface. Whether alterations in outside-in signaling affect sustained adhesion to the vascular endothelium in vivo was addressed by examining neutrophil adhesiveness to inflamed muscle venules. Intravital microscopy analysis allowed us to conclude that Hck and Fgr regulate neither the number of rolling cells nor rolling velocity in neutrophils. However, arrest of hck(-/-)fgr(-/-) neutrophils to >60 microm in diameter venules was reduced. Thus, Hck and Fgr play no role in chemoattractant-induced inside-out beta(2) integrin activation but regulate outside-in signaling-dependent sustained adhesion.  相似文献   

11.
The leukocyte-specific beta(2) integrin lymphocyte function-associated antigen-1 (LFA-1) (alpha(L)/beta(2)) mediates activation-dependent adhesion to intercellular adhesion molecule (ICAM)-1. In leukocytes, LFA-1 requires activation by intracellular messengers to bind ICAM-1. We observed malfunctioning of LFA-1 activation in leukemic T cells and K562-transfected cells. This defective inside-out integrin activation is only restricted to beta(2) integrins, since beta(1) integrins expressed in K562 readily respond to activation signals, such as phorbol 12-myristate 13-acetate. To unravel these differences in inside-out signaling between beta(1) and beta(2) integrins, we searched for amino acids in the beta(2) cytoplasmic domain that are critical in the activation of LFA-1. We provide evidence that substitution of a single amino acid (L732R) in the beta(2) cytoplasmic DLRE motif, creating the DRRE motif, is sufficient to completely restore PMA responsiveness of LFA-1 expressed in K562. In addition, an intact TTT motif in the C-terminal domain is necessary for the acquired PMA responsiveness. We observed that restoration of the PMA response altered neither LFA-1 affinity nor the phosphorylation status of LFA-1. In contrast, strong differences were observed in the capacity of LFA-1 to form clusters, which indicates that inside-out activation of LFA-1 strongly depends on cytoskeletal induced receptor reorganization that was induced by activation of the Ca(2+)-dependent protease calpain.  相似文献   

12.
Integrins are heterodimeric type I membrane cell adhesion molecules that are involved in many biological processes. Integrins are bidirectional signal transducers because their cytoplasmic tails are docking sites for cytoskeletal and signaling molecules. Kindlins are cytoplasmic molecules that mediate inside-out signaling and activation of the integrins. The three kindlin paralogs in humans are kindlin-1, -2, and -3. Each of these contains a 4.1-ezrin-radixin-moesin (FERM) domain and a pleckstrin homology domain. Kindlin-3 is expressed in platelets, hematopoietic cells, and endothelial cells. Here we show that kindlin-3 is involved in integrin αLβ2 outside-in signaling. It also promotes micro-clustering of integrin αLβ2. We provide evidence that kindlin-3 interacts with the receptor for activated-C kinase 1 (RACK1), a scaffold protein that folds into a seven-blade propeller. This interaction involves the pleckstrin homology domain of kindlin-3 and blades 5-7 of RACK1. Using the SKW3 human T lymphoma cells, we show that integrin αLβ2 engagement by its ligand ICAM-1 promotes the association of kindlin-3 with RACK1. We also show that kindlin-3 co-localizes with RACK1 in polarized SKW3 cells and human T lymphoblasts. Our findings suggest that kindlin-3 plays an important role in integrin αLβ2 outside-in signaling.  相似文献   

13.
Protein functions are determined by their three-dimensional structures and the folded 3-D structure is in turn governed by the primary structure and post-translational modifications the protein undergoes during synthesis and transport. Defining protein functions in vivo in the cellular and extracellular environments is made very difficult in the presence of other molecules. However, the modifications taking place during and after protein folding are determined by the modification potential of amino acids and not by the primary structure or sequence. These post-translational modifications, like phosphorylation and O-linked N-acetylglucosamine (O-GlcNAc) modifications, are dynamic and result in temporary conformational changes that regulate many functions of the protein. Computer-assisted studies can help determining protein functions by assessing the modification potentials of a given protein. Integrins are important membrane receptors involved in bi-directional (outside-in and inside-out) signaling events. The beta3 integrin family, including, alpha(IIb)beta3 and alpha(v)beta3, has been studied for its role in platelet aggregation during clot formation and clot retraction based on hydroxyl group modification by phosphate and GlcNAc on Ser, Thr, or Tyr and their interplay on Ser and Thr in the cytoplasmic domain of the beta3 subunit. An antagonistic role of phosphate and GlcNAc interplay at Thr758 for controlling both inside-out and outside-in signaling events is proposed. Additionally, interplay of GlcNAc and phosphate at Ser752 has been proposed to control activation and inactivation of integrin-associated Src kinases. This study describes the multifunctional behavior of integrins based on their modification potential at hydroxyl groups of amino acids as a source of interplay.  相似文献   

