首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The resonance Raman spectrum of protein B2 of ribonucleotide reductase from Escherichia coli shows several features to its oxo-bridged binuclear iron center. A peak at 492 cm-1 is assigned to the symmetric stretch of the Fe-O-Fe moiety on the basis of its 13-cm-1 shift to lower energy upon 18O substitution. The 18O species shows an additional peak at 731 cm-1, which is a good candidate for the asymmetric stretch of the Fe-O-Fe moiety. Its exact location in the 16O species is obscured by the presence of a protein tryptophan vibration at 758 cm-1. A third resonance-enhanced peak at 598 cm-1 is identified as an Fe-OH vibration on the basis of its 24-cm-1 shift to lower energy in H2 18O, its 2-cm-1 shift to lower energy in D2O, and its pH-dependent intensity. A hydrogen-bonded mu-oxo bridge similar to that in hemerythrin is suggested by the unusually low frequency for the Fe-O-Fe symmetric stretch and the 3-cm-1 shift to higher energy of vs(Fe-O-Fe) in D2O. From the oxygen isotope dependence of vs(Fe-O-Fe), an Fe-O-Fe angle of 138 degrees can be calculated. This small angle suggests that the iron center consists of a tribridged core as in hemerythrin. A model for the binuclear iron center of ribonucleotide reductase is presented in which the hydroxide ligand sites provide an explanation for the half-of-sites reactivity of the enzyme.  相似文献   

2.
Bovine rhodopsin was bleached and regenerated with 7,9-dicis-retinal to form 7,9-dicis-rhodopsin, which was purified on a concanavalin A affinity column. The absorption maximum of the 7,9-dicis pigment is 453 nm, giving an opsin shift of 1600 cm-1 compared to 2500 cm-1 for 11-cis-rhodopsin and 2400 cm-1 for 9-cis-rhodopsin. Rapid-flow resonance Raman spectra have been obtained of 7,9-dicis-rhodopsin in H2O and D2O at room temperature. The shift of the 1654-cm-1 C = N stretch to 1627 cm-1 in D2O demonstrates that the Schiff base nitrogen is protonated. The absence of any shift in the 1201-cm-1 mode, which is assigned as the C14-C15 stretch, or of any other C-C stretching modes in D2O indicates that the Schiff base C = N configuration is trans (anti). Assuming that the cyclohexenyl ring binds with the same orientation in 7,9-dicis-, 9-cis-, and 11-cis-rhodopsins, the presence of two cis bonds requires that the N-H bond of the 7,9-dicis chromophore points in the opposite direction from that in the 9-cis or 11-cis pigment. However, the Schiff base C = NH+ stretching frequency and its D2O shift in 7,9-dicis-rhodopsin are very similar to those in 11-cis- and 9-cis-rhodopsin, indicating that the Schiff base electrostatic/hydrogen-bonding environments are effectively the same. The C = N trans (anti) Schiff base geometry of 7,9-dicis-rhodopsin and the insensitivity of its Schiff base vibrational properties to orientation are rationalized by examining the binding site specificity with molecular modeling.  相似文献   

3.
We have examined the Fe(2+)-N epsilon (HisF8) complex in hemoglobin A (HbA) by measuring the band profile of its Raman-active nu Fe-His stretching mode at pH 6.4, 7.0, and 8.0 using the 441-nm line of a HeCd laser. A line shape analysis revealed that the band can be decomposed into five different sublines at omega 1 = 195 cm-1, omega 2 = 203 cm-1, omega 3 = 212 cm-1, omega 4 = 218 cm-1, and omega 5 = 226 cm-1. To identify these to the contributions from the different subunits we have reanalyzed the nu Fe-His band of the HbA hybrids alpha(Fe)2 beta(Co)2 and alpha(Co)2 beta(Fe)2 reported earlier by Rousseau and Friedman (D. Rousseau and J. M. Friedman. 1988. In Biological Application on Raman Spectroscopy. T. G. Spiro, editor, 133-216). Moreover we have reanalyzed other Raman bands from the literature, namely the nu Fe-His band of the isolated hemoglobin subunits alpha SH- and beta SH-HbA, various hemoglobin mutants (i.e., Hb(TyrC7 alpha-->Phe), Hb(TyrC7 alpha-->His), Hb M-Boston and Hb M-Iwate), N-ethylmaleimide-des(Arg141 alpha) hemoglobin (NES-des(Arg141 alpha)HbA) and photolyzed carbonmonoxide hemoglobin (Hb*CO) measured 25 ps and 10 ns after photolysis. These molecules are known to exist in different quaternary states. All bands can be decomposed into a set of sublines exhibiting frequencies which are nearly identical to those found for deoxyhemoglobin A. Additional sublines were found to contribute to the nu Fe-His band of NES-des(Arg141 alpha) HbA and the Hb*CO species. The peak frequencies of the bands are determined by the most intensive sublines. Moreover we have measured the nu Fe-His band of deoxyHbA at 10 K in an aqueous solution and in a 80% glycerol/water mixture. Its subline composition at this temperature depends on the solvent and parallels that of more R-like hemoglobin derivatives. We have also measured the optical charge transfer band III of deoxyHbA at room temperature and found, that at least three subbands are required to fit its asymmetric band shape. This corroborates the findings on the nu Fe-His band in that it is indicative of a heterogeneity of the Fe(2+)-N epsilon(HisF8) bond. Finally we measured the nu Fe-His band of horse heart deoxyMb at different temperatures and decomposed it into three different sublines. In accordance with what was obtained for HbA their intensities rather than their frequencies are temperature-dependent.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Resonance Raman (RR) spectra were obtained in H2O or D2O solution for the purple intermediates of D-amino acid oxidase (DAO) with isotopically labeled substrates, i.e., [1-13C]-, [2-13C]-, [3-13C]-, [15N]-, and [3,3,3-D3]alanine; [carboxyl-13C]- and [15N]proline. RR spectra were also measured for the intermediates of DAO reconstituted with isotopically labeled FAD's, i.e., [4a-13C]-, [4,10a-13C2]-, [2-13C]-, [5-15N]-, and [1,3-15N2]FAD in D2O. The isotopic shift of the 1692 cm-1 band upon [15N]- or [2-13C]-substitution of alanine indicates that the band is due to the C = N stretching mode of an imino acid derived from D-alanine, i.e., alpha-iminopropionate. The 1658 cm-1 band with D-proline was also assigned to the C = N stretching mode of an imino acid derived from D-proline, i.e., delta 1-pyrrolidine-2-carboxylate, since the band shifts to 1633 cm-1 upon [15N]-substitution and its stretching frequency is generally found in this frequency region. Since the band shifts to low frequency in D2O, the imino acid should have a protonated imino group such as the C = N+1H form. The intense band at 1363 cm-1 with D-alanine was assigned to a mixing of the CO2- symmetric stretching and CH3 symmetric deformation modes in alpha-iminopropionate, based on the isotope effects. The 1359 cm-1 band with D-proline has probably contributions of CO2- symmetric stretching and CH2 wagging, considering the isotope effects with [carboxyl-13C]proline. The 1359 cm-1 band with D-proline was split into 1371 cm-1 and 1334 cm-1 bands in D2O. As this splitting of the 1359 cm-1 band with D-proline in D2O can not be interpreted only by the replacement of the C = N+1-H proton by deuterium, the carboxylate of the imino acid probably interacts with the enzyme through some proton(s) exchangeable by deuterium(s) in D2O. The bands around 1605 cm-1 which shift upon [4a-13C]- and [4,10a-13C2]-labeling of FAD are derived from a fully reduced flavin, because the isotopic shifts of the band are very different from those of the bands of oxidized or semiquinoid flavin observed near 1605 cm-1.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
G Y Liu  C A Grygon  T G Spiro 《Biochemistry》1989,28(12):5046-5050
Ultraviolet resonance Raman spectra are reported for cytochrome c (cyt c) in FeII and FeIII oxidation states at low (0.005 M) and high (0.9-1.5 M) ionic strength. With 200-nm excitation the amide band intensities are shown to remain constant, establishing that redox state and ionic strength have no influence on the alpha-helical content. The tyrosine 830/850-cm-1 doublet, however, shows a loss in 830-cm-1 intensity at I = 0.005 M for the FeIII protein, suggesting a weakening or a loss of H-bonding from an internal tyrosine, probably Tyr-48, which is H-bonded to a heme propionate group in cyt c crystals. Excitation profiles of tryptophan peak at approximately 229 nm for both FeII and FeIII forms of cyt c, but at approximately 218 nm for aqueous tryptophan. The approximately 2200-cm-1 red shift of the resonant electronic transition is attributed to the Trp-59 residue being buried and H-bonded. Consistent with this Trp environment, the H-bond-sensitive 877-cm-1 Trp band is strong and sharp, and the 1357/1341-cm-1 doublet has a large intensity ratio, approximately 1.5, for both FeII and FeIII cyt c. The 877-cm-1-band frequency shifts to 860 cm-1 when the Trp indole proton is replaced by a deuteron. This band was used to show that Trp H/D exchange in D2O is much faster for FeIII than FeII cyt c. The half-time for exchange at room temperature is estimated to be approximately 30 and approximately 5 h, respectively, for FeII and FeIII when examined at I = 0.005.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Structure of DNA hydration shells studied by Raman spectroscopy   总被引:1,自引:0,他引:1  
N J Tao  S M Lindsay  A Rupprecht 《Biopolymers》1989,28(5):1019-1030
We have used Raman scattering to study the water O-H stretching modes at approximately 3450 and approximately 3220 cm-1 in DNA films as a function of relative humidity (r.h.). The intensity of the 3220-cm-1 band vanishes as the r.h. is decreased from 98% to around 80%, which indicates that the hydrogen-bond network of water is disrupted in the primary hydration shell (which therefore cannot have an "ice-like" structure). The number of water molecules in the primary hydration shell was determined from the intensity of the approximately 3200-cm-1 band as about 30 water molecules per nucleotide pair. The approximately 3400-cm-1 O-H stretch band was used for determining the total water content, and this band persists at 0% r.h., implying that 5-6 tightly bound water molecules per nucleotide pair remain. The frequency of the approximately 3400-cm-1 O-H stretch mode is lower by 30 to 45 cm-1 in the primary hydration shell compared to free water. The water content as a function of r.h. obtained from these experiments agrees with gravimetric measurements. The disappearance of the approximately 3200-cm-1 band and the shift of the approximately 3400-cm-1 O-H stretch band provide a reliable way of measuring the hydration number of DNA.  相似文献   

