首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PKC is required for activation of ROCK by RhoA in human endothelial cells   总被引:3,自引:0,他引:3  
Rho/Rho-kinase (ROCK) complex formation is the only proposed mechanism for ROCK activation. Rho/ROCK and PKC can exhibit a convergence of cellular effects such as suppression of endothelial nitric oxide synthase (eNOS) expression. We, therefore, investigated the role of PKC in RhoA/ROCK complex formation and activation linked to eNOS expression in cultured human umbilical vein endothelial cells. We showed that expression of constitutively active RhoA (Rho63) or ROCK (CAT) suppressed eNOS gene expression. This effect of Rho63 but not that of CAT was abolished by phorbol ester-sensitive PKC depletion. Accordingly, depletion or inhibition of PKC prevented ROCK activation by Rho63 without affecting RhoA/ROCK complex formation. Similarly, suppression of eNOS expression and activation of ROCK, but not RhoA by thrombin were prevented by PKC inhibition or depletion. These results indicate that RhoA/ROCK complex formation alone is not sufficient and PKC is required for RhoA-induced ROCK activation leading to eNOS gene suppression.  相似文献   

2.
Rho-kinase phosphorylates eNOS at threonine 495 in endothelial cells   总被引:1,自引:0,他引:1  
Endothelial nitric oxide synthase (eNOS) produces nitric oxide (NO), which is involved in various physiological functions of the cardiovascular system. eNOS is activated by dephosphorylation at Thr495 and phosphorylation at Ser1177. Inhibition of Rho-kinase, an effector of the small GTPase RhoA, leads to activation of Akt/PKB, which phosphorylates eNOS at Ser1177 and thereby promotes NO production. However, little is known about the effects of Rho-kinase on phosphorylation of Thr495. We here found that the constitutively active form of Rho-kinase phosphorylated eNOS at Thr495 in vitro. Expression of the constitutively active form of RhoA or Rho-kinase increased this phosphorylation in COS-7 cells. Addition of thrombin to cultured human umbilical vein endothelial cells induced phosphorylation of eNOS at Thr495. Treatment with Y27632, a Rho-kinase inhibitor, suppressed thrombin-induced phosphorylation at Thr495. These results indicate that Rho-kinase can directly phosphorylate eNOS at Thr495 to suppress NO production in endothelium.  相似文献   

3.
Enhanced vascular arginase activity impairs endothelium-dependent vasorelaxation by decreasing l-arginine availability to endothelial nitric oxide (NO) synthase, thereby reducing NO production. Elevated angiotensin II (ANG II) is a key component of endothelial dysfunction in many cardiovascular diseases and has been linked to elevated arginase activity. We determined signaling mechanisms by which ANG II increases endothelial arginase function. Results show that ANG II (0.1 μM, 24 h) elevates arginase activity and arginase I expression in bovine aortic endothelial cells (BAECs) and decreases NO production. These effects are prevented by the arginase inhibitor BEC (100 μM). Blockade of ANG II AT(1) receptors or transfection with small interfering RNA (siRNA) for Gα12 and Gα13 also prevents ANG II-induced elevation of arginase activity, but siRNA for Gαq does not. ANG II also elevates active RhoA levels and induces phosphorylation of p38 MAPK. Inhibitors of RhoA activation (simvastatin, 0.1 μM) or Rho kinase (ROCK) (Y-27632, 10 μM; H1152, 0.5 μM) block both ANG II-induced elevation of arginase activity and phosphorylation of p38 MAPK. Furthermore, pretreatment of BAECs with p38 inhibitor SB-202190 (2 μM) or transfection with p38 MAPK siRNA prevents ANG II-induced increased arginase activity/expression and maintains NO production. Additionally, inhibitors of p38 MAPK (SB-203580, 5 μg·kg(-1)·day(-1)) or arginase (ABH, 8 mg·kg(-1)·day(-1)) or arginase gene knockout in mice prevents ANG II-induced vascular endothelial dysfunction and associated enhancement of arginase. These results indicate that ANG II increases endothelial arginase activity/expression through Gα12/13 G proteins coupled to AT(1) receptors and subsequent activation of RhoA/ROCK/p38 MAPK pathways leading to endothelial dysfunction.  相似文献   

4.
5.
Endothelial nitric-oxide synthase (eNOS) is an important regulatory enzyme in the cardiovascular system catalyzing the production of NO from arginine. Multiple protein kinases including Akt/PKB, cAMP-dependent protein kinase (PKA), and the AMP-activated protein kinase (AMPK) activate eNOS by phosphorylating Ser-1177 in response to various stimuli. During VEGF signaling in endothelial cells, there is a transient increase in Ser-1177 phosphorylation coupled with a decrease in Thr-495 phosphorylation that reverses over 10 min. PKC signaling in endothelial cells inhibits eNOS activity by phosphorylating Thr-495 and dephosphorylating Ser-1177 whereas PKA signaling acts in reverse by increasing phosphorylation of Ser-1177 and dephosphorylation of Thr-495 to activate eNOS. Both phosphatases PP1 and PP2A are associated with eNOS. PP1 is responsible for dephosphorylation of Thr-495 based on its specificity for this site in both eNOS and the corresponding synthetic phosphopeptide whereas PP2A is responsible for dephosphorylation of Ser-1177. Treatment of endothelial cells with calyculin selectively blocks PKA-mediated dephosphorylation of Thr-495 whereas okadaic acid selectively blocks PKC-mediated dephosphorylation of Ser-1177. These results show that regulation of eNOS activity involves coordinated signaling through Ser-1177 and Thr-495 by multiple protein kinases and phosphatases.  相似文献   

6.
Recent studies have indicated that endothelial nitric-oxide synthase (eNOS) is regulated by reversible phosphorylation in intact endothelial cells. AMP-activated protein kinase (AMPK) has previously been demonstrated to phosphorylate and activate eNOS at Ser-1177 in vitro, yet the function of AMPK in endothelium is poorly characterized. We therefore determined whether activation of AMPK with 5'-aminoimidazole-4-carboxamide ribonucleoside (AICAR) stimulated NO production in human aortic endothelial cells. AICAR caused the time- and dose-dependent stimulation of AMPK activity, with a concomitant increase in eNOS Ser-1177 phosphorylation and NO production. AMPK was associated with immunoprecipitates of eNOS, yet this was unaffected by increasing concentrations of AICAR. AICAR also caused the time- and dose-dependent stimulation of protein kinase B phosphorylation. To confirm that the effects of AICAR were indeed mediated by AMPK, we utilized adenovirus-mediated expression of a dominant negative AMPK mutant. Expression of dominant negative AMPK attenuated AICAR-stimulated AMPK activity, eNOS Ser-1177 phosphorylation and NO production and was without effect on AICAR-stimulated protein kinase B Ser-473 phosphorylation or NO production stimulated by insulin or A23187. These data suggest that AICAR-stimulated NO production is mediated by AMPK as a consequence of increased Ser-1177 phosphorylation of eNOS. We propose that stimuli that result in the acute activation of AMPK activity in endothelial cells stimulate NO production, at least in part due to phosphorylation and activation of eNOS. Regulation of endothelial AMPK therefore provides an additional mechanism by which local vascular tone may be controlled.  相似文献   

7.
Persistent pulmonary hypertension of the newborn (PPHN) is characterized by endothelial dysfunction and decreased vascular growth. The role of Rho kinase activity in modulating endothelial function and regulating angiogenesis during normal lung development and in PPHN is unknown. We hypothesized that PPHN increases Rho kinase activity in fetal pulmonary artery endothelial cells (PAECs) and impairs angiogenesis in vitro. Proximal PAECs were harvested from fetal sheep with partial ligation of the ductus arteriosus in utero (PPHN) and age-matched controls. Rho kinase activity was measured by RhoA, Rho GTP, and phosphorylated MYPT-1 protein content. The effects of Rho kinase activity on angiogenesis, endothelial nitric oxide (NO) synthase (eNOS) protein expression, and NO production were determined in normal and PPHN PAECs. Angiogenesis was assessed by tube formation in vitro with/without Y-27632 (a Rho kinase inhibitor) and calpeptin (a Rho kinase activator) in the presence/absence of N-nitro-l-arginine (l-NA, an NOS inhibitor). RhoA, Rho GTP, and phosphorylated MYPT-1 protein were increased in PPHN PAECs. Tube formation was reduced 29% in PPHN PAECs (P < 0.001) and increased with Y-27632 treatment in normal and PPHN PAECs, with PPHN PAECs achieving levels similar to those of normal PAECs. l-NA inhibited the Y-27632-induced increase in tube formation in normal, but not PPHN, PAECs. Calpeptin reduced tube formation in normal and PPHN PAECs. eNOS expression was reduced 42% in PPHN PAECs (P < 0.01). Y-27632 increased eNOS protein and NO production in normal and PPHN PAECs. Calpeptin decreased eNOS protein only in normal PAECs but reduced NO production in normal and PPHN PAECs. We conclude that Rho kinase activity is increased in PPHN PAECs and impairs angiogenesis and downregulates eNOS protein and NO production in vitro.  相似文献   

8.
Vascular endothelial growth factor (VEGF) stimulates endothelial cell (EC) migration. The protein kinase Akt activates the endothelial NO synthase (eNOS) by phosphorylation of Ser-1177. Therefore, we investigated the contribution of Akt-mediated eNOS phosphorylation to VEGF-induced EC migration. Inhibition of NO synthase or overexpression of a dominant negative Akt abrogated VEGF-induced cell migration. In contrast, overexpression of constitutively active Akt was sufficient to induce cell migration. Moreover, transfection of an Akt site phospho-mimetic eNOS (S1177D) potently stimulated EC migration, whereas a non-phosphorylatable mutant (S1177A) inhibited VEGF-induced EC migration. Our data indicate that eNOS activation via phosphorylation of Ser-1177 by Akt is necessary and sufficient for VEGF-mediated EC migration.  相似文献   

9.
17beta-Estradiol activates endothelial nitric oxide synthase (eNOS), enhancing nitric oxide (NO) release from endothelial cells via the phosphatidylinositol 3-kinase (PI3-kinase)/Akt pathway. The upstream regulators of this pathway are unknown. We now demonstrate that 17beta-estradiol rapidly activates eNOS through Src kinase in human endothelial cells. The Src family kinase specific-inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) abrogates 17beta-estradiol- but not ionomycin-stimulated NO release. Consistent with these results, PP2 blocked 17beta-estradiol-induced Akt phosphorylation but did not inhibit NO release from cells transduced with a constitutively active Akt. PP2 abrogated 17beta-estradiol-induced activation of PI3-kinase, indicating that the PP2-inhibitable kinase is upstream of PI3-kinase and Akt. A 17beta-estradiol-induced estrogen receptor/c-Src association correlated with rapid c-Src phosphorylation. Moreover, transfection of kinase-dead c-Src inhibited 17beta-estradiol-induced Akt phosphorylation, whereas constitutively active c-Src increased basal Akt phosphorylation. Estrogen stimulation of murine embryonic fibroblasts with homozygous deletions of the c-src, fyn, and yes genes failed to induce Akt phosphorylation, whereas cells maintaining c-Src expression demonstrated estrogen-induced Akt activation. Estrogen rapidly activated c-Src inducing an estrogen receptor, c-Src, and P85 (regulatory subunit of PI3-kinase) complex formation. This complex formation results in the successive activation of PI3-kinase, Akt, and eNOS with consequent enhanced NO release, implicating c-Src as a critical upstream regulator of the estrogen-stimulated PI3-kinase/Akt/eNOS pathway.  相似文献   

10.
Vascular endothelial growth factor (VEGF) is an important regulator of endothelial cell function. VEGF stimulates NO production, proposed to be a result of phosphorylation and activation of endothelial NO synthase (eNOS) at Ser1177. Phosphorylation of eNOS at this site also occurs after activation of AMP-activated protein kinase (AMPK) in cultured endothelial cells. We therefore determined whether AMPK mediates VEGF-stimulated NO synthesis in endothelial cells. VEGF caused a rapid, dose-dependent stimulation of AMPK activity, with a concomitant increase in phosphorylation of eNOS at Ser1177. Infection of endothelial cells with an adenovirus expressing a dominant negative mutant AMPK partially inhibited both VEGF-stimulated eNOS Ser1177 phosphorylation and NO production. VEGF-stimulated AMPK activity was completely inhibited by the Ca(2+)/calmodulin-dependent protein kinase kinase inhibitor, STO-609. Stimulation of AMPK via Ca(2+)/calmodulin-dependent protein kinase kinase represents a novel signalling mechanism utilised by VEGF in endothelial cells that contributes to eNOS phosphorylation and NO production.  相似文献   

11.
12.
The roles of endothelial nitric oxide synthase (eNOS), and its putative association with protein kinase B (PKB), and inducible nitric oxide synthase (iNOS) are not well characterized in hypoxic cardiac cells and there is a lack of studies that measure nitric oxide (NO) directly. Objective To measure NO production in cardiomyocytes and cardiac microvascular endothelial cells (CMECs) under baseline and hypoxic conditions and to evaluate the expression, regulation and activation of eNOS, iNOS and PKB. The effect of PI3-K/PKB inhibition on NO production and eNOS expression/activation was also investigated. Methods Adult rat cardiomyocytes and rat CMECs were made hypoxic by cell pelleting and low PO2 incubation. Intracellular NO was measured by FACS analysis of DAF-2/DA fluorescence, and eNOS, iNOS and PKB were evaluated by Western blotting or flow cytometry. Upstream PKB inhibition was achieved with wortmannin. Results (1) NO levels increased in both cell types after exposure to hypoxia. (2) In hypoxic CMECs, eNOS was upregulated and activated, no iNOS expression was observed and PKB was activated. (3) In myocytes, hypoxia did not affect eNOS expression, but increased its activation. Activated PKB also increased during hypoxia. FACS analysis showed increased iNOS in hypoxic myocytes. (4) Wortmannin resulted in decreased hypoxia-induced NO production and reduced activated eNOS levels. Conclusions Cardiomyocytes and CMECs show increased NO production during hypoxia. eNOS seems to be the main NOS isoform involved as source of the increased NO generation, although there may be a role for iNOS and other non-eNOS sources of NO in the hypoxic myocytes. Hypoxia-induced PKB and eNOS activation occurred simultaneously in both cell types, and the PI3-K/PKB pathway was associated with hypoxia-induced NO production via eNOS activation.  相似文献   

13.
In the vasculature, nitric oxide (NO) is generated by endothelial NO synthase (eNOS) in a calcium/calmodulin-dependent reaction. With oxidative stress, the critical cofactor BH(4) is depleted, and NADPH oxidation is uncoupled from NO generation, leading to production of (O(2)*). Although phosphorylation of eNOS regulates in vivo NO generation, the effects of phosphorylation on eNOS coupling and O(2)* generation are unknown. Therefore, we phosphorylated recombinant BH(4)-free eNOS in vitro using native kinases and determined O(2)* generation using EPR spin trapping. Phosphorylation of Ser-1177 by Akt led to an increase (>50%) in maximal O(2)* generation from eNOS. Moreover, Ser-1177 phosphorylation greatly altered the Ca(2+) sensitivity of eNOS, such that O(2)* generation became largely Ca(2+)-independent. In contrast, phosphorylation of eNOS at Thr-495 by protein kinase Calpha (PKCalpha) had no effect on maximum activity or calcium sensitivity but decreased calmodulin binding and increased association with caveolin. In endothelial cells, eNOS-dependent O(2)* generation was stimulated by vascular endothelial growth factor that induced phosphorylation of Ser-1177. With PKC activation that led to phosphorylation of Thr-495, no inhibition of O(2)* generation occurred. As such, phosphorylation of eNOS at Ser-1177 is pivotal in the direct regulation of O(2)* and NO generation, altering both the Ca(2+) sensitivity of the enzyme and rate of product formation, whereas phosphorylation of Thr-495 indirectly affects this process through regulation of the calmodulin and caveolin interaction. Thus, Akt-mediated phosphorylation modulates eNOS uncoupling and greatