首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
AGS3, a 650-amino acid protein encoded by an approximately 4-kilobase (kb) mRNA enriched in rat brain, is a Galpha(i)/Galpha(t)-binding protein that competes with Gbetagamma for interaction with Galpha(GDP) and acts as a guanine nucleotide dissociation inhibitor for heterotrimeric G-proteins. An approximately 2-kb AGS3 mRNA (AGS3-SHORT) is enriched in rat and human heart. We characterized the heart-enriched mRNA, identified the encoded protein, and determined its ability to interact with and regulate the guanine nucleotide-binding properties of G-proteins. Screening of a rat heart cDNA library, 5'-rapid amplification of cDNA ends, and RNase protection assays identified two populations of cDNAs (1979 and 2134 nucleotides plus the polyadenylation site) that diverged from the larger 4-kb mRNA (AGS3-LONG) in the middle of the protein coding region. Transfection of COS-7 cells with AGS3-SHORT cDNAs resulted in the expression of a major immunoreactive AGS3 polypeptide (M(r) approximately 23,000) with a translational start site at Met(495) of AGS3-LONG. Immunoblots indicated the expression of the M(r) approximately 23,000 polypeptide in rat heart. Glutathione S-transferase-AGS3-SHORT selectively interacted with the GDP-bound versus guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS)-bound conformation of Galpha(i2) and inhibited GTPgammaS binding to Galpha(i2). Protein interaction assays with glutathione S-transferase-AGS3-SHORT and heart lysates indicated interaction of AGS3-SHORT with Galpha(i1/2) and Galpha(i3), but not Galpha(s) or Galpha(q). Immunofluorescent imaging and subcellular fractionation following transient expression of AGS3-SHORT and AGS3-LONG in COS-7 and Chinese hamster ovary cells indicated distinct subcellular distributions of the two forms of AGS3. Thus, AGS3 exists as a short and long form, both of which apparently stabilize the GDP-bound conformation of Galpha(i), but which differ in their tissue distribution and trafficking within the cell.  相似文献   

2.
Control of cell proliferation depends on intracellular mediators that determine the cellular response to external cues. In neuroendocrine cells, the dopamine D2 receptor short form (D2S receptor) inhibits cell proliferation, whereas in mesenchymal cells the same receptor enhances cell proliferation. Nontransformed BALB/c 3T3 fibroblast cells were stably transfected with the D2S receptor cDNA to study the G proteins that direct D2S signaling to stimulate cell proliferation. Pertussis toxin inactivates G(i) and G(o) proteins and blocks signaling of the D2S receptor in these cells. D2S receptor signaling was reconstituted by individually transfecting pertussis toxin-resistant Galpha(i/o) subunit mutants and measuring D2-induced responses in pertussis toxin-treated cells. This approach identified Galpha(i)2 and Galpha(i)3 as mediators of the D2S receptor-mediated inhibition of forskolin-stimulated adenylyl cyclase activity; Galpha(i)2-mediated D2S-induced stimulation of p42 and p44 mitogen-activated kinase (MAPK) and DNA synthesis, whereas Galpha(i)3 was required for formation of transformed foci. Transfection of toxin-resistant Galpha(i)1 cDNA induced abnormal cell growth independent of D2S receptor activation, while Galpha(o) inhibited dopamine-induced transformation. The role of Gbetagamma subunits was assessed by ectopic expression of the carboxyl-terminal domain of G protein receptor kinase to selectively antagonize Gbetagamma activity. Mobilization of Gbetagamma subunits was required for D2S-induced calcium mobilization, MAPK activation, and DNA synthesis. These findings reveal a remarkable and distinct G protein specificity for D2S receptor-mediated signaling to initiate DNA synthesis (Galpha(i)2 and Gbetagamma) and oncogenic transformation (Galpha(i)3), and they indicate that acute activation of MAPK correlates with enhanced DNA synthesis but not with transformation.  相似文献   

