首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Advances in development of transgenic pulse crops   总被引:3,自引:0,他引:3  
It is three decades since the first transgenic pulse crop has been developed. Todate, genetic transformation has been reported in all the major pulse crops like Vigna species, Cicer arietinum, Cajanus cajan, Phaseolus spp, Lupinus spp, Vicia spp and Pisum sativum, but transgenic pulse crops have not yet been commercially released. Despite the crucial role played by pulse crops in tropical agriculture, transgenic pulse crops have not moved out from laboratories to large farm lands compared to their counterparts - 'cereals' and the closely related leguminous oil crop - 'soybean'. The reason for lack of commercialization of transgenic pulse crops can be attributed to the difficulty in developing transgenics with reproducibility, which in turn is due to lack of competent totipotent cells for transformation, long periods required for developing transgenics and lack of coordinated research efforts by the scientific community and long term funding. With optimization of various factors which influence genetic transformation of pulse crops, it will be possible to develop transgenic plants in this important group of crop species with more precision and reproducibility. A translation of knowledge from information available in genomics and functional genomics in model legumes like Medicago truncatula and Lotus japonicus relating to factors which contribute to enhancing crop yield and ameliorate the negative consequences of biotic and abiotic stress factors may provide novel insights for genetic manipulation to improve the productivity of pulse crops.  相似文献   

2.
在秀丽隐杆线虫中首次发现双链RNA(dsRNA)能特异性地导致基因沉默(RNAi)现象后,人们开始大量地研究RNAi技术,并将其应用于功能基因的研究,来提高作物的抗性和改良遗传育种等。本文详细介绍了RNAi的技术原理,并且对RNAi技术与传统转基因技术的区别进行分析,阐述了该技术具有重要的生物学意义,以及在农作物害虫防治领域的占据独特优势。基于RNAi技术存在的潜在脱靶效应,从改良植物、靶标生物和生态环境的3个方面具体分析该技术可能存在的风险,为RNAi技术的风险评估提供参考。由于RNAi技术仍存在风险,为了维护生态多样性和保障人们的人身安全,应尽快建立起符合实际需求的安全性评价方法,本文针对RNAi转基因作物的环境安全和食用安全2个方面的评估方案进行概述。RNAi技术对减少害虫数量、提高水稻产量、降低种植成本以及减少化学农药污染、促进农业可持续发展来说具有重要意义,但该技术仍存在风险,需要进一步监管和研究,建立完善的生态评价系统,让RNAi技术在农业生产上发挥作用。  相似文献   

3.
Insect pests and phytophagous mites cause a considerable loss to tropical root crops in the field. Major pests include the sweet potato weevil Cylas puncticollis, cassava mealybug Phenacoccus manihoti, cassava green spider mite Mononychellus tanajoa, yam beetle Heteroligus meles, and taro hornworm Hippotion celerio. Field and laboratory evaluation experiments indicate that entomopathogenic microorganisms may be adequately used in the management of insect and mite pests in root crops. The highest promise probably lies with fungal pathogens (Beauvaria bassiana, Hirsutella thompsonii, Metarhizium anisopliae, Nomuraea rileyi, Entomophthora thaxteriana, and E. parvispora), but bacterial (Bacillus thuringiensis), microsporidian (Nosema locustae) nematode (Steinernema feltiae) and even viral (Baculoviruses) pathogens may be exploited in an integrated pest management programme of tropical root crop pests.  相似文献   

4.
Energy crops: current status and future prospects   总被引:3,自引:0,他引:3  
Energy crops currently contribute a relatively small proportion to the total energy produced from biomass each year, but the proportion is set to grow over the next few decades. This paper reviews the current status of energy crops and their conversion technologies, assesses their potential to contribute to global energy demand and climate mitigation over the next few decades, and examines the future prospects. Previous estimates have suggested a technical potential for energy crops of~400 EJ yr?1 by 2050. In a new analysis based on energy crop areas for each of the IPCC SRES scenarios in 2025 (as projected by the IMAGE 2.2 integrated assessment model), more conservative dry matter and energy yield estimates and an assessment of the impact on non‐CO2 greenhouse gases were used to estimate the realistically achievable potential for energy crops by 2025 to be between 2 and 22 EJ yr?1, which will offset~100–2070 Mt CO2‐eq. yr?1. These results suggest that additional production of energy crops alone is not sufficient to reduce emissions to meet a 550 μmol mol?1 atmospheric CO2 stabilization trajectory, but is sufficient to form an important component in a portfolio of climate mitigation measures, as well as to provide a significant sustainable energy resource to displace fossil fuel resources. Realizing the potential of energy crops will necessitate optimizing the dry matter and energy yield of these crops per area of land through the latest biotechnological routes, with or without the need for genetic modification. In future, the co‐benefits of bioenergy production will need to be optimized and methods will need to be developed to extract and refine high‐value products from the feedstock before it is used for energy production.  相似文献   