14.
Adaptor protein Shc plays a key role in mitogen-activated protein kinase (MAPK) signaling pathway, which can be mediated through a number of different receptors including integrins. By specifically recognizing the tyrosine-phosphorylated integrin β3, Shc has been shown to trigger integrin outside-in signaling, although the structural basis of this interaction remains nebulous. Here we present the detailed structural analysis of Shc phosphotyrosine-binding (PTB) domain in complex with the bi-phosphorylated β3integrin cytoplasmic tail (CT). We show that this complex is primarily defined by the phosphorylation state of the integrin C-terminal Tyr759, which fits neatly into the classical PTB pocket of Shc. In addition, we have identified a novel binding interface which concurrently accommodates phosphorylated Tyr747 of the highly conserved NPXY motif of β3. The structure represents the first snapshot of an integrin cytoplasmic tail bound to a target for mediating the outside-in signaling. Detailed comparison with the known Shc PTB structure bound to a target TrkA peptide revealed some significant differences, which shed new light upon the PTB domain specificity.  相似文献   

15.
Previous evidence suggests that interactions between integrin cytoplasmic domains regulate integrin activation. We have constructed and validated recombinant structural mimics of the heterodimeric alpha(IIb)beta(3) cytoplasmic domain. The mimics elicited polyclonal antibodies that recognize a combinatorial epitope(s) formed in mixtures of the alpha(IIb) and beta(3) cytoplasmic domains but not present in either isolated tail. This epitope(s) is present within intact alpha(IIb)beta(3), indicating that interaction between the tails can occur in the native integrin. Furthermore, the combinatorial epitope(s) is also formed by introducing the activation-blocking beta(3)(Y747A) mutation into the beta(3) tail. A membrane-distal heptapeptide sequence in the alpha(IIb) tail ((997)RPPLEED) is responsible for this effect on beta(3). Membrane-permeant palmitoylated peptides, containing this alpha(IIb) sequence, specifically blocked alpha(IIb)beta(3) activation in platelets. Thus, this region of the alpha(IIb) tail causes the beta(3) tail to resemble that of beta(3)(Y747A) and suppresses activation of the integrin.  相似文献   

16.
The beta3 integrin cytoplasmic domain, and specifically S752, is critical for integrin localization and osteoclast (OC) function. Because growth factors such as macrophage colony-stimulating factor and hepatocyte growth factor affect integrin activation and function via inside-out signaling, a process requiring the beta integrin cytoplasmic tail, we examined the effect of these growth factors on OC precursors. To this end, we retrovirally expressed various beta3 integrins with cytoplasmic tail mutations in beta3-deficient OC precursors. We find that S752 in the beta3 cytoplasmic tail is required for growth factor-induced integrin activation, cytoskeletal reorganization, and membrane protrusion, thereby affecting OC adhesion, migration, and bone resorption. The small GTPases Rho and Rac mediate cytoskeletal reorganization, and activation of each is defective in OC precursors lacking a functional beta3 subunit. Activation of the upstream mediators c-Src and c-Cbl is also dependent on beta3. Interestingly, although the FAK-related kinase Pyk2 interacts with c-Src and c-Cbl, its activation is not disrupted in the absence of functional beta3. Instead, its activation is dependent upon intracellular calcium, and on the beta2 integrin. Thus, the beta3 cytoplasmic domain is responsible for activation of specific intracellular signals leading to cytoskeletal reorganization critical for OC function.  相似文献   