3.
AGS3 (activator of G-protein signaling 3) was isolated in a yeast-based functional screen for receptor-independent activators of heterotrimeric G-proteins. As an initial approach to define the role of AGS3 in mammalian signal processing, we defined the AGS3 subdomains involved in G-protein interaction, its selectivity for G-proteins, and its influence on the activation state of G-protein. Immunoblot analysis with AGS3 antisera indicated expression in rat brain, the neuronal-like cell lines PC12 and NG108-15, as well as the smooth muscle cell line DDT(1)-MF2. Immunofluorescence studies and confocal imaging indicated that AGS3 was predominantly cytoplasmic and enriched in microdomains of the cell. AGS3 coimmunoprecipitated with Galpha(i3) from cell and tissue lysates, indicating that a subpopulation of AGS3 and Galpha(i) exist as a complex in the cell. The coimmunoprecipitation of AGS3 and Galpha(i) was dependent upon the conformation of Galpha(i3) (GDP GTPgammaS (guanosine 5'-3-O-(thio)triphosphate)). The regions of AGS3 that bound Galpha(i) were localized to four amino acid repeats (G-protein regulatory motif (GPR)) in the carboxyl terminus (Pro(463)-Ser(650)), each of which were capable of binding Galpha(i). AGS3-GPR domains selectively interacted with Galpha(i) in tissue and cell lysates and with purified Galpha(i)/Galpha(t). Subsequent experiments with purified Galpha(i2) and Galpha(i3) indicated that the carboxyl-terminal region containing the four GPR motifs actually bound more than one Galpha(i) subunit at the same time. The AGS3-GPR domains effectively competed with Gbetagamma for binding to Galpha(t(GDP)) and blocked GTPgammaS binding to Galpha(i1). AGS3 and related proteins provide unexpected mechanisms for coordination of G-protein signaling pathways.  相似文献   

4.
Cardiac G protein-coupled receptors that function through stimulatory G protein Galpha(s), such as beta(1)- and beta(2)-adrenergic receptors (beta(1)ARs and beta(2)ARs), play a key role in cardiac contractility. Recent data indicate that several Galpha(s)-coupled receptors in heart also activate Galpha(i), including beta(2)ARs (but not beta(1)ARs). Coupling of cardiac beta(2)ARs to Galpha(i) inhibits adenylyl cyclase and opposes beta(1)AR-mediated apoptosis. Dual coupling of beta(2)AR to both Galpha(s) and Galpha(i) is likely to alter beta(2)AR function in disease, such as congestive heart failure in which Galpha(i) levels are increased. Indeed, heart failure is characterized by reduced responsiveness of betaARs. Cardiac betaAR-responsiveness is also decreased with aging. However, whether age increases cardiac Galpha(i) has been controversial, with some studies reporting an increase and others reporting no change. The present study examines Galpha(i) in left ventricular membranes from young and old Fisher 344 rats by employing a comprehensive battery of biochemical assays. Immunoblotting reveals significant increases with age in left ventricular Galpha(i2), but no changes in Galpha(i3), Galpha(o), Galpha(s), Gbeta(1), or Gbeta(2). Aging also increases ADP-ribosylation of pertussis toxin-sensitive G proteins. Consistent with these results, basal as well as receptor-mediated incorporation of photoaffinity label [(32)P]azidoanilido-GTP indicates higher amounts of Galpha(i2) in older left ventricular membranes. Moreover, both basal and receptor-mediated adenylyl cyclase activities are lower in left ventricular membranes from older rats, and disabling of Galpha(i) with pertussis toxin increases both basal and receptor-stimulated adenylyl cyclase activity. Finally, age produces small but significant increases in muscarinic potency for the inhibition of both beta(1)AR- and beta(2)AR-stimulated adenylyl cyclase activity. The present study establishes that Galpha(i2) increases with age and provides data indicating that this increase dampens adenylyl cyclase activity.  相似文献   

5.
It has previously been shown that the GLP-1 receptor is primarily coupled to the adenylate cyclase pathway via activation of Galpha(s) proteins. Recent studies have shown that the third intracellular loop of the receptor is important in the stimulation of cAMP production. We have studied the effect of three synthetic peptide sequences derived from the third intracellular loop of the GLP-1 receptor on signal transduction in Rin m5F cell membranes. The whole third intracellular loop strongly stimulates both pertussis toxin and cholera toxin-sensitive G proteins, while the N-terminal half exclusively stimulates cholera toxin-sensitive G proteins and the C-terminal half only stimulates pertussis toxin-sensitive G-proteins as demonstrated by measurements of GTPase activity. These data confirm that the principal stimulatory G-protein interaction site resides in the third intracellular loop, but also suggest that the GLP-1 receptor is not only coupled to the Galpha(s) but also to the Galpha(i)/Galpha(o) type of G proteins and that distinct domains within the third intracellular loop are responsible for the activation of the different G-protein subfamilies.  相似文献   