5.
毛新志  李俊 《生命科学》2012,(11):1330-1333
转基因作物的产业化作为当前生命伦理学的重要问题之一日益受到我国学术界、政府和广大公众的关注。转基因作物产业化不仅关涉到我国13亿人的吃饭问题,也与我国公众的身心健康、基本权利密切相关。转基因作物产业化的生命伦理意蕴主要体现在:转基因作物产业化的基础是确保公众健康与生命安全,关键是尊重公众权利,核心是促进社会公正。  相似文献   

6.
转基因抗虫作物对非靶标昆虫的影响   总被引:15,自引:3,他引:15  
转基因抗虫作物自 1996年被批准商业化种植以来 ,它的抗虫性和经济效益已得到了普遍肯定 ,同时 ,转基因抗虫作物对非靶标生物的影响 ,如转基因抗虫作物的长期种植 ,是否会导致次要害虫上升为主要害虫 ,是否会影响有益昆虫 ,包括重要经济昆虫、捕食性和寄生性天敌以及重要蝶类的种类及种群数量 ,已成为转基因抗虫作物生态风险评估的重要内容。一些研究结果表明 ,转基因抗虫作物在对靶标害虫有效控制的同时 ,一些对杀虫蛋白不敏感的非靶标害虫有加重危害的趋势 ,由于种植转基因抗虫作物 ,减少了化学农药的使用 ,客观上也使非靶标害虫种群数量上升 ,这对转基因抗虫作物害虫综合治理提出了新的要求。靶标害虫数量的减少直接影响了害虫天敌种群数量 ,靶标害虫取食转基因抗虫作物后发育迟缓 ,也间接影响了天敌昆虫的生长发育 ,转基因抗虫作物的花粉或花蜜是一些重要经济昆虫如蜜蜂、熊蜂和一些寄生蜂 ,甚至捕食性天敌的食物来源 ,或花粉飘落到一些鳞翅目昆虫如家蚕或重要蝶类昆虫的寄主植物上 ,直接或间接对这些昆虫造成一定影响。目前大多数研究表明转基因抗虫作物对非靶标昆虫 ,特别是对有益昆虫没有明显的不利影响 ,也有研究报道认为对某些有益昆虫有一定的不良影响。这为深入开展转基因抗虫作物的生态安全  相似文献   

7.
转基因作物对土壤生态系统的影响   总被引:40,自引:7,他引:40  
综述了转基因作物对土壤生态系统影响的研究进展,包括转基因作物中的外源基因在土壤中的活性,转基因作物对土壤微生物区系有土壤酶活性的影响以及转基因作物对土壤动物区系的影响,转基因作物对土壤生态系统的影响与导入的外源基因特性和土壤类型相关,转基因产物进入土壤后引起的土壤生物变化的程度依赖于许多因素,最重要的决定因素是生态系统的复杂性和稳定性,评价不同转基因作物对土壤生态系统的影响具有重要的生态学意义,急需发展和完善以分子生物学为主的风险评价方法。  相似文献   

8.
Calling the tunes on transgenic crops: the case for regulatory harmony   总被引:1,自引:0,他引:1  
Genetically modified (GM) crops are now grown commercially in 23 countries, with another 29 granting approval for import and release into the environment. Despite the socio-economic and environmental benefits of the technology, further development is being hampered by differences in national regulatory frameworks relating to research, biosafety, and to the trade and use of GM crops. The biosafety regulations in different countries are based on five main international instruments that influence the development of national biosafety systems in terms of field trial permit requirements, risk assessment criteria, labeling, traceability, transparency, public awareness, post-monitoring and import regulations. The global harmonization of data collection, testing procedures and information exchange would help to remove artificial trade barriers, expedite the adoption of GM crops, foster technology transfer and protect developing countries from exploitation, instilling confidence and bringing the benefits of GM products to the consumer.  相似文献   

9.
转基因作物和转基因技术的发展与未来   总被引:8,自引:0,他引:8  
转基因作物的安全性问题在20世纪末引起全球性的争论,一些人反对转基因植物和转基因技术.本文概述了转基因植物产生的必然性、应用现状、发展趋势、引起争论的主要原因以及必须建立的安全性保障,阐明对转基因作物和技术应采取的科学态度.  相似文献   

