首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The x-ray structure of ferric unliganded lipid-free Escherichia coli flavohemoglobin has been solved to a resolution of 2.2 A and refined to an R-factor of 19%. The overall fold is similar to that of ferrous lipid-bound Alcaligenes eutrophus flavohemoglobin with the notable exception of the E helix positioning within the globin domain and a rotation of the NAD binding module with respect to the FAD-binding domain accompanied by a substantial rearrangement of the C-terminal region. An inspection of the heme environment in E. coli flavohemoglobin reveals an unexpected architecture of the distal pocket. In fact, the distal site is occupied by the isopropyl side chain Leu-E11 that shields the heme iron from the residues in the topological positions predicted to interact with heme iron-bound ligands, namely Tyr-B10 and Gln-E7, and stabilizes a pentacoordinate ferric iron species. Ligand binding properties are consistent with the presence of a pentacoordinate species in solution as indicated by a very fast second order combination rates with imidazole and azide. Surprisingly, imidazole, cyanide, and azide binding profiles at equilibrium are not accounted for by a single site titration curve but are biphasic and strongly suggest the presence of two distinct conformers within the liganded species.  相似文献   

2.
Ec DOS is a heme-based gas sensor enzyme that catalyzes conversion from cyclic-di-GMP to linear-di-GMP in response to gas molecules, such as oxygen, CO and NO. Ec DOS contains an N-terminal heme-binding PAS domain and C-terminal phosphodiesterase domain. Based on crystal structures of the isolated heme-binding domain, it is suggested that the FG loop is involved in intra-molecular signal transduction to the catalytic domain. We generated nine full-length proteins mutated at ionic and non-ionic polar residues between positions 83 and 96 corresponding to the F-helix and FG loop, and examined the heme binding properties, autoxidation rates, and catalytic activities of mutant proteins. N84A and R85A mutant proteins displayed lower heme binding affinities, consistent with the finding that Asn84 interacts with propionate of protoporphyrin IX, and Arg85 with Asp40 on the heme proximal side. Autoxidation rates (0.058-0.54 min−1) of R91A, S96A and K89A/R91A/E93A mutant proteins were significantly higher than that (0.0053 min−1) of wild-type protein, suggesting that these residues in the FG loop form heme distal architecture conferring stability to the Fe(II)-O2 complex. Catalytic activities of N84A and R85A mutant proteins with low heme affinity were significantly higher than those of wild-type protein in the absence of gas molecules. Accordingly, we propose that loss of heme binding enhances basal catalysis without the gas molecule, consistent with previous reports on heme inhibition of Ec DOS catalysis.  相似文献   

3.
Soluble guanylate cyclase (sGC) is a heterodimeric, nitric oxide (NO)-sensing hemoprotein composed of two subunits, alpha1 and beta1. NO binds to the heme cofactor in the beta1 subunit, forming a five-coordinate NO complex that activates the enzyme several hundred-fold. In this paper, the heme domain has been localized to the N-terminal 194 residues of the beta1 subunit. This fragment represents the smallest construct of the beta1 subunit that retains the ligand-binding characteristics of the native enzyme, namely, tight affinity for NO and no observable binding of O(2). A functional heme domain from the rat beta2 subunit has been localized to the first 217 amino acids beta2(1-217). These proteins are approximately 40% identical to the rat beta1 heme domain and form five-coordinate, low-spin NO complexes and six-coordinate, low-spin CO complexes. Similar to sGC, these constructs have a weak Fe-His stretch [208 and 207 cm(-)(1) for beta1(1-194) and beta2(1-217), respectively]. beta2(1-217) forms a CO complex that is very similar to sGC and has a high nu(CO) stretching frequency at 1994 cm(-)(1). The autoxidation rate of beta1(1-194) was 0.073/min, while the beta2(1-217) was substantially more stable in the ferrous form with an autoxidation rate of 0.003/min at 37 degrees C. This paper has identified and characterized the minimum functional ligand-binding heme domain derived from sGC, providing key details toward a comprehensive characterization.  相似文献   

4.
Sperm whale oxymyoglobin was isolated directly from muscle and was examined for its stability properties over the wide range of pH 5–13 in 0.1 m buffer at 25 °C. The remarkable pH dependence for the autoxidation rate was analyzed using the kinetic equation derived in terms of nucleophilic displacement processes of O2? from oxymyoglobin by the entering water molecule or hydroxyl ion with the iron resulting in the ferric form. Most of the autoxidation reaction of the oxymyoglobin can be best explained by the proton-catalyzed processes involving the distal histidine as the catalytic residue. The kinetic equation could also be used as an interesting diagnostic probe into differences in the heme reactivity and the heme environment of different types of oxymyoglobin from other sources.  相似文献   

5.
Native oxymyoglobin (MbO2) was isolated directly from the skeletal muscle of bigeye tuna (Thunnus obesus) with complete separation from metmyoglobin (metMb) on a CM-cellulose column. It was examined for its stability properties over a wide range of pH values (pH 5-12) in 0.1 M buffer at 25 degrees C. When compared with sperm whale MbO2 as a reference, the tuna MbO2 was found to be much more susceptible to autoxidation. Kinetic analysis has revealed that the rate constant for a nucleophilic displacement of O2- from MbO2 by an entering water molecule is 10-times higher than the corresponding value for sperm whale MbO2. The magnitude of the circular dichroism of bigeye tuna myoglobin at 222 nm was comparable to that of sperm whale myoglobin, but its hydropathy profile revealed the region corresponding to the distal side of the heme iron to be apparently less hydrophobic. The kinetic simulation also demonstrated that accessibility of the solvent water molecule to the heme pocket is clearly a key factor in the stability properties of the bound dioxygen.  相似文献   

6.
Myoglobin was isolated from the radular muscle of the archaeogastropod mollusc Turbo cornutus (Turbinidae). This myoglobin is a monomer carrying one protoheme group; the molecular mass was estimated by SDS–PAGE to be about 40 kDa, 2.5 times larger than that of usual myoglobin. The cDNA-derived amino acid sequence of 375 residues was determined, of which 327 residues were identified directly by chemical sequencing of internal peptides. The amino acid sequence of Turbo myoglobin showed no significant homology with any other usual 16-kDa globins, but showed 36% identity with the myoglobin from Sulculus diversicolor (Haliotiidae) and 27% identity with human indoleamine 2,3-dioxygenase, a tryptophan-degrading enzyme containing heme. Thus, the Turbo myoglobin can be counted among the myoglobins which evolved from the same ancestor as that of indoleamine 2,3-dioxygenase. The absorbance ratio of γ to CT maximum (γ/CT) of Turbo metmyoglobin was 17.8, indicating that this myoglobin probably possesses a histidine residue near the sixth coordination position of heme iron. The Turbo myoglobin binds oxygen reversibly. Its oxygen equilibrium properties are similar to those of Sulculus myoglobin, giving P 50 = 3.5 mm Hg at pH 7.4 and 20°C. The pH dependence of autoxidation of Turbo oxymyoglobin was quite different from that of mammalian myoglobin, suggesting a unique protein folding around the heme cavity of Turbo myoglobin. A kinetic analysis of autoxidation indicates that the amino acid residue with pK a = 5.4 is involved in the reaction. The autoxidation reaction was enhanced markedly at pH 7.6, but not at pH 5.5 and 6.3 in the presence of tryptophan. We suggest that a noncatalytic binding site for tryptophan, in which several dissociation groups with pK a ≥ 7.6 are involved, remains in Turbo myoglobin as a relic of molecular evolution.  相似文献   

7.
The pH of the solution along with chelation and consequently coordination of iron regulate its reactivity. In this study we confirmed that, in general, the rate of Fe(II) autoxidation increases as the pH of the solution is increased, but chelators that provide oxygen ligands for the iron can override the affect of pH. Additionally, the stoichiometry of the Fe(II) autoxidation reaction varied from 2:1 to 4:1, dependent upon the rate of Fe(II) autoxidation, which is dependent upon the chelator. No partially reduced oxygen species were detected during the autoxidation of Fe(II) by ESR using DMPO as the spin trap. However, upon the addition of ethanol to the assay, the DMPO:hydroxyethyl radical adduct was detected. Additionally, the hydroxylation of terephthalic acid by various iron-chelator complexes during the autoxidation of Fe(II) was assessed by fluorometric techniques. The oxidant formed during the autoxidation of EDTA:Fe(II) was shown to have different reactivity than the hydroxyl radical, suggesting that some type of hypervalent iron complex was formed. Ferrous iron was shown to be able to directly reduce some quinones without the reduction of oxygen. In conclusion, this study demonstrates the complexity of iron chemistry, especially the chelation of iron and its subsequent reactivity.  相似文献   

8.
We purified myoglobin from beluga whale (Delphinapterus leucas) muscle (longissimus dorsi) with size exclusion and cation exchange chromatographies. The molecular mass was determined by mass spectrometry (17,081 Da) and the isoelectric pH (9.4) by capillary isoelectric focusing. The near-complete amino acid sequence was determined and a phylogeny indicated that beluga was in the same clad as Dall's and harbor porpoises. There were consensus motifs for a phosphorylation site on the protein surface with the most likely site at serine-117. This motif was common to all cetacean myoglobins examined. Two oxygen-binding studies at 37 degrees C indicated dissociation constants (20.5 and 23.6 microM) 5.7-6.6 times larger than horse myoglobin (3.6 microM). The autoxidation rate of beluga myoglobin at 37 degrees C, pH 7.2 was 0.218+/-0.028 h(-1), 1/3 larger than reported for myoglobin of terrestrial mammals. There was no clear sequence change to explain the difference in oxygen binding or autoxidation although substitutions (N66 and T67) in an invariant rich sequence (HGNTV) distal to the heme may play a role. Structural models based on the protein sequence and constructed on topologies of known templates (horse and sperm whale crystal structures) were not adequate to assess perturbation of the heme pocket.  相似文献   

9.
Tsai CH  Fang TY  Ho NT  Ho C 《Biochemistry》2000,39(45):13719-13729
Using our Escherichia coli expression system, we have constructed rHb (beta N108Q), a new recombinant hemoglobin (rHb), with the amino acid substitution located in the alpha(1)beta(1) subunit interface and in the central cavity of the Hb molecule. rHb (beta N108Q) exhibits low oxygen affinity, high cooperativity, enhanced Bohr effect, and slower rate of autoxidation of the heme iron atoms from the Fe(2+) to the Fe(3+) state than other low-oxygen-affinity rHbs developed in our laboratory, e.g., rHb (alpha V96W) and rHb (alpha V96W, beta N108K). It has been reported by Olson and co-workers [Carver et al. (1992) J. Biol. Chem. 267, 14443-14450; Brantley et al. (1993) J. Biol. Chem. 268, 6995-7010] that the substitution of phenylalanine for leucine at position 29 of myoglobin can inhibit autoxidation in myoglobin and at position 29 of the alpha-chain of hemoglobin can lower NO reaction in both the deoxy and the oxy forms of human normal adult hemoglobin. Hence, we have further introduced this mutation, alpha L29F, into beta N108Q. rHb (alpha L29F, beta N108Q) is stabilized against auto- and NO-induced oxidation as compared to rHb (beta N108Q), but exhibits lower oxygen affinity at pH below 7.4 and good cooperativity as compared to Hb A. Proton nuclear magnetic resonance (NMR) studies show that rHb (beta N108Q) has similar tertiary structure around the heme pockets and quaternary structure in the alpha(1)beta(1) and alpha(1)beta(2) subunit interfaces as compared to those of Hb A. The tertiary structure of rHb (alpha L29F, beta N108Q) as measured by (1)H NMR, especially the alpha-chain heme pocket region (both proximal and distal histidyl residues), is different from that of CO- and deoxy-Hb A, due to the amino acid substitution at alpha L29F. (1)H NMR studies also demonstrate that rHb (beta N108Q) can switch from the R quaternary structure to the T quaternary structure without changing ligation state upon adding an allosteric effector, inositol hexaphosphate, and reducing the temperature. On the basis of its low oxygen affinity, high cooperativity, and stability against autoxidation, rHb (beta N108Q) is considered a potential candidate for the Hb-based oxygen carrier in a blood substitute system.  相似文献   

10.
In comparison with myoglobin molecule as a reference, we have studied the autoxidation rate of human oxyhemoglobin (HbO2) as a function of its concentration in 0.1 M buffer at 35°C and in the presence of 1 mM EDTA. At pH 6.5, HbA showed a biphasic autoxidation reaction that can be described completely by a first-order rate equation containing two rate constants — kf, for fast autoxidation of the α-chain, and ks, for slow autoxidation of the β-chain, respectively. When tetrameric HbO2 was dissociated into αβ-dimers by dilution, the value of kf increased markedly to an extent comparable with the autoxidation rate of horse heart oxymyoglobin (MbO2). The rate constant ks, on the other hand, was found to remain at an almost constant value over the whole concentration range from 1.0 × 10−3 M to 3.2 × 10−6 M in heme. At pH 8.5 and pH 10.0, however, the autoxidation of HbO2 was monophasic, and no enhancement in the rate was observed by diluting hemoglobin solutions. Taking into consideration the effects of 2,3-diphosphoglyceric acid and chloride anion on the autoxidation rate of HbO2, we have characterized the differential susceptibility of the α- and β-chains to the autoxidation reaction in aqueous solution.  相似文献   

11.
Several Gram-positive pathogenic bacteria employ near-iron transporter (NEAT) domains to acquire heme from hemoglobin during infection. However, the structural requirements and mechanism of action for NEAT-mediated heme extraction remains unknown. Bacillus anthracis exhibits a rapid growth rate during systemic infection, suggesting that the bacterium expresses efficient iron acquisition systems. To understand how B. anthracis acquires iron from heme sources, which account for 80% of mammalian iron stores, we investigated the properties of the five-NEAT domain hemophore IsdX2. Using a combination of bioinformatics and site-directed mutagenesis, we determined that the heme extraction properties of IsdX2 are dependent on an amino acid with an amide side chain within the 310-helix of the NEAT domain. Additionally, we used a spectroscopic analysis to show that IsdX2 NEAT domains only scavenge heme from methemoglobin (metHb) and that autoxidation of oxyhemoglobin to metHb must occur prior to extraction. We also report the crystal structures of NEAT5 wild type and a Q29T mutant and present surface plasmon resonance data that indicate that the loss of this amide side chain reduces the affinity of the NEAT domain for metHb. We propose a model whereby the amide side chain is first required to drive an interaction with metHb that destabilizes heme, which is subsequently extracted and coordinated in the aliphatic heme-binding environment of the NEAT domain. Because an amino acid with an amide side chain in this position is observed in NEAT domains of several genera of Gram-positive pathogenic bacteria, these results suggest that specific targeting of this or nearby residues may be an entry point for inhibitor development aimed at blocking bacterial iron acquisition during infection.  相似文献   

12.
The nine-heme cytochrome c is a monomeric multiheme cytochrome found in Desulfovibrio desulfuricans ATCC 27774. The polypeptide chain comprises 296 residues and wraps around nine hemes of type c. It is believed to take part in the periplasmic assembly of proteins involved in the mechanism of hydrogen cycling, receiving electrons from the tetraheme cytochrome c3. With the purpose of understanding the molecular basis of electron transfer processes in this cytochrome, we have determined the crystal structures of its oxidized and reduced forms at pH 7.5 and performed theoretical calculations of the binding equilibrium of protons and electrons in these structures. This integrated study allowed us to observe that the reduction process induced relevant conformational changes in several residues, as well as protonation changes in some protonatable residues. In particular, the surroundings of hemes I and IV constitute two areas of special interest. In addition, we were able to ascertain the groups involved in the redox-Bohr effect present in this cytochrome and the conformational changes that may underlie the redox-cooperativity effects on different hemes. Furthermore, the thermodynamic simulations provide evidence that the N- and C-terminal domains function in an independent manner, with the hemes belonging to the N-terminal domain showing, in general, a lower redox potential than those found in the C-terminal domain. In this way, electrons captured by the N-terminal domain could easily flow to the C-terminal domain, allowing the former to capture more electrons. A notable exception is heme IX, which has low redox potential and could serve as the exit path for electrons toward other proteins in the electron transfer pathway.  相似文献   

13.
A myoglobin-like protein isolated from Tetrahymena pyriformis is composed of 121 amino acid residues. This is much smaller than sperm whale myoglobin by 32 residues, suggesting a distinct origin from the common globin gene. We have therefore examined this unique protein for its structural, spectral and stability properties. As a result, the rate of autoxidation of Tetrahymena oxymyoglobin (MbO(2)) was found to be almost comparable to that of sperm whale MbO(2) over a wide range of pH 4-12 in 0.1 M buffer at 25 degrees C. Moreover, both pH profiles exhibited the remarkable proton-assisted process, which can be performed in sperm whale myoglobin by the distal (E7) histidine as its catalytic residue. These kinetic observations are also in full accord with spectral examinations for the presence of a distal histidine in ciliated protozoa myoglobin. At the same time, we have isolated the globin genes both from T. pyriformis and Tetrahymena thermophila, and found that there is no intron in their genomic structures. This is in sharp contrast to previous reports on the homologous globin genes from Paramecium caudatum and Chlamydomonas eugametos. Rather, the Tetrahymena genes seemed to be related to the cyanobacterial globin gene from Nostoc commune. These contracted or truncated globins thus have a marked diversity in the cDNA, protein, and genomic structures.  相似文献   

14.
Unlike mammalian oxymyoglobins, Aplysia MbO2 is extremely susceptible to autoxidation, and its pH dependence is also unusual. Kinetic formulation has revealed that two kinds of dissociable group with pK1 = 4.3 and pK2 = 6.1, respectively, at 25 degrees C are involved in the stability property of Aplysia MbO2. In order to characterize thermodynamically these dissociation processes involved, the effect of temperature on K1 and K2 was studied by analyzing the pH dependence for the autoxidation rate of Aplysia MbO2 in 0.1 M buffer over the pH range of 4-11, and at 15, 25 and 35 degrees C. The resulting thermodynamic parameters for each group were both those to be expected for the ionization of a carboxyl group; the delta H degrees value being numerically much less than 1 kcal.mol-1, or zero in practice, but being associated with a large negative value of delta S degrees of the order of -20 cal.mol-1.K-1. Taking into account the fact that Aplysia myoglobin contains only a single histidine residue corresponding to the heme-binding proximal one, we can unequivocally conclude that the two kinds of the dissociable group involved in the unusual stability of Aplysia MbO2 must both be carboxyl groups, the protonation of these groups being responsible for an increase in its autoxidation rate in the acidic pH range.  相似文献   

15.
YddV from Escherichia coli (Ec) is a novel globin-coupled heme-based oxygen sensor protein displaying diguanylate cyclase activity in response to oxygen availability. In this study, we quantified the turnover numbers of the active [Fe(III), 0.066 min(-1); Fe(II)-O(2) and Fe(II)-CO, 0.022 min(-1)] [Fe(III), Fe(III)-protoporphyrin IX complex; Fe(II), Fe(II)-protoporphyrin IX complex] and inactive forms [Fe(II) and Fe(II)-NO, <0.01 min(-1)] of YddV for the first time. Our data indicate that the YddV reaction is the rate-determining step for two consecutive reactions coupled with phosphodiesterase Ec DOS activity on cyclic di-GMP (c-di-GMP) [turnover number of Ec DOS-Fe(II)-O(2), 61 min(-1)]. Thus, O(2) binding and the heme redox switch of YddV appear to be critical factors in the regulation of c-di-GMP homeostasis. The redox potential and autoxidation rate of heme of the isolated heme domain of YddV (YddV-heme) were determined to be -17 mV versus the standard hydrogen electrode and 0.0076 min(-1), respectively. The Fe(II) complexes of Y43A and Y43L mutant proteins (residues at the heme distal side of the isolated heme-bound globin domain of YddV) exhibited very low O(2) affinities, and thus, their Fe(II)-O(2) complexes were not detected on the spectra. The O(2) dissociation rate constant of the Y43W protein was >150 s(-1), which is significantly larger than that of the wild-type protein (22 s(-1)). The autoxidation rate constants of the Y43F and Y43W mutant proteins were 0.069 and 0.12 min(-1), respectively, which are also markedly higher than that of the wild-type protein. The resonance Raman frequencies representing ν(Fe-O(2)) (559 cm(-1)) of the Fe(II)-O(2) complex and ν(Fe-CO) (505 cm(-1)) of the Fe(II)-CO complex of Y43F differed from those (ν(Fe-O(2)), 565 cm(-1); ν(Fe-CO), 495 cm(-1)) of the wild-type protein, suggesting that Tyr43 forms hydrogen bonds with both O(2) and CO molecules. On the basis of the results, we suggest that Tyr43 located at the heme distal side is important for the O(2) recognition and stability of the Fe(II)-O(2) complex, because the hydroxyl group of the residue appears to interact electrostatically with the O(2) molecule bound to the Fe(II) complex in YddV. Our findings clearly support a role of Tyr in oxygen sensing, and thus modulation of overall conversion from GTP to pGpG via c-di-GMP catalyzed by YddV and Ec DOS, which may be applicable to other globin-coupled oxygen sensor enzymes.  相似文献   

16.
The phosphodiesterase A1 protein of Acetobacter xylinum, AxPDEA1, is a key regulator of bacterial cellulose synthesis. This phosphodiesterase linearizes cyclic bis(3'-->5')diguanylic acid, an allosteric activator of the bacterial cellulose synthase, to the ineffectual pGpG. Here we show that AxPDEA1 contains heme and is regulated by reversible binding of O(2) to the heme. Apo-AxPDEA1 has less than 2% of the phosphodiesterase activity of holo-AxPDEA1, and reconstitution with hemin restores full activity. O(2) regulation is due to deoxyheme being a better activator than oxyheme. AxPDEA1 is homologous to the Escherichia coli direct oxygen sensor protein, EcDos, over its entire length and is homologous to the FixL histidine kinases over only a heme-binding PAS domain. The properties of the heme-binding domain of AxPDEA1 are significantly different from those of other O(2)-responsive heme-based sensors. The rate of AxPDEA1 autoxidation (half-life > 12 h) is the slowest observed so far for this type of heme protein fold. The O(2) affinity of AxPDEA1 (K(d) approximately 10 microM) is comparable to that of EcDos, but the rate constants for O(2) association (k(on) = 6.6 microM(-)(1) s(-)(1)) and dissociation (k(off) = 77 s(-)(1)) are 2000 times higher. Our results illustrate the versatility of signal transduction mechanisms for the heme-PAS class of O(2) sensors and provide the first example of O(2) regulation of a second messenger.  相似文献   

17.
1Cellobiose dehydrogenase is a hemoflavoenzyme that catalyzes the sequential electron-transfer from an electron-donating substrate (e.g. cellobiose) to a flavin center, then to an electron-accepting substrate (e.g. quinone) either directly or via a heme center after an internal electron-transfer from the flavin to heme. We cloned the dehydrogenase from Humicola insolens, which encodes a protein of 761 amino acid residues containing an N-terminal heme domain and a C-terminal flavin domain, and studied how the catalyzed electron transfers are regulated. Based on the correlation between the rate and redox potential, we demonstrated that with a reduced flavin center, the enzyme, as a reductase, could export electron from its heme center by a "outer-sphere" mechanism. With the "resting" flavin center, however, the enzyme could have a peroxidase-like function and import electron to its heme center after a peroxidative activation. The dual functionality of its heme center makes the enzyme a molecular "logic gate", in which the electron flow through the heme center can be switched in direction by the redox state of the coupled flavin center.  相似文献   

18.
Hu T  Li D  Manjula BN  Acharya SA 《Biochemistry》2008,47(41):10981-10990
The PEGylated hemoglobin (Hb) has been evaluated as a potential blood substitute. In an attempt to understand the autoxidation of the PEGylated Hb, we have studied the autoxidation of the PEGylated Hb site-specifically modified at Cys-93(beta) or at Val-1(beta). PEGylation of Hb at Cys-93(beta) perturbed the heme environment and increased the autoxidation rate of Hb, which is at a higher level than that caused by PEGylation at Val-1(beta). The perturbation of the heme environment of Hb is attributed to the maleimide modification at Cys-93(beta) and not due to conjugation of the PEG chains. However, the PEG chains enhance the autoxidation and the H 2O 2 mediated oxidation of Hb. Accordingly, the PEG chains are assumed to increase the water molecules in the hydration layer of Hb and enhance the autoxidation by promoting the nucleophilic attack of heme. The autoxidation rate of the PEGylated Hb does not show an inverse correlation with the oxygen affinity. The H 2O 2 mediated structural loss and the heme loss of Hb are increased by maleimide modification at Cys-93(beta) and further decreased by conjugation of the PEG chains. The autoxidation of the PEGylated Hbs is attenuated significantly in the plasma, possibly due to the presence of the antioxidant species in the plasma. This result is consistent with the recent suggestion that there is no direct correlation between the in vitro and in vivo autoxidation of the PEGylated Hb. Therefore, the pattern of PEGylation can be manipulated for the design of the PEGylated Hb with minimal autoxidation.  相似文献   

19.
Mukhopadhyay K  Lecomte JT 《Biochemistry》2004,43(38):12227-12236
Conformational changes and long-range effects are often observed in proteins when they associate with their ligands. In many cases, these structural perturbations are essential to function, and they are the result of complex networks of interactions. Here we used cytochrome b(5), a protein that undergoes extensive structural rearrangement upon heme binding, to seek a relationship between affinity for the cofactor and extent of refolding induced by its binding. Three variants of the water-soluble domain of the rat microsomal protein were chosen to affect the stability of the apoprotein or the holoprotein. Sequence alterations were introduced in the heme binding loop (type I mutations, D60R and (55)TENFED --> (55)TEPFEED, or PE), which is largely unstructured in the apoprotein state, and in the folded core of the apoprotein (type II mutation, P81A). Thermal and chemical denaturation experiments and heme transfer experiments were performed on these proteins. Type I mutations left the thermodynamic stability of the apoprotein unchanged. The first mutation (D60R) stabilized the holoprotein in a probable manifestation of enhanced helical propensity or improved electrostatic interactions. The second mutation (PE) decreased heme affinity and holoprotein stability in concert. For this protein, heme transfer experiments could be used to estimate the rate constant of heme loss from each of the heme orientational isomers. In contrast, the type II mutation resulted in a marked destabilization of the apoprotein but an intermediate effect on the holoprotein stability and heme affinity. These data supported that heme affinity could be modulated by the apoprotein stability and by specific residues remote from the heme binding site.  相似文献   

20.
Myoglobin was isolated from the radular muscle of the archaeogastropod mollusc Turbo cornutus (Turbinidae). This myoglobin is a monomer carrying one protoheme group; the molecular mass was estimated by SDS–PAGE to be about 40 kDa, 2.5 times larger than that of usual myoglobin. The cDNA-derived amino acid sequence of 375 residues was determined, of which 327 residues were identified directly by chemical sequencing of internal peptides. The amino acid sequence of Turbo myoglobin showed no significant homology with any other usual 16-kDa globins, but showed 36% identity with the myoglobin from Sulculus diversicolor (Haliotiidae) and 27% identity with human indoleamine 2,3-dioxygenase, a tryptophan-degrading enzyme containing heme. Thus, the Turbo myoglobin can be counted among the myoglobins which evolved from the same ancestor as that of indoleamine 2,3-dioxygenase. The absorbance ratio of to CT maximum (/CT) of Turbo metmyoglobin was 17.8, indicating that this myoglobin probably possesses a histidine residue near the sixth coordination position of heme iron. The Turbo myoglobin binds oxygen reversibly. Its oxygen equilibrium properties are similar to those of Sulculus myoglobin, giving P 50 = 3.5 mm Hg at pH 7.4 and 20°C. The pH dependence of autoxidation of Turbo oxymyoglobin was quite different from that of mammalian myoglobin, suggesting a unique protein folding around the heme cavity of Turbo myoglobin. A kinetic analysis of autoxidation indicates that the amino acid residue with pK a = 5.4 is involved in the reaction. The autoxidation reaction was enhanced markedly at pH 7.6, but not at pH 5.5 and 6.3 in the presence of tryptophan. We suggest that a noncatalytic binding site for tryptophan, in which several dissociation groups with pK a 7.6 are involved, remains in Turbo myoglobin as a relic of molecular evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号