6.
The G-protein G(i)alpha can activate adenylyl cyclase (AC), but the relevance of this AC activation is unknown. We used receptor-G protein co-expression and receptor-G protein fusion proteins to investigate G(i)alpha(2) regulation of AC in Sf9 cells. G(i)alpha(2) was fused to the beta(2)-adrenoceptor (beta(2)AR), a preferentially G(s)-coupled receptor, or the formyl peptide receptor (FPR), a G(i)-coupled receptor. The FPR co-expressed with, or fused to, G(i)alpha(2), reduced AC activity. In contrast, the beta(2)AR fused to G(i)alpha(2) was a highly efficient AC activator, while the beta(2)AR co-expressed with G(i)alpha(2) was not. Agonist efficiently stimulated incorporation of [alpha-32P]GTP azidoanilide into beta(2)AR-G(i)alpha(2). We explain AC activation by beta(2)AR-G(i)alpha(2) by a model in which there is interaction of the beta(2)AR and AC, preventing tethered G(i)alpha(2) from interacting with the inhibitory G(i)alpha site of AC. The postulated beta(2)AR/AC interaction brings G(i)alpha(2) into close proximity of the G(s)alpha site of AC, enabling G(i)alpha(2) to activate AC.  相似文献   

7.
The blockade of heptahelical receptor coupling to heterotrimeric G proteins by the expression of peptides derived from G protein Galpha subunits represents a novel means of simultaneously inhibiting signals arising from multiple receptors that share a common G protein pool. Here we examined the mechanism of action and functional consequences of expression of an 83-amino acid polypeptide derived from the carboxyl terminus of Galpha(s) (GsCT). In membranes prepared from GsCT-expressing cells, the peptide blocked high affinity agonist binding to beta(2) adrenergic receptors (AR) and inhibited beta(2)AR-induced [35S]GTPgammaS loading of Galpha(s). GsCT expression inhibited beta(2)AR- and dopamine D(1A) receptor-mediated cAMP production, without affecting the cellular response to cholera toxin or forskolin, indicating that the peptide inhibited receptor-G(s) coupling without impairing G protein or adenylyl cyclase function. [35S]GTPgammaS loading of Galpha(q/11) by alpha(1B)ARs and Galpha(i) by alpha(2A)ARs and G(q/11)- or G(i)-mediated phosphatidylinositol hydrolysis was unaffected, indicating that the inhibitory effects of GsCT were selective for G(s). We next employed the GsCT construct to examine the complex role of G(s) in regulation of the ERK mitogen-activated protein kinase cascade, where activation of the cAMP-dependent protein kinase (PKA) pathway reportedly produces both stimulatory and inhibitory effects on heptahelical receptor-mediated ERK activation. For the beta(2)AR in HEK-293 cells, where PKA activity is required for ERK activation, expression of GsCT caused a net inhibition of ERK activation. In contrast, alpha(2A)AR-mediated ERK activation in COS-7 cells was enhanced by GsCT expression, consistent with the relief of a downstream inhibitory effect of PKA. ERK activation by the G(q/11)-coupled alpha(1B)AR was unaffected by GsCT. These findings suggest that peptide G protein inhibitors can provide insights into the complex interplay between G protein pools in cellular regulation.  相似文献   

8.
cAMP receptor 1 and G-protein alpha-subunit 2 null cell lines (car1- and g alpha 2-) were examined to assess the roles that these two proteins play in cAMP stimulated adenylyl cyclase activation in Dictyostelium. In intact wild-type cells, cAMP stimulation elicited a rapid activation of adenylyl cyclase that peaked in 1-2 min and subsided within 5 min; in g alpha 2- cells, this activation did not occur; in car1- cells an activation occurred but it rose and subsided more slowly. cAMP also induced a persistent activation of adenylyl cyclase in growth stage cells that contain only low levels of cAMP receptor 1 (cAR1). In lysates of untreated wild-type, car1-, or g alpha 2- cells, guanosine 5'-O-'(3-thiotriphosphate) (GTP gamma S) produced a similar 20-fold increase in adenylyl cyclase activity. Brief treatment of intact cells with cAMP reduced this activity by 75% in control and g alpha 2- cells but by only 8% in the car1- cells. These observations suggest several conclusions regarding the cAMP signal transduction system. 1) cAR1 and another cAMP receptor are linked to activation of adenylyl cyclase in intact cells. Both excitation signals require G alpha 2. 2) cAR1 is required for normal adaptation of adenylyl cyclase. The adaptation reaction caused by cAR1 is not mediated via G alpha 2. 3) Neither cAR1 nor G alpha 2 is required for GTP gamma S-stimulation of adenylyl cyclase in cell lysates. The adenylyl cyclase is directly coupled to an as yet unidentified G-protein.  相似文献   