10.
Substantial equivalence has become established as a foundation concept in the safety evaluation of transgenic crops. In the case of a food and feed crop, no single variety is considered the standard for safety or nutrition, so the substantial equivalence of transgenic crops is investigated relative to the array of commercial crop varieties with a history of safe consumption. Although used extensively in clinical medicine to compare new generic drugs with brand-name drugs, equivalence limits are shown to be a poor model for comparing transgenic crops with an array of reference crop varieties. We suggest an alternate model, also analogous to that used in clinical medicine, where reference intervals are constructed for a healthy heterogeneous population. Specifically, we advocate the use of distribution-free tolerance intervals calculated across a large amount of publicly available compositional data such as is found in the International Life Sciences Institute Crop Composition Database.  相似文献   

11.
Tabashnik BE  Gould F  Carrière Y 《Journal of evolutionary biology》2004,17(4):904-12; discussion 913-8
The refuge strategy is used widely for delaying evolution of insect resistance to transgenic crops that produce Bacillus thuringiensis (Bt) toxins. Farmers grow refuges of host plants that do not produce Bt toxins to promote survival of susceptible pests. Many modelling studies predict that refuges will delay resistance longest if alleles conferring resistance are rare, most resistant adults mate with susceptible adults, and Bt plants have sufficiently high toxin concentration to kill heterozygous progeny from such matings. In contrast, based on their model of the cotton pest Heliothis virescens, Vacher et al. (Journal of Evolutionary Biology, 16, 2003, 378) concluded that low rather than high toxin doses would delay resistance most effectively. We demonstrate here that their conclusion arises from invalid assumptions about larval concentration-mortality responses and dominance of resistance. Incorporation of bioassay data from H. virescens and another key cotton pest (Pectinophora gossypiella) into a population genetic model shows that toxin concentrations high enough to kill all or nearly all heterozygotes should delay resistance longer than lower concentrations.  相似文献   

12.
Transgenic plants that are being developed for commercial cultivation must be tested under field conditions to monitor their effects on surrounding wildlife and conventional crops. Developers also use this opportunity to evaluate the performance of transgenic crops in a typical environment, although this is a matter of commercial necessity rather than regulatory compliance. Most countries have adapted existing regulations or developed new ones to deal specifically with transgenic crops and their commodities. The European Union (EU) is renowned, or perhaps notorious, for having the broadest and most stringent regulations governing such field trials in the world. This reflects its nominal adherence to the precautionary approach, which assumes all transgenic crops carry an inherent risk. Therefore, field trials in the EU need to demonstrate that the risk associated with deploying a transgenic crop has been reduced to the level where it is regarded as acceptable within the narrowly defined limits of the regulations developed and enforced (albeit inconsistently) by national and regional governments, that is, that there is no greater risk than growing an equivalent conventional crop. The involvement of national and regional competent authorities in the decision-making process can add multiple layers of bureaucracy to an already-intricate process. In this review, we use country-based case studies to show how the EU, national and regional regulations are implemented, and we propose strategies that could increase the efficiency of regulation without burdening developers with further unnecessary bureaucracy.  相似文献   

13.
Bt基因是目前世界上应用最为广泛的抗虫基因,已经被转入多种作物中。其中,棉花、玉米、马铃薯等转Bt基因抗虫作物已经商品化生产,创造了可观的经济效益。结合作者的资料收集和研究结果,综述了Bt基因以及转Bt基因抗虫作物的培育现状,同时对提高Bt蛋白杀虫活力的方法和Bt基因聚合策略的利用进行了深入的探讨。  相似文献   

14.
The adoption of insect-resistant transgenic crops has been increasing annually at double-digit rates since the commercial release of first-generation maize and cotton expressing a single modified Bacillus thuringiensis toxin (Bt) nine years ago. Studies have shown that these Bt crops can be successfully deployed in agriculture, which has led to a decrease in pesticide usage, and that they are environmentally benign. However, the sustainability and durability of pest resistance continues to be discussed. In this review, we focus on the science that underpins second- and third-generation insect-resistant transgenic plants and examine the appropriateness and relevance of models that are currently being used to determine deployment strategies to maximize sustainability and durability. We also review strategies that are being developed for novel approaches to transgenic insect pest control.  相似文献   

15.
The application of recombinant DNA technology has resulted in many insect-resistant varieties by genetic engineering (GE). Crops expressing Cry toxins derived from Bacillus thuringiensis (Bt) have been planted worldwide, and are an effective tool for pest control. However, one ecological concern regarding the potential effects of insect-resistant GE plants on non-target organisms (NTOs) has been continually debated. In the present study, we briefly summarize the data regarding the development and commercial use of transgenic Bt varieties, elaborate on the procedure and methods for assessing the non-target effects of insect-resistant GE plants, and synthetically analyze the related research results, mostly those published between 2005 and 2010. A mass of laboratory and field studies have shown that the currently available Bt crops have no direct detrimental effects on NTOs due to their narrow spectrum of activity, and Bt crops are increasing the abundance of some beneficial insects and improving the natural control of specific pests. The use of Bt crops, such as Bt maize and Bt cotton, results in significant reductions of insecticide application and clear benefits on the environment and farmer health. Consequently, Bt crops can be a useful component of integrated pest management systems to protect the crop from targeted pests.  相似文献   

16.
农田生物多样性是生态系统生物多样性的重要组成部分,但较少受到关注.近50年来,由于农业活动引起的环境污染、生境破碎和单一化种植等严重威胁着农田生物多样性.为了了解各因素对农田生物多样性的影响程度,优化农田管理措施,以提高农作物产量并降低环境影响,本文综述了种植方式、地膜覆盖、农药和化肥使用等农业活动及转基因作物对我国农田生物多样性的影响.农药和化肥的过度使用对农田生物多样性的影响最大;而转基因作物对农田生物多样性的影响受诸多因素影响,如携带的转基因性状等.需要加强转基因作物生态环境影响评价研究,特别是对农田生物多样性的潜在影响.农业生产活动应当与农田生物多样性保护密切结合,不仅有利于提高农作物产量,同时也可减少对环境的负面影响.  相似文献   

17.
Protein phosphorylation is a major post-translational modification, regulating protein function, stability, and subcellular localization. To date, annotated phosphorylation data are available mainly for model organisms and humans, despite the economic importance of crop species and their large kinomes. Our understanding of the phospho-regulation of flowering in relation to the biology and interaction between the pollen and pistil is still significantly lagging, limiting our knowledge on kinase signalling and its potential applications to crop production. To address this gap, we bring together relevant literature that were previously disconnected to present an overview of the roles of phosphoproteomic signalling pathways in modulating molecular and cellular regulation within specific tissues at different morphological stages of flowering. This review is intended to stimulate research, with the potential to increase crop productivity by providing a platform for novel molecular tools.  相似文献   

18.
Schubert D 《Nature biotechnology》2005,23(7):785-7; author reply 787-9
  相似文献   

19.
The advances of modern plant technologies, especially genetically modified crops, are considered to be a substantial benefit to agriculture and society. However, so‐called transgene escape remains and is of environmental and regulatory concern. Genetic use restriction technologies (GURTs) provide a possible solution to prevent transgene dispersal. Although GURTs were originally developed as a way for intellectual property protection (IPP), we believe their maximum benefit could be in the prevention of gene flow, that is, bioconfinement. This review describes the underlying signal transduction and components necessary to implement any GURT system. Furthermore, we review the similarities and differences between IPP‐ and bioconfinement‐oriented GURTs, discuss the GURTs’ design for impeding transgene escape and summarize recent advances. Lastly, we go beyond the state of the science to speculate on regulatory and ecological effects of implementing GURTs for bioconfinement.  相似文献   

20.
Chloroplast genetic engineering offers several advantages, including high levels of transgene expression, transgene containment via maternal inheritance and multigene engineering in a single transformation event. Entamoeba histolytica infects 50 million people, causing about 100 000 deaths annually, but there is no approved vaccine against this pathogen. LecA , a potential target for blocking amoebiasis, was expressed for the first time in transgenic plants. Stable transgene integration into chloroplast genomes and homoplasmy were confirmed by polymerase chain reaction and Southern blot analyses. LecA expression was evaluated by Western blots and quantified by enzyme-linked immunosorbent assay (up to 6.3% of total soluble protein or 2.3 mg LecA/g leaf tissue). Subcutaneous immunization of mice with crude extract of transgenic leaves resulted in higher immunoglobulin G titres (up to 1 : 10 000) than in previous reports. An average yield of 24 mg of LecA per plant should produce 29 million doses of vaccine antigen per acre of transgenic plants. Such high levels of expression and immunogenicity should facilitate the development of a less expensive amoebiasis vaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号