首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Exposure of the leaf canopy of corn seedlings (Zea mays L.) to atmospheric CO2 levels ranging from 100 to 800 μl/l decreased nitrate accumulation and nitrate reductase activity. Plants pretreated with CO2 in the dark and maintained in an atmosphere containing 100 μl/l CO2 accumulated 7-fold more nitrate and had 2-fold more nitrate reductase activity than plants exposed to 600 μl/l CO2, after 5 hours of illumination. Induction of nitrate reductase activity in leaves of intact corn seedlings was related to nitrate content. Changes in soluble protein were related to in vitro nitrate reductase activity suggesting that in vitro nitrate reductase activity was a measure of in situ nitrate reduction. In longer experiments, levels of nitrate reductase and accumulation of reduced N supported the concept that less nitrate was being absorbed, translocated, and assimilated when CO2 was high. Plants exposed to increasing CO2 levels for 3 to 4 hours in the light had increased concentrations of malate and decreased concentrations of nitrate in the leaf tissue. Malate and nitrate concentrations in the leaf tissue of seven of eight corn genotypes grown under comparable and normal (300 μl/l CO2) environments, were negatively correlated. Exposure of roots to increasing concentrations of potassium carbonate with or without potassium sulfate caused a progressive increase in malate concentrations in the roots. When these roots were subsequently transferred to a nitrate medium, the accumulation of nitrate was inversely related to the initial malate concentrations. These data suggest that the concentration of malate in the tissue seem to be related to the accumulation of nitrate.  相似文献   

2.
Use of protein in extraction and stabilization of nitrate reductase   总被引:23,自引:19,他引:4       下载免费PDF全文
The in vitro instability of nitrate reductase (EC 1.6.6.1) activity from leaves of several species of higher plants was investigated. Decay of activity was exponential with time, suggesting that an enzyme-catalyzed reaction was involved. The rate of decay of nitrate reductase activity increased as leaf age increased in all species studied. Activity was relatively stable in certain genotypes of Zea mays L., but extremely unstable in others. In all genotypes of Avena sativa L. and Nicotiana tabacum L. studied, nitrate reductase was unstable. Addition of 3% (w/v) bovine serum albumin or casein to extraction media prevented or retarded the decay of nitrate reductase activity for several hours. In addition, the presence of bovine serum albumin or casein in the enzyme homogenate markedly increased nitrate reductase activity (up to 15-fold), especially in older leaf tissue.  相似文献   

3.
Germinating cotton (Gossypium hirsutum L. cv. Deltapine 16) cotyledons developed two peaks of in vitro nitrate reductase activity; the first was stable in vitro and appeared 24 hours after imbibition; and the second, which was extremely labile in vitro, began to develop after the seedlings had emerged and developed chlorophyll. Nitrite reductase activity peaked only after the seedlings had emerged. Dowex 1-Cl (10%, w/v) and bovine serum albumin (3%, w/v) significantly improved the activity of extracted enzyme; greater improvement occurred as expansion of the cotyledons progressed. The major effect of bovine serum albumin on nitrate reductase activity in cotyledon extracts appeared to be that of making the extracted enzyme more active rather than increasing the amount of nitrate reductase extracted or improving the stability of the extracted enzyme.  相似文献   

4.
A study was done to relate the in vivo reduction of nitrate to nitrate uptake, nitrate accumulation, and induction of nitrate reductase activity in intact barley seedlings (Hordeum vulgare L. var. `Numar'). The characteristics of nitrate uptake in response to both time and ambient concentration of nitrate regulated reduction and accumulation. Uptake, accumulation, and in vivo reduction achieved steady state rates in 3 to 4 hours, whereas extractable (in vitro) nitrate reductase activity was still increasing at 12 hours. In vivo reduction of nitrate was better correlated exponentially than linearly over time with in vitro activity of nitrate reductase. A similar relationship occurred over increasing concentration of nitrate in the ambient solution. The results suggest that the rate of in vivo reduction of nitrate in barley seedlings may be regulated by the rate of uptake at the ambient concentrations of nitrate employed in the study.  相似文献   