9.
Heterotrimeric G-protein signaling systems are activated via cell surface receptors possessing the seven-membrane span motif. Several observations suggest the existence of other modes of stimulus input to heterotrimeric G-proteins. As part of an overall effort to identify such proteins we developed a functional screen based upon the pheromone response pathway in Saccharomyces cerevisiae. We identified two mammalian proteins, AGS2 and AGS3 (activators of G-protein signaling), that activated the pheromone response pathway at the level of heterotrimeric G-proteins in the absence of a typical receptor. beta-galactosidase reporter assays in yeast strains expressing different Galpha subunits (Gpa1, G(s)alpha, G(i)alpha(2(Gpa1(1-41))), G(i)alpha(3(Gpa1(1-41))), Galpha(16(Gpa1(1-41)))) indicated that AGS proteins selectively activated G-protein heterotrimers. AGS3 was only active in the G(i)alpha(2) and G(i)alpha(3) genetic backgrounds, whereas AGS2 was active in each of the genetic backgrounds except Gpa1. In protein interaction studies, AGS2 selectively associated with Gbetagamma, whereas AGS3 bound Galpha and exhibited a preference for GalphaGDP versus GalphaGTPgammaS. Subsequent studies indicated that the mechanisms of G-protein activation by AGS2 and AGS3 were distinct from that of a typical G-protein-coupled receptor. AGS proteins provide unexpected mechanisms for input to heterotrimeric G-protein signaling pathways. AGS2 and AGS3 may also serve as novel binding partners for Galpha and Gbetagamma that allow the subunits to subserve functions that do not require initial heterotrimer formation.  相似文献   

10.
Lo RK  Liu AM  Wise H  Wong YH 《Cellular signalling》2008,20(11):2095-2106
Human prostacyclin receptor (hIP) stimulates STAT3 via pertussis toxin-insensitive G proteins in human erythroleukemia (HEL) cells. Since hIP can utilize G(s) and G(q) proteins for signal transduction and that both G proteins can induce STAT3 phosphorylation and activation via complex signaling networks, we sought to determine if one of them is predominant in mediating the hIP signal. Stimulation of STAT3 Tyr(705) and Ser(727) phosphorylations by the IP-specific agonist, cicaprost, was sensitive to inhibition of protein kinase A, phospholipase Cbeta, protein kinase C, calmodulin-dependent protein kinase II and Janus kinase 2/3. Unlike Galpha(16)-mediated regulation of STAT3 in the same cells, cicaprost-induced STAT3 Tyr(705) phosphorylation was resistant to inhibition of Src and MEK while STAT3 Ser(727) phosphorylation distinctly required phosphatidylinositol-3 kinase. This unique inhibitor-sensitivity pattern of STAT3 phosphorylation was reproduced in HEL cells by stimulating the G(16)-coupled C5a receptor in the presence of dibutyryl-cAMP, suggesting that the change in inhibitor-sensitivity was due to activation of the G(s) pathway. This postulation was confirmed by expressing constitutively active Galpha(16)QL and Galpha(s)QL in human embryonic kidney 293 cells and the inhibitor-sensitivity of Galpha(16)QL-induced STAT3 phosphorylations could be converted by the mere presence of Galpha(s)QL to resemble that obtained with cicaprost in HEL cells. In addition, the restoration of the Galpha(16)-mediated inhibitor-sensitivity upon cicaprost induction in Galpha(s)-knocked down HEL cells again verified the pivotal role of G(s) signal. Taken together, our observations illustrate that co-stimulation of G(s) and G(q) can result in the fine-tuning of STAT3 activation status, and this may provide the basis for cell type-specific responses following activation of hIP.  相似文献   