17.
Integrin alpha(IIb)beta(3) activation is critical for platelet physiology and is controlled by signal transduction through kinases and phosphatases. Compared with kinases, a role for phosphatases in platelet integrin alpha(IIb)beta(3) signaling is less understood. We report that the catalytic subunit of protein phosphatase 2A (PP2Ac) associates constitutively with the integrin alpha(IIb)beta(3) in resting platelets and in human embryonal kidney 293 cells expressing alpha(IIb)beta(3). The membrane proximal KVGFFKR sequence within the cytoplasmic domain of integrin alpha(IIb) is sufficient to support a direct interaction with PP2Ac. Fibrinogen binding to alpha(IIb)beta(3) during platelet adhesion decreased integrin-associated PP2A activity and increased the phosphorylation of a PP2A substrate, vasodilator associated phosphoprotein. Overexpression of PP2Ac(alpha) in 293 cells decreased alpha(IIb)beta(3)-mediated adhesion to immobilized fibrinogen. Conversely, small interference RNA mediated knockdown of endogenous PP2Ac(alpha) expression in 293 cells, enhanced extracellular signal-regulated kinase (ERK1/2) and p38 activation, and accelerated alpha(IIb)beta(3) adhesion to fibrinogen and von Willebrand factor. Inhibition of ERK1/2, but not p38 activation, abolished the increased adhesiveness of PP2Ac (alpha)-depleted 293 cells to fibrinogen. Furthermore, knockdown of PP2A(calpha) expression in bone marrow-derived murine megakaryocytes increased soluble fibrinogen binding induced by protease-activated receptor 4-activating peptide. These studies demonstrate that PP2Ac (alpha) can negatively regulate integrin alpha(IIb)beta(3) signaling by suppressing the ERK1/2 signaling pathway.  相似文献   

18.
整合素是一类细胞表面受体家族分子,通过双向信号转导参与细胞与细胞外基质、细胞与细胞的粘附以及细胞的迁移.整合素αⅡbβ3(GPⅡb-Ⅲa)特异表达于巨核/血小板系,并且是其含量最多的膜糖蛋白,介导血小板的粘附、伸展、聚集等.G蛋白在整合素αⅡbβ3双向信号转导中发挥重要作用,其中较受关注的是:异源三聚体G蛋白和小G蛋白Rap1参与整合素αⅡbβ3的内向外信号转导;小G蛋白(Rho A、Rac等)和Gα13参与整合素αⅡbβ3的外向内信号转导.在蛋白质结构与功能关系的层面,本文总结了G蛋白的结构、分类、功能以及近年来G蛋白在整合素αⅡbβ3双向信号转导中作用的研究进展.  相似文献   

19.
Activation (affinity regulation) of integrin adhesion receptors controls cell migration and extracellular matrix assembly. Talin connects integrins with actin filaments and influences integrin affinity by binding to the integrins' short cytoplasmic beta-tail. The principal beta-tail binding site in talin is a FERM domain, comprised of three subdomains (F1, F2, and F3). Previous studies of integrin alphaIIbbeta3 have shown that both F2 and F3 bind the beta3 tail, but only F3, or the F2-F3 domain pair, induces activation. Here, talin-induced perturbations of beta3 NMR resonances were examined to explore integrin activation mechanisms. F3 and F2-F3, but not F2, distinctly perturbed the membrane-proximal region of the beta3 tail. All domains also perturbed more distal regions of the beta3 tail that appear to form the major interaction surface, since the beta3(Y747A) mutation suppressed those effects. These results suggest that perturbation of the beta3 tail membrane-proximal region is associated with talin-mediated integrin activation.  相似文献   

20.
为阐明整合素β3亚单位胞内区及其不同保守序列在骨桥蛋白(OPN)诱导血管平滑肌细胞(VSMC)黏附和迁移中所起的作用, 构建了整合素β3亚单位胞内区肽段真核表达载体(p-EGFP-C3-β3CD), 并人工合成了含有β3亚单位胞内区不同保守序列(NXXY)的寡肽(肽-747和肽-759), 通过导入VSMC, 观察它们对OPN诱导VSMC黏附和迁移的影响.结果显示, 整合素β3胞内区在VSMC中强制性表达可使细胞在OPN上的黏附和迁移明显下降(分别为对照组的34.3%和31.7%),导入肽-747、肽-759和肽-747+肽-759均可显著抑制VSMC的黏附和迁移, 其中肽-747+肽-759的作用更强(分别为对照组的36.4%和31.1%). 免疫荧光结果显示, 在转染p-EGFP-C3-β3-CD或肽-747+肽-759的VSMC中, 黏着斑蛋白的磷酸化水平降低, 黏着斑形成明显减少.研究结果表明, 整合素β3亚单位胞内区及其NXXY保守序列在黏着斑相关蛋白募集、黏着斑形成及VSMC黏附和迁移方面发挥重要作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号