7.
Resonance Raman (RR) spectra of the "rapid" and "slow" forms (Baker et al., 1987) of resting cytochrome oxidase obtained with Soret excitation at 413.1 nm are reported. There are a number of conspicuous differences between the two forms in the high-frequency region of the RR spectrum which involve changes in Raman intensity arising from a blue shift in the Soret maximum of cytochrome a3 upon conversion to the slow form. In the low-frequency region a peak present at 223 cm-1 in the rapid form shifts to 220 cm-1 in the slow form; this peak is assigned as the cytochrome a3 Fe(III)-N(His-Im) stretch. The slow form of the enzyme possesses greater intensity in RR peaks near 1620 cm-1 which have been previously attributed by others to partial photoreduction of the enzyme. We have quantitated the amount of laser-induced photoreduction in these RR spectra by comparison with the spectra of mixed-valence derivatives of the enzyme and find that these 1620-cm-1 features are unreliable indicators of photoreduction. The spectra of the fast- and slow-reacting species in H2O and D2O have been compared. The fast-reacting form exhibits a 4-cm-1 shift, from 223 to 219 cm-1, upon transferring to D2O in a peak which we assign as the cytochrome a3 Fe(III)-N(His-Im) stretch. There is a parallel shift in the feature at 1651 cm-1 due to the C = O stretch of the formyl group of cytochrome a. These deuterium shifts are not observed in the slow form.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Native ribonucleotide reductase from Escherichia coli exhibits a resonance-enhanced Raman mode at 1498 cm-1 that is characteristic of a tyrosyl radical. The Raman frequency as well as the absorption maximum at 410 nm identifies the radical as being in a deprotonated state. The B2 subunit of ribonucleotide reductase shows an additional resonance Raman mode at 493 cm-1 that has been assigned to the symmetric stretch of an Fe-O-Fe moiety. When samples of active B2 or metB2 are exposed to a tightly focused laser beam at 406.7 nm, there is a loss of intensity at 493 cm-1 and the appearance of a new peak at 595 cm-1. Although the 595-cm-1 feature was previously assigned to an Fe-OH vibration on the basis of its 23-cm-1 shift to lower energy in H2(18)O and the apparent dependence of its intensity on pH [Sj?berg, B. M., Loehr, T. M., & Sanders-Loehr, J. (1987) Biochemistry 26, 4242], the present studies indicate that the intensity of this mode is dependent primarily on input laser power. The peak at 595 cm-1 is more plausibly assigned to a new vs(Fe-O-Fe) mode in view of its lack of the deuterium isotope dependence expected for an Fe-OH mode and its resonant scattering cross section which is comparable to that of the 493-cm-1 mode. This new species has a calculated Fe-O-Fe angle of approximately 113 degrees compared to approximately 138 degrees calculated for the Fe-O-Fe unit in unmodified protein B2. One possible explanation for the photoinduced vibrational mode is that a bridging solvent molecule has been inserted in place of a bridging carboxylate.  相似文献   