11.
12.
We examined the kinetics of Galpha(s) and Galpha(i) regulation of human type V and type VI adenylyl cyclase (AC V and AC VI) in order to better model interactions between AC and its regulators. Activation of AC VI by Galpha(s) displayed classical Michaelis-Menten kinetics, whereas AC V activation by Galpha(s) was cooperative with a Hill coefficient of 1.4. The basal activity of human AC V, but not that of AC VI, was inhibited by Galpha(i). Both enzymes showed greater inhibition by Galpha(i) at low Galpha(s) concentrations; however, human AC V was activated by Galpha(i) at high Galpha(s) concentrations. Neither regulator had an effect on the K(m) for Mg-ATP. Mutations made within the Galpha(s) binding pocket of AC V (N1090D) and VI (F1078S) displayed 6- and 14-fold greater EC(50) values for Galpha(s) activation but had no effect on Galpha(i) inhibition of basal activity or K(m) for Mg-ATP. Galpha(s)-stimulated AC VI-F1078S was not significantly inhibited by Galpha(i), despite normal inhibition by Galpha(i) upon forskolin stimulation. Mechanistic models for Galpha(s) and Galpha(i) regulation of AC V and VI were derived to describe these results. Our models are consistent with previous studies, predicting a decrease in affinity of Galpha(i) in the presence of Galpha(s). For AC VI, Galpha(s) is required for inhibition but not binding by Galpha(i). For AC V, binding of two molecules of Galpha(s) and Galpha(i) to an AC dimer are required to fully describe the data. These models highlight the differences between AC V and VI and the complex interactions with two important regulators.  相似文献   

13.
In HIT-T15 insulinoma B-cells incubated in presence of [(32)P]NAD, we identified by autoradiography and immunoblotting ADP-ribosylation (ADP-R) of the trimeric G-protein Galpha(s) and Galpha(olf) subunits (45 kDa) induced by cholera toxin in M1 (120,000g) and M2 (70,000g) subcellular fractions containing plasma membranes, insulin granules, and mitochondria. This ADP-R indicates that these two fractions contain functionally competent Galpha subunits for adenylyl cyclase activation. Prolonged exposure of HIT-T15 cells to high glucose (25 mM instead of 6 mM) specifically reduced the ADP-R in Galpha(s) and Galpha(olf) subunits in the M1 fraction only, despite the clear increase of their accumulation in this compartment. A similar alteration in the ADP-R of the M1-associated Galpha(s) and Galpha(olf) subunits was observed in pancreatic islets isolated from fasted and fed rats. These results may explain, at least in part, the undesirable effects of sustained hyperglycemia on the cAMP-dependent process of insulin secretion in diabetes.  相似文献   

14.
Bacterial protein toxins are powerful tools for elucidating signaling mechanisms in eukaryotic cells. A number of bacterial protein toxins, e.g. cholera toxin, pertussis toxin (PTx), or Pasteurella multocida toxin (PMT), target heterotrimeric G proteins and have been used to stimulate or block specific signaling pathways or to demonstrate the contribution of their target proteins in cellular effects. PMT is a major virulence factor of P. multocida causing pasteurellosis in man and animals and is responsible for atrophic rhinitis in pigs. PMT modulates various signaling pathways, including phospholipase Cbeta and RhoA, by acting on the heterotrimeric G proteins Galpha(q) and Galpha(12/13), respectively. Here we report that PMT is a powerful activator of G(i) protein. We show that PMT decreases basal isoproterenol and forskolin-stimulated cAMP accumulation in intact Swiss 3T3 cells, inhibits adenylyl cyclase activity in cell membrane preparations, and enhances the inhibition of cAMP accumulation caused by lysophosphatidic acid via endothelial differentiation gene receptors. PMT-mediated inhibition of cAMP production is independent of toxin activation of Galpha(q) and/or Galpha(12/13). Although the effects of PMT are not inhibited by PTx, PMT blocks PTx-catalyzed ADP-ribosylation of G(i). PMT also inhibits steady-state GTPase activity and GTP binding of G(i) in Swiss 3T3 cell membranes stimulated by lysophosphatidic acid. The data indicate that PMT is a novel activator of G(i), modulating its GTPase activity and converting it into a PTx-insensitive state.  相似文献   

15.
Lysophosphatidic acid is a bioactive phospholipid that is produced by and stimulates ovarian cancer cells, promoting proliferation, migration, invasion, and survival. Effects of LPA are mediated by cell surface G-protein coupled receptors (GPCRs) that activate multiple heterotrimeric G-proteins. G-proteins are deactivated by Regulator of G-protein Signaling (RGS) proteins. This led us to hypothesize that RGS proteins may regulate G-protein signaling pathways initiated by LPA in ovarian cancer cells. To determine the effect of endogenous RGS proteins on LPA signaling in ovarian cancer cells, we compared LPA activity in SKOV-3 ovarian cancer cells expressing G(i) subunit constructs that are either insensitive to RGS protein regulation (RGSi) or their RGS wild-type (RGSwt) counterparts. Both forms of the G-protein contained a point mutation rendering them insensitive to inhibition with pertussis toxin, and cells were treated with pertussis toxin prior to experiments to eliminate endogenous G(i/o) signaling. The potency and efficacy of LPA-mediated inhibition of forskolin-stimulated adenylyl cyclase activity was enhanced in cells expressing RGSi G(i) proteins as compared to RGSwt G(i). We further showed that LPA signaling that is subject to RGS regulation terminates much faster than signaling thru RGS insensitive G-proteins. Finally, LPA-stimulated SKOV-3 cell migration, as measured in a wound-induced migration assay, was enhanced in cells expressing Galpha(i2) RGSi as compared to cells expressing Galpha(i2) RGSwt, suggesting that endogenous RGS proteins in ovarian cancer cells normally attenuate this LPA effect. These data establish RGS proteins as novel regulators of LPA signaling in ovarian cancer cells.  相似文献   

16.
A ligand-independent activator of heterotrimeric brain G-protein was partially purified from detergent-solubilized extracts of the neuroblastoma-glioma cell hybrid NG108-15. The G-protein activator (NG108-15 G-protein activator (NG-GPA)) increased [(35)S]guanosine 5'-O-(thiotriphosphate) ([(35)S]GTPgammaS) to purified brain G-protein in a magnesium-dependent manner and promoted GDP dissociation from Galpha(o). The NG-GPA also increased GTPgammaS binding to purified, recombinant Galpha(i2), Galpha(i3), and Galpha(o), but minimally altered nucleotide binding to purified transducin. The NG-GPA increased GTPgammaS binding to membrane-bound G-proteins and inhibited basal, forskolin- and hormone-stimulated adenylyl cyclase activity in DDT(1)-MF-2 cell membranes. In contrast to G-protein coupled receptor-mediated activation of heterotrimeric G-proteins in DDT(1)-MF-2 cell membrane preparations, the action of the NG-GPA was not altered by treatment of the cells with pertussis toxin. ADP-ribosylation of purified brain G-protein also failed to alter the increase in GTPgammaS binding elicited by the NG-GPA. Thus, the NG-GPA acts in a manner distinct from that of a G-protein coupled receptor and other recently described receptor-independent activators of G-protein signaling. These data indicate the presence of unexpected regulatory domains on G(i)/G(o) proteins and suggest the existence of pertussis toxin-insensitive modes of signal input to G(i)/G(o) signaling systems.  相似文献   

17.
The G protein specificity of multiple signaling pathways of the dopamine-D2S (short form) receptor was investigated in GH4ZR7 lactotroph cells. Activation of the dopamine-D2S receptor inhibited forskolin-induced cAMP production, reduced BayK8644- activated calcium influx, and blocked TRH-mediated p42/p44 MAPK phosphorylation. These actions were blocked by pretreatment with pertussis toxin (PTX), indicating mediation by G(i/o) proteins. D2S stimulation also decreased TRH-induced MAPK/ERK kinase phosphorylation. TRH induced c-Raf but not B-Raf activation, and the D2S receptor inhibited both TRH-induced c-Raf and basal B-Raf kinase activity. After PTX treatment, D2S receptor signaling was rescued in cells stably transfected with individual PTX-insensitive Galpha mutants. Inhibition of adenylyl cyclase was partly rescued by Galpha(i)2 or Galpha(i)3, but Galpha(o) alone completely reconstituted D2S-mediated inhibition of BayK8644-induced L-type calcium channel activation. Galpha(o) and Galpha(i)3 were the main components involved in D2S-mediated p42/44 MAPK inhibition. In cells transfected with the carboxyl-terminal domain of G protein receptor kinase to inhibit Gbetagamma signaling, only D2S-mediated inhibition of calcium influx was blocked, but not inhibition of adenylyl cyclase or MAPK. These results indicate that the dopamine-D2S receptor couples to distinct G(i/o) proteins, depending on the pathway addressed, and suggest a novel Galpha(i)3/Galpha(o)-dependent inhibition of MAPK mediated by c-Raf and B-Raf-dependent inhibition of MAPK/ERK kinase.  相似文献   

18.
Suppression of the expression of the heterotrimeric G-protein Galpha(i2) in vivo has been shown to provoke insulin resistance, whereas enhanced insulin signaling is observed when Galpha(i2) is overexpressed in vivo. The basis for Galpha(i2) regulation of insulin signaling was explored in transgenic mice with targeted expression of the GTPase-deficient, constitutively active Q205L Galpha(i2) in fat and skeletal muscle. Phosphorylation of insulin receptor and IRS-1 in response to insulin challenge in vivo was markedly amplified in fat and skeletal muscle expressing Q205L Galpha(i2). The expression and activity of the protein-tyrosine phosphatase 1B (PTP1B), but not protein-tyrosine phosphatases SHP-1, SHP-2, and LAR, were constitutively decreased in tissues expressing the Q205L Galpha(i2), providing a direct linkage between insulin signaling and Galpha(i2). The loss of PTP1B expression may explain, in part, the loss of PTP1B activity in the iQ205L transgenic mice. Activation of Galpha(i2) in mouse adipocytes with lysophosphatidic acid was shown to decrease PTP1B activity, whereas pertussis toxin inactivates Galpha(i2), blocks lysophosphatidic acid-stimulated inhibition of PTP1B activity, and blocks tonic suppression of PTP1B activity by Galpha(i2). Elevation of intracellular cAMP in fat cells is shown to increase PTP1B activity, whereas either depression of cAMP levels or direct activation of Galpha(i2) suppresses PTP1B. These data provide the first molecular basis for the interplay between Galpha(i2) and insulin signaling, i.e. activation of Galpha(i2) can suppress both the expression and activity of PTP1B in insulin-sensitive tissues.  相似文献   

19.
The stimulatory effect of vasoactive intestinal peptide (VIP) and analogues on [Ca2+]i has been investigated in chinese hamster ovary (CHO) cells stably transfected with the reporter gene aequorin, and expressing either the human VPAC1or VPAC2 receptor in absence or in presence of the Galpha16. In cells that were not transfected with Galpha16 and expressed a similar density of receptors, the VIP induced [Ca2+]i ncrease was higher in VPAC1 than in VPAC2 receptor expressing cells. In aequorin/Galpha16 cotransfected cells, the VIP-induced response was higher, reaching 70 to 80% of the maximal calcium response, obtained after digitonin treatment, in response to both VPAC1 and VPAC2 receptor stimulation.The results suggest that in hematopoietic cells, which express both VIP receptors and Galpha16, the signalling pathway of VIP could be mediated through both cyclic AMP and [Ca2+]i increase.  相似文献   

20.
Ugur O  Onaran HO  Jones TL 《Biochemistry》2003,42(9):2607-2615
Most heterotrimeric G-protein alpha subunits are posttranslationally modified by palmitoylation, a reversible process that is dynamically regulated. We analyzed the effects of Galpha(s) palmitoylation for its intracellular distribution and ability to couple to the beta-adrenergic receptor (betaAR) and stimulate adenylyl cyclase. Subcellular fractionation and immunofluorescence microscopy of stably transfected cyc(-) cells, which lack endogenous Galpha(s), showed that wild-type Galpha(s) was predominantly localized at the plasma membrane, but the mutant C3A-Galpha(s), which does not incorporate [(3)H]palmitate, was mostly associated with intracellular membranes. In agreement with this mislocalization, C3A-Galpha(s) showed neither isoproterenol- or GTPgammaS-stimulated adenylyl cyclase activation nor GTPgammaS-sensitive high-affinity agonist binding, all of which were present in the wild-type Galpha(s) expressing cells. Fusion of C3A-Galpha(s) with the betaAR [betaAR-(C3A)Galpha(s)] partially rescued its ability to induce high-affinity agonist binding and to stimulate adenylyl cyclase activity after isoproterenol or GTPgammaS treatment. In comparison to results with the WT-Galpha(s) and betaAR (betaAR-Galpha(s)) fusion protein, the betaAR-(C3A)Galpha(s) fusion protein was about half as efficient at coupling to the receptor and effector. Chemical depalmitoylation by hydroxylamine of membranes expressing betaAR-Galpha(s) reduced the high-affinity agonist binding and adenylyl cyclase activation to a similar degree as that observed in betaAR-(C3A)Galpha(s) expressing membranes. Altogether, these findings indicate that palmitoylation ensured proper localization of Galpha(s) and facilitated bimolecular interactions of Galpha(s) with the betaAR and adenylyl cyclase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号