5.
The activation of the inactive form of the nitrate reductase (NADH: nitrate oxidoreductase, EC 1.6.6.1) present in cell-free extracts of Chlorella vulgaris Beijerinck requires an oxidizing agent. Ferricyanide causes conversion of the proenzyme to active enzyme within a few minutes, even at 0°C. Molecular oxygen causes a slow activation which requires many hours at room temperature, and never reaches the high activity level attained with ferricyanide. In unfractionated extracts, CO inhibits the activation by molecular O2. The sensitivity of this activation to CO may account for the in vivo sensitivity of nitrate reduction to CO in these algae.  相似文献   

6.
Nitrate reductase (NR) activity and nitrite reductase (NiR) mRNA levels were monitored in Black Mexican Sweet maize (Zea mays L.) suspension cultures after the addition of nitrate. Maximal induction occurred with 20 millimolar nitrate and within 2 hours. Both NR and NiR mRNA were transiently induced with levels decreasing after the 2 hours despite the continued presence of nitrate in the medium. Neither ammonia nor chlorate prevented the induction of NR. Furthermore, removal of nitrate, followed by its readdition 22 to 48 hours later, did not result in reinduction of activity or message. NR was synthesized de novo, since cycloheximide completely blocked its induction. Cycloheximide had no effect on the induction of NiR mRNA or on the transient nature of its induction. These results are similar to those reported previously for maize seedlings.  相似文献   

7.
The supply of sucrose to leaf segments from light-grown bean seedlings caused a substantial increase in substrate inducibility of in vivo and in vitro nitrate reductase activity but only a small increase in total protein. Cycloheximide and chloramphenicol inhibited the increase in enzyme activity by nitrate and sucrose. The in vivo decline in enzyme activity in nitrate-induced leaf segments in light and dark was protected by sucrose and nitrate. The supply of NADH also protected the decline in enzyme activity, but only in the light. In vitro stability of the extracted enzyme was, however, unaffected by sucrose. The size of the metabolic nitrate pool was also enhanced by sucrose. The experiments demonstrate that sucrose has a stimulatory effect on activity or in vivo stability ' of nitrate reductase in bean leaf segments, which is perhaps mediated through increased NADH level and/or mobilization of nitrate to the metabolic pool.  相似文献   

8.
Cultures of Lemna gibba L. G3 were maintained at a constant, N-limited growth rate by adding nitrate daily in amounts calculated to sustain a rate of culture N increment of 0.20 day−1. Nitrate added to the culture was consumed within 8 to 10 hours and the partitioning to reduction and accumulation during this phase corresponded to, on the average, 75 and 25% of net uptake, respectively. The calculated rate of nitrate reduction was stimulated by onset of net uptake without delay and decreased when net uptake ceased. NADH-nitrate reductase (NR) activity measured in vitro without inclusion of antiproteolytic agents more than doubled during the first hour after nitrate addition and then gradually fell to its original level over the rest of the 24 hour interval. In the presence of the proteinase inhibitor leupeptin during extraction, however, NR activity was in general much higher and without any apparent cycles. The relative stabilizing effect of leupeptin was greatest on NADH-NR and reduced flavin adenine mononucleotide-NR activities whereas the effect was less on NADH-cytochrome c reductase activity (diaphorase) and reduced methylviologen-NR activity. The constant nitrate reductase activity measured in the presence of proteinase inhibitors is assumed to reflect the physiological situation. It thus appeares that short-term changes in nitrate assimilation by N-limited Lemna is related to the flux of nitrate to the reducing site and not to changes in nitrate reductase activity.  相似文献   

9.
A nitrate reductase inactivating enzyme from the maize root   总被引:12,自引:12,他引:0       下载免费PDF全文
Wallace W 《Plant physiology》1973,52(3):197-201
The nitrate reductase in the mature root extract of 3-day maize (Zea mays) seedlings was relatively labile in vitro. Insoluble polyvinylpyrrolidone used in the extraction medium produced only a slight increase in the stability of the enzyme. Mixing the mature root extract with that of the root tip promoted the inactivation of nitrate reductase in the latter. The inactivating factor in the mature root was separated from nitrate reductase by (NH4)2SO4 precipitation. Nitrate reductase was found in the 40% (NH4)2SO4 precipitate, while the inactivating factor was largely precipitated by 40 to 55% (NH4)2SO4. The latter fraction of the mature root inactivated the nitrate reductase isolated from the root tip, mature root, and scutellum. The inactivating factor, which has a Q10 15 to 25 C of 2.2, was heat labile, and hence has been designated as a nitrate reductase inactivating enzyme. The reduced flavin mononucleotide nitrate reductase was also inactivated, while an NADH cytochrome c reductase in nitrate-grown seedlings was inactivated but at a slower rate. The inactivating enzyme had no influence on the activity of nitrite reductase, glutamate dehydrogenase, xanthine oxidase, and isocitrate lyase. The activity of the nitrate reductase inactivating enzyme was not influenced by nitrate and was also found in the mature root of minus nitrate-grown seedlings.  相似文献   

10.
The role of phytochrome in the induction of nitrate reductase of etiolated field peas (Pisum arvense L.) was examined. Terminal bud nitrate concentration increased in darkness, and the increase correlated with induction of nitrate reductase following brief exposure of intact plants to red, blue, far red, and white lights. Brief light exposure of intact plants stimulated nitrate uptake and induction of nitrate reductase by terminal buds subsequently excised and incubated on nitrate solution in darkness; exposure of excised buds in contact with nitrate led to less uptake but more induction. Nitrate and nitrate reductase activity both declined during incubation with water, irrespective of light treatment. Nitrate enrichment of intact terminal buds and uptake into excised buds and increases in nitrate reductase activity were all red/far red reversible. Dimethyl sulfoxide (1%, v/v) and sugars (sucrose 0.5%, glucose 1, w/v), although stimulating nitrate uptake into excised tissue in darkness, failed to enhance nitrate reductase activity over dark controls. Phytochrome may regulate nitrate reductase via both nitrate movement and a general mechanism such as enhancement of protein synthesis.  相似文献   

11.
NADH-Nitrate Reductase Inhibitor from Soybean Leaves   总被引:17,自引:15,他引:2       下载免费PDF全文
A NADH-nitrate reductase inhibitor has been isolated from young soybean (Glycine max L. Merr. Var. Amsoy) leaves that had been in the dark for 54 hours. The presence of the inhibitor was first suggested by the absence of nitrate reductase activity in the homogenate until the inhibitor was removed by diethylaminoethyl (DEAE)-cellulose chromatography. The inhibitor inactivated the enzyme in homogenates of leaves harvested in the light. Nitrate reductases in single whole cells isolated through a sucrose gradient were equally active from leaves grown in light or darkness, but were inhibited by addition of the active inhibitor.

The NADH-nitrate reductase inhibitor was purified 2,500-fold to an electrophoretic homogeneous protein by a procedure involving DEAE- cellulose chromatography, Sephadex G-100 filtration, and ammonium sulfate precipitation followed by dialysis. The assay was based on nitrate reductase inhibition. A rapid partial isolation procedure was also developed to separate nitrate reductase from the inhibitor by DEAE-cellulose chromatography and elution with KNO3. The inhibitor was a heat-labile protein of about 31,000 molecular weight with two identical subunits. After electrophoresis on polyacrylamide gel two adjacent bands of protein were present; an active form and an inactive form that developed on standing. The active factor inhibited leaf NADH-nitrate reductase but not NADPH-nitrate reductase, the bacterial nitrate reductase or other enzymes tested. The site of inhibition was probably at the reduced flavin adenine dinucleotide-NR reaction, since it did not block the partial reaction of NADH-cytochrome c reductase. The inhibitor did not appear to be a protease. Some form of association of the active inhibitor with nitrate reductase was indicated by a change of inhibitor mobility through Sephadex G-75 in the presence of the enzyme. The inhibition of nitrate reductase was noncompetitive with nitrate but caused a decrease in Vmax.

The isolated inhibitor was inactivated in the light, but after 24 hours in the dark full inhibitory activity returned. Equal amounts of inhibitor were present in leaves harvested from light or darkness, except that the inhibitor was at first inactive when rapidly isolated from leaves in light. Photoinactivation of yellow impure inhibitor required no additional components, but inactivation of the purified colorless inhibitor required the addition of flavin.

Preliminary evidence and a procedure are given for partial isolation of a component by DEAE-cellulose chromatography that stimulated nitrate reductase. The data suggest that light-dark changes in nitrate reductase activity are regulated by specific protein inhibitors and stimulators.

  相似文献   

12.
Induction of nitrate reductase activity and mRNA by nitrate and light is prevented if chloroplasts are destroyed by photooxidation in norflurazon-treated squash (Cucurbita maxima L.) cotyledons. The enzyme activity and mRNA can be induced if norflurazon-treated squash seedlings are kept in low-intensity red light, which minimizes photodamage to the plastids. It is concluded that induction of nitrate reductase activity and nitrate reductase mRNA requires intact plastids. If squash seedlings grown in low-intensity red light are transferred to photooxidative white light, nitrate reductase activity accumulates during the first 12 hours after the shift and declines thereafter. Thus photodamage to the plastids and the disappearance of nitrate reductase activity and mRNA are events separable in time, and disappearance of the enzyme activity is a consequence of the damage to the plastids.  相似文献   

13.
Soybean (Glycine max [L.] Merr.) seeds were imbibed and germinated with or without NO3, tungstate, and norflurazon (San 9789). Norflurazon is a herbicide which causes photobleaching of chlorophyll by inhibiting carotenoid synthesis and which impairs normal chloroplast development. After 3 days in the dark, seedlings were placed in white light to induce extractable nitrate reductase activity. The induction of maximal nitrate reductase activity in greening cotyledons did not require NO3 and was not inhibited by tungstate. Induction of nitrate reductase activity in norflurazon-treated cotyledons had an absolute requirement for NO3 and was completely inhibited by tungstate. Nitrate was not detected in seeds or seedlings which had not been treated with NO3. The optimum pH for cotyledon nitrate reductase activity from norflurazon-treated seedlings was at pH 7.5, and near that for root nitrate reductase activity, whereas the optimum pH for nitrate reductase activity from greening cotyledons was pH 6.5. Induction of root nitrate reductase activity was also inhibited by tungstate and was dependent on the presence of NO3, further indicating that the isoform of nitrate reductase induced in norflurazon-treated cotyledons is the same or similar to that found in roots. Nitrate reductases with and without a NO3 requirement for light induction appear to be present in developing leaves. In vivo kinetics (light induction and dark decay rates) and in vitro kinetics (Arrhenius energies of activation and NADH:NADPH specificities) of nitrate reductases with and without a NO3 requirement for induction were quite different. Km values for NO3 were identical for both nitrate reductases.  相似文献   

14.
Sixty-five Nicotiana plumbaginifolia mutants affected in the nitrate reductase structural gene (nia mutants) have been analyzed and classified. The properties evaluated were: (a) enzyme-linked immunosorbent assay (two-site ELISA) using a monoclonal antibody as coating reagent and (b) presence of partial catalytic activities, namely nitrate reduction with artificial electron donors (reduced methyl viologen, reduced flavin mononucleotide, or reduced bromphenol blue), and cytochrome c (Cyt c) reduction with NADH. Four classes have been defined: 40 mutants fall within class 1 which includes all mutants that have no protein detectable in ELISA and no partial activities; mutants of classes 2 and 3 exhibit an ELISA-detectable nitrate reductase protein and lack either Cyt c reductase activity (class 2: fourteen mutants) or the terminal nitrate reductase activities (class 3: eight mutants) of the enzyme. Three mutants (class 4) are negative in the ELISA test, lack Cyt c reductase activity, and lack or have a very low level of reduced methyl viologen or reduced flavin mononucleotide-nitrate reductase activities; however, they retain the reduced bromphenol blue nitrate reductase activity. Variations in the degrees of terminal nitrate reductase activities among the mutants indicated that the flavin mononucleotide and methyl viologen-dependent activities were linked while the bromphenol blue-dependent activity was independent of the other two. The putative positions of the lesions in the mutant proteins and the nature of structural domains of nitrate reductase involved in each partial activity are discussed.  相似文献   

15.
Kende H  Hahn H  Kays SE 《Plant physiology》1971,48(6):702-706
Nitrate reductase activity in excised embryos of Agrostemma githago increases in response to both NO3 and cytokinins. We asked the question whether cytokinins affected nitrate reductase activity directly or through NO3, either by amplifying the effect of low endogenous NO3 levels, or by making NO3 available for induction from a metabolically inactive compartment. Nitrate reductase activity was enhanced on the average by 50% after 1 hour of benzyladenine treatment. In some experiments, the cytokinin response was detectable as early as 30 minutes after addition of benzyladenine. Nitrate reductase activity increased linearly for 4 hours and began to decay 13 hours after start of the hormone treatment. When embryos were incubated in solutions containing mixtures of NO3 and benzyladenine, additive responses were obtained. The effects of NO3 and benzyladenine were counteracted by abscisic acid. The increase in nitrate reductase activity was inhibited at lower abscisic acid concentrations in embryos which were induced with NO3, as compared to embryos treated with benzyladenine. Casein hydrolysate inhibited the development of nitrate reductase activity. The response to NO3 was more susceptible to inhibition by casein hydrolysate than the response to the hormone. When NO3 and benzyladenine were withdrawn from the medium after maximal enhancement of nitrate reductase activity, the level of the enzyme decreased rapidly. Nitrate reductase activity increasd again as a result of a second treatment with benzyladenine but not with NO3. At the time of the second exposure to benzyladenine, no NO3 was detectable in extracts of Agrostemma embryos. This is taken as evidence that cytokinins enhance nitrate reductase activity directly and not through induction by NO3.  相似文献   

16.
A barley (Hordeum vulgare L.) mutant, nar1a (formerly Az12), deficient in NADH nitrate reductase activity is, nevertheless, capable of growth with nitrate as the sole nitrogen source. In an attempt to identify the mechanism(s) of nitrate reduction in the mutant, nitrate reductase from nar1a was characterized to determine whether the residual activity is due to a leaky mutation or to the presence of a second nitrate reductase. The results obtained indicate that the nitrate reductase in nar1a differs from the wild-type enzyme in several important aspects. The pH optima for both the NADH and the NADPH nitrate reductase activities from nar1a were approximately pH 7.7, which is slightly greater than the pH 7.5 optimum for the NADH activity and considerably greater than the pH 6.0 to 6.5 optimum for the NADPH activity of the wild-type enzyme. The nitrate reductase from nar1a exhibits greater NADPH than NADH activity and has apparent Km values for nitrate and NADH that are approximately 10 times greater than those of the wild-type enzyme. The nar1a nitrate reductase has apparent Km values of 170 micromolar for NADPH and 110 micromolar for NADH. NADPH, but not NADH, inhibited the enzyme at concentrations greater than 50 micromolar.  相似文献   

17.
Growth at increasing continuous irradiance (at high nutrient nitrate) and nutrient nitrate concentrations (at high continuous irradiance) furnished increases in the in vivo and in vitro nitrate reductase activities of corn (Zea mays L.), field peas (Pisum arvense L.), wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), and globe amaranth (Gomphrena globosa L.) leaves and of marrow (Cucurbita pepo L.) cotyledons. Ratios of in vivo to in vitro activity declined exponentially in all species with increasing nitrate reductase levels promoted by nutrient nitrate. The ratios were more nearly independent of nitrate reductase levels generated by adjusting the irradiance; major exceptions were marrow and wheat at low (1.5 klux and less) irradiances and peas throughout the irradiance range, where decreases in the ratio were accompanied by increases in in situ nitrate concentration. The ratio also increased at the highest irradiance (39.2 klux) in wheat and barley, associated with a decline of in vitro nitrate reductase. These differences in response to irradiance and nutrient nitrate indicate that the in vivo assay does not provide a simple measure of nitrate reductase but rather yields a more composite measure of nitrate reduction, possibly related both to nitrate reductase level and to the supply of reductant for in vivo activity.  相似文献   

18.
Some characteristics of nitrate reductase from higher plants   总被引:45,自引:28,他引:17       下载免费PDF全文
With respect to cofactor requirements, NADH, and FMNH2 were equally effective as electron donors for nitrate reductase obtained from leaves of maize, marrow, and spinach, when the cofactors were supplied in optimal concentrations. The concentration of FMNH2 required to obtain half-maximal activity was from 40- to 100-fold higher than for NADH. For maximal activity with the corn enzyme, 0.8 millimolar FMNH2 was required. In contrast, NADPH was functional only when supplied with NADP:reductase and exogenous FMN (enzymatic generation of FMNH2).

All attempts to separate the NADH2- and FMNH2-dependent nitrate reductase activities were unsuccessful and regardless of cofactor used equal activities were obtained, if cofactor concentration was optimal. Unity of NADH to FMNH2 activities were obtained during: A) purification procedures (4 step, 30-fold); B) induction of nitrate reductase in corn seedlings with nitrate; and C) inactivation of nitrate reductase in intact or excised corn seedlings. The NADH- and FMNH2-dependent activities were not additive.

A half-life for nitrate reductase of approximately 4 hours was estimated from the inactivation studies with excised corn seedlings. Similar half-life values were obtained when seedlings were incubated at 35° in a medium containing nitrate and cycloheximide (to inhibit protein synthesis), or when both nitrate and cycloheximide were omitted.

In those instances where NADH activity but not FMNH2 activity was lost due to treatment (temperature, removal of sulfhydryl agents, addition of p-chloromercuribenzoate), the loss could be explained by inactivation of the sulfhydryl group (s) required for NADH activity. This was verified by reactivation with exogenous cysteine.

Based on these current findings, and previous work, it is concluded that nitrate reductase is a single moiety with the ability to utilize either NADH or FMNH2 as cofactor. However the high concentration of FMNH2 required for optimal activity suggests that in vivo NADH is the electron donor and that nitrate reductase in higher plants should be designated NADH:nitrate reductase (E.C. 1.6.6.1).

  相似文献   

19.
The effect of nitrogen form (NH4-N, NH4-N + NO3, NO3) on nitrate reductase activity in roots and shoots of maize (Zea mays L. cv INRA 508) seedlings was studied. Nitrate reductase activity in leaves was consistent with the well known fact that NO3 increases, and NH4+ and amide-N decrease, nitrate reductase activity. Nitrate reductase activity in the roots, however, could not be explained by the root content of NO3, NH4-N, and amide-N. In roots, nitrate reductase activity in vitro was correlated with the rate of nitrate reduction in vivo. Inasmuch as nitrate reduction results in the production of OH and stimulates the synthesis of organic anions, it was postulated that nitrate reductase activity of roots is stimulated by the released OH or by the synthesized organic anions rather than by nitrate itself. Addition of HCO3 to nutrient solution of maize seedlings resulted in a significant increase of the nitrate reductase activity in the roots. As HCO3, like OH, increases pH and promotes the synthesis of organic anions, this provides circumstantial evidence that alkaline conditions and/or organic anions have a more direct impact on nitrate reductase activity than do NO3, NH4-N, and amide-N.  相似文献   

20.
Role of molybdenum in nitrate reduction by chlorella   总被引:11,自引:4,他引:7       下载免费PDF全文
Molybdenum is absolutely required for the nitrate-reducing activity of the nicotinamide adenine dinucleotide nitrate reductase complex isolated from Chlorella fusca. The whole enzyme nicotinamide adenine dinucleotide nitrate reductase is formed by cells grown in the absence of added molybdate, but only its first activity (nicotinamide adenine dinucleotide diaphorase) is functional. The second activity of the complex, which subsequently participates also in the enzymatic transfer of electrons from nicotinamide adenine dinucleotide to nitrate (FNH2-nitrate reductase), depends on the presence of molybdenum. Neither molybdate nor nitrate is required for nitrate reductase synthesis de novo, but ammonia acts as a nutritional repressor of the complete enzyme complex. Under conditions which exclude de novo synthesis of nitrate reductase, the addition of molybdate to molybdenum-deficient cells clearly increases the activity level of this enzyme, thus suggesting in vivo incorporation of the trace metal into the pre-existing inactive apoenzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号