9.
Resonance Raman spectra of the ferrous CO complex of cytochrome P-450cam have been observed both in its camphor-bound and free states. Upon excitation at 457.9 nm, near the absorption maximum of the Soret band, the ferrous CO complex of the camphor-bound enzyme showed an anomalously intense Raman line at 481 cm-1 besides the strong Raman lines at 1366 and 674 cm-1 for the porphyrin vibrations. The Raman line at 481 cm-1 (of the 12C16O complex) shifted to 478 cm-1 upon the substitution by 13C16O and to 473 cm-1 by 12C18O without any detectable shift in porphyrin Raman lines. This shows that the line at 481 cm-1 is assignable to Fe-CO stretching vibration. By the excitation at 457.9 nm, a weak Raman line was also observed at 558 cm-1, which was assigned to the Fe-C-O bending vibration, because it was found to shift by -14 cm-1 on 13C16O substitution while only -3 cm-1 on 12C18O substitution. These stretching and bending vibrations of the Fe-CO bond were not detected with the excitation at 413.1 nm, though the porphyrin Raman lines at 1366 and 674 cm-1 were clearly observed. When the substrate, camphor, was removed from the enzyme, the Fe-CO stretching vibration was found to shift to 464 cm-1 from 481 cm-1, while no detectable changes were found in porphyrin Raman lines. This means that the bound substrate interacts predominantly with the Fe-CO portion of the enzyme molecule.  相似文献   

10.
Resonance Raman spectra of ferrous and ferric cytochrome c peroxidase and Compound ES and their pH dependences were investigated in resonance with Soret band. The Fe(IV) = O stretching Raman line of Compound ES was assigned to a broad band around 767 cm-1, which was shifted to 727 cm-1 upon 18O substitution. The 18O-isotopic frequency shift was recognized for Compound ES derived in H218O, but not in H216O. This clearly indicated occurrence of an oxygen exchange between the Fe(IV) = O heme and bulk water. The Fe(IV) = O stretching Raman band was definitely more intense and of higher frequency in D2O than in H2O as in Compound II of horseradish peroxidase, but in contrast with this its frequency was unaltered between pH 4 and 11. The Fe(II)-histidine stretching Raman line was assigned on the basis of the frequency shift observed for 54Fe isotopic substitution. From the intensity analysis of this band, the pKa of the heme-linked ionization of ferrocytochrome c peroxidase was determined to be 7.3. The Raman spectrum of ferricytochrome c peroxidase strongly suggested that the heme is placed under an equilibrium between the 5- and 6-coordinate high-spin structures. At neutral pH it is biased to the 5-coordinate structure, but at the acidic side of the transition of pKa = 5.5 the 6-coordinate heme becomes dominant. F- was bound to the heme iron at pH 6, but Cl- was bound only at acidic pH. Acidification by HNO3, H2SO4, CH3COOH, HBr, or HI resulted in somewhat different populations of the 5- and 6-coordinate forms when they were compared at pH 4.3. Accordingly, it is inferred that a water molecule which is suggested to occupy the sixth coordination position of the heme iron is not coordinated to the heme iron at pH 6 but that protonation of the pKa = 5.5 residue induces an appreciable structural change, allowing the coordination of the water molecule to the heme iron.  相似文献   

11.
Resonance Raman spectra are reported for the type 1 Cu site of fungal laccase at 295 and 77 K. The low-temperature spectra show enhanced resolution and reveal several weak bands not previously observed, as well as overtone and combination bands associated with the strong approximately equal to 400 cm-1 fundamentals. A novel low-temperature Raman difference technique has been used to obtain 63/65Cu and 1/2H2O isotope shifts. The strong band at 428 cm-1, and the moderate intensity bands at 408 and 387 cm-1 show small (under 0.6 cm-1 63/65Cu isotope shifts. The aggregate shift is substantially less than that expected for an isolated Cu-S(cys) stretch, implying a high degree of mixing of this coordinate with internal modes of the ligands. 1/2H2O shifts of 1.1 and approximately equal to 0.3 cm-1 are observed for the 387 and 428 cm-1 bands. The isotope shift patterns are quite similar for fungal and tree laccase, as are the frequencies of the dominant bands, indicating that the large differences in relative intensity are primarily associated with differences in the excited state potential. The frequency and isotope shift patterns are appreciably different, however, from those observed for azurin and stellacyanin. In contrast to the other 'blue' Cu proteins, fungal laccase shows no moderate intensity band near 270 cm-1 which can be associated with Cu-imidazole stretching; weak features are seen in this region, but the intensities are too low to determine their 1/2H2O sensitivity. The C-S stretching mode of fungal laccase is identified at 737 cm-1, shifting to 741 cm-1 at 77 K. It is about 10 cm-1 lower than for most 'blue' Cu proteins, and the difference is suggested to reflect smaller kinematic coupling between the C-S and Cu-S coordinates, associated with a smaller Cu-S-C angle. Combination modes of the approx. 400 cm-1 fundamentals are substantially stronger, relative to the overtones, than is predicted by first-order scattering theory, implying changes in the excited-state normal modes (Dushinsky effect) associated with force constant alterations.  相似文献   

12.
Resonance Raman and visible absorption spectra were simultaneously observed for cytochrome oxidase reaction intermediates at 5 degrees C by using the artificial cardiovascular system (Ogura, T., Yoshikawa, S., and Kitagawa, T. (1989) Biochemistry 28, 8022-8027) and a device for Raman/absorption simultaneous measurements (Ogura, T., and Kitagawa, T. (1988) Rev. Sci. Instrum. 59, 1316-1320). The Fe4+ = O stretching (nu FeO) Raman band was observed at 788 cm-1 for compound B for the first time. This band showed the 16O/18O isotopic frequency shift (delta nu FeO) by 40 cm-1, in agreement with that for horseradish peroxidase compound II (nu FeO = 787 cm-1 and delta nu FeO = 34 cm-1). In the time region when the FeII-O2 stretching band for compound A and the nu FeO band for compound B were coexistent, a Raman band assignable to the Fe3+-O-O-Cu2+ linkage was not recognized.  相似文献   

13.
Raman spectroscopic study of left-handed Z-RNA   总被引:3,自引:0,他引:3  
The solvent conditions that induce the formation of a left-handed Z form of poly[r(G-C)] have been extended to include 6.5 M NaBr at 35 degrees C and 3.8 M MgCl2 at room temperature. The analysis of the A----Z transition in RNA by circular dichroism (CD), 1H and 31P NMR, and Raman spectroscopy shows that two distinct forms of left-handed RNA exist. The ZR-RNA structure forms in high concentrations of NaBr and NaClO4 and exhibits a unique CD signature. ZD-RNA is found in concentrated MgCl2 and has a CD signature similar to the Z form of poly[d(G-C)]. The loss of Raman intensity of the 813-cm-1 A-form marker band in both the A----ZR-RNA and A----ZD-RNA transitions parallels the loss of intensity at 835 cm-1 in the B----Z transition of DNA. A guanine vibration that is sensitive to the glycosyl torsion angle shifts from 671 cm-1 in A-RNA to 641 cm-1 in both ZD- and ZR-RNA, similar to the B----Z transition in DNA in which this band shifts from 682 to 625 cm-1. Significant differences in the glycosyl angle and sugar pucker between Z-DNA and Z-RNA are suggested by the 16-cm-1 difference in the position of this band. The Raman evidence for structural difference between ZD- and ZR-RNA comes from two groups of bands: First, Raman intensities between 1180 and 1600 cm-1 of ZD-RNA differ from those for ZR-RNA, corroborating the CD evidence for differences in base-stacking geometry. Second, the phosphodiester stretching bands near 815 cm-1 provide evidence of differences in backbone geometry between ZD- and ZR-RNA.  相似文献   

14.
Resonance Raman spectroscopy has been employed to detect the iron-proximal histidine stretching mode in deoxyhemoglobins from insect larvae of Chironomus thummi thummi (CTT). With the excitation of 413.1 nm, we observe a sharp and intense line in the 220-224 cm-1 region. The assignment of this line to the Fe-N epsilon (His) stretching mode was made on the basis of a 3-cm-1 shift upon 57Fe/54Fe isotope substitution. The Fe-N epsilon (His) vibration is used to monitor the possible changes in the Fe-N epsilon (His) bond strength (hence bone length) in the deoxy state of the monomeric (CTT I, III, and IV) and dimeric (CTT II) insect hemoglobins. As these hemoglobins differ in O2 affinity, off-rate and on-rate constants, and in the Bohr effect, they are excellent model systems for investigating the mechanism of protein control of the heme reactivity. Some of these hemoglobins (CTT III, IV, and II) are allosteric, exhibiting two interconvertible conformational states with high and low O2 affinity at high and low pH, respectively. The Fe-N epsilon (His) stretching frequency does not correlate with the O2 affinity, the on-rate and the off-rate constants for different hemoglobins, for different conformational states, and for modified hemoglobins with different heme peripheral groups. This vibrational mode is insensitive to deuteration of the heme vinyl groups. It is important to note that the Fe-N epsilon (His) bonds in the high pH (high-affinity) and the low pH (low-affinity) states are identical. This implies that the O2 molecule, prior to binding, "sees" identical binding sites. Thus, the difference in free energy changes upon O2 binding is manifested only in the oxy form.  相似文献   

15.
Heme-linked ionizations of the acidic and basic isoenzymes of ferrous horseradish peroxidase influence both the Fe-histidine stretching mode and the oxidation-state marker line. First, Raman difference spectroscopy of horseradish peroxidase confirms earlier work showing that v(Fe-His) undergoes a transition in frequency with a pK that is characteristic of the enzyme's functional properties. The Fe-histidine mode shifts by about 2.5-3.0 cm-1 for horseradish peroxidase C and by about 6 cm-1 for the acidic isoenzyme. Further, we find that the oxidation-state marker line v4 also exhibits a transition with the same pK. For horseradish peroxidase C the shift in v4 is 0.4 cm-1 and the pK is 7.1 +/- .5, in good agreement with the pK found by other techniques. Shifts in these two Raman lines are correlated for the pK 7.1 transition and attain their highest frequency at low pH. The correlation is in marked contrast with R/T shifts in hemoglobins for which delta v(Fe-His) and delta v4 are also linearly related but shift in opposite directions. The shift in v4 suggests a mechanism for pH control of catalytic function based on ring pi-charge density effects on the energy of charge-depleted high oxidation-state intermediates. A second transition in v4 (delta v4 = 2.6 cm-1) with a pK of 10.0 is interpreted in terms of a change in ligation and spin state.  相似文献   

16.
C H Barlow  P I Ohlsson  K G Paul 《Biochemistry》1976,15(10):2225-2229
Infrared difference spectra, FeIIICO vs. FeIII of horseradish peroxidase isoenzymes A2 and C were recorded from 2000 to 1800 cm-1. Under alkaline conditions, pH 9, both isoenzymes exhibit two CO stretching bands, at 1938 and 1925 cm-1 for A2 and at 1933 and 1929 cm-1 for C. As the pH is lowered the low-frequency band for each isoenzyme decreases in intensity with a concommitant appearance and increase in intensity of a band at 1906 and 1905 cm-1 for the A2 and C isoenzymes, respectively. These changes conform to pK values of 6.7 for the A2 and 8.8 for the C isoenzymes of horseradish peroxidase. The interpretation of the infrared results was simplified by the observation that a linear relationship exists between the redox potential, Em7, for the FeIII/FeII system vs. the infrared CO stretching frequency, vCO, for cytochrome a3, hemoglobin, myoglobin, and cytochrome P-450 cam with substrate. This relationship suggests that the primary force altering vCO in these heme proteins is a variation in electron density at the heme iron and not direct protein interactions with the CO ligand. The horseradish peroxidase infrared bands in the 1930-cm-1 region correlate well with this relationship. The large deviation of the 1905-cm-1 band from the linear relationship and its dependence upon hydrogen ion concentration are consistent with horseradish peroxidase having a single CO binding site which can hold in two geometries, one of which contains an amino acid moiety capable of forming a hydrogen bond to the carbonyl oxygen.  相似文献   

17.
Resonance Raman (RR) spectra of purple intermediates of L-phenylalanine oxidase (PAO) with non-labeled and isotopically labeled phenylalanines as substrates, i.e., [1-13C], [2-13C], [ring-U-13C6], and [15N]phenylalanines, were measured with excitation at 632.8 nm within the broad absorption band around 540 nm. The spectra obtained resemble those of purple intermediates of D-amino acid oxidase (DAO). The isotope effects on the 1,665 cm-1 band with [15N] or [2-13C]phenylalanine indicate that the band is due to the C = N stretching mode of an imino acid derived from phenylalanine, i.e., alpha-imino-beta-phenylpropionate. The intense band at 1,389 cm-1 is contributed to by the CO2- symmetric stretching and C-CO2- stretching modes of alpha-imino-beta-phenylpropionate. The 1,602 cm-1 band, which does not shift upon isotopic substitution of phenylalanine, corresponds to the 1,605 cm-1 band of DAO purple intermediates and was assigned to a vibrational mode associated with the C(10a) = C(4a) - C(4) = O moiety of reduced flavin. These results confirm that PAO purple intermediates consist of the reduced enzyme and an imino acid derived from a substrate, and suggest that the plane defined by C(10a) = C(4a) - C(4) = O of reduced flavin and the plane containing H2+N = C - CO2- of an imino acid are arranged in close contact to each other, generating a charge-transfer interaction.  相似文献   

18.
Resonance Raman (RR) spectra were obtained for the purple complexes of D-amino acid oxidase (DAO) with D-lysine or N-methylalanine. RR spectra of a complex of oxidized DAO with the oxidation product of D-lysine or D-proline were also measured. The isotope shifts of the observed bands of the purple complex with D-lysine upon 13C- or 15N-substitution of lysine indicate that the ligand is delta 1-piperideine-2-carboxylate. That the band at 1671 cm-1 for the purple intermediate with N-methylalanine shifts to 1666 cm-1 in D2O solution indicates that the imino acid, N-methyl-alpha-iminopropionate, has a protonated imino group. Many bands due to a ligand in the RR spectra of the complex of oxidized DAO with an oxidation product can be observed below 1000 cm-1, but no band for the purple complex is seen in this frequency region. The band associated with the CO2-symmetric stretching mode of the product, such as delta 1-piperideine-2-carboxylate or delta 1-pyrrolidine-2-carboxylate, complexed with the oxidized DAO shifts in D2O solution. This suggests that the product imino acid interacts with the enzyme through some proton(s).  相似文献   

19.
Raman spectra of the parallel-stranded duplex formed from the deoxyoligonucleotides 5'-d-[(A)10TAATTTTAAATATTT]-3' (D1) and 5'-d[(T)10ATTAAAATTTATAAA]-3' (D2) in H2O and D2O have been acquired. The spectra of the parallel-stranded DNA are then compared to the spectra of the antiparallel double helix formed from the deoxyoligonucleotides D1 and 5'-d(AAATATTTAAAATTA-(T)10]-3' (D3). The Raman spectra of the antiparallel-stranded (aps) duplex are reminiscent of the spectra of poly[d(A)].poly[d(T)] and a B-form structure similar to that adopted by the homopolymer duplex is assigned to the antiparallel double helix. The spectra of the parallel-stranded (ps) and antiparallel-stranded duplexes differ significantly due to changes in helical organization, i.e., base pairing, base stacking, and backbone conformation. Large changes observed in the carbonyl stretching region (1600-1700 cm-1) implicate the involvement of the C(2) carbonyl of thymine in base pairing. The interaction of adenine with the C(2) carbonyl of thymine is consistent wtih formation of reverse Watson-Crick base pairing in parallel-stranded DNA. Phosphate-furanose vibrations similar to those observed for B-form DNA of heterogenous sequence and high A,T content are observed at 843 and 1092 cm-1 in the spectra of the parallel-stranded duplex. The 843-cm-1 band is due to the presence of a sizable population of furanose rings in the C2'-endo conformation. Significant changes observed in the regions from 1150 to 1250 cm-1 and from 1340 to 1400 cm-1 in the spectra of the parallel-stranded duplex are attributed to variations in backbone torsional and glycosidic angles and base stacking.  相似文献   

20.
S A Asher  T M Schuster 《Biochemistry》1979,18(24):5377-5387
Resonance Raman spectra and excitation profiles have been obtained within the 5700-6300-A absorption band of purified sperm whale metmyoglobin hydroxide (MbIIIOH) solutions. A large enhancement occurs for a Raman peak at 490 cm-1 which is shown by isotopic substitution of 18O for 16O to be almost purely an Fe-O stretch. The Fe-O vibration in MbIIIOH occurs 5 cm-1 to lower energy than the corresponding vibration at 495 cm-1 in human methemoglobin hydroxide (HbIIIOH) [Asher, S., Vickery, L., Schuster, T., & Sauer, K. (1977) Biochemistry 16, 5849], reflecting differences in ligand bonding between Mb(III) and Hb(III). A larger frequency difference (10 cm-1) exists between MbIIIF and HbIIIF for the Fe-F stretch. We do not observe separate Fe-O or Fe-F stretches from the alpha and beta chains of either HbIIIOH or HbIIIF. Excitation profile measurements for MbIIOH indicate that the 5700-6300-A absorption band is composed of two separate absorption bands which result from a high- and a low-spin form of MbIIIOH. The spin-state-sensitive Raman band at 1608 cm-1 reflects the high-spin species and has an excitation profile maximum at about 6000 A while the low-spin Raman band occurs at 1644 cm-1 and shows an excitation profile maximum at 5800 A. The Fe-O stretch at 490 cm-1 has an excitation profile maximum at about 6000 A. The differences in frequency and Raman cross section between the Fe-X vibrations in MbIIIX and HbIIIX (X = OH-, F-) can be related to increases in the out-of-plane iron distance for the high-spin species of MbIIIX. The shift in the 1644-cm-1 MbIIIOH low-spin state Raman band indicative of the heme core size to 1636 cm-1 in HbIIIOH indicates a larger heme core size in HbIIIOH. Raman frequency shifts are used to estimate differences in bond strain energies between MbIIIX and HbIIIX (X = OH-, F-). Previous resonance Raman excitation profile data can be interpreted in terms of separate contributions from different spin-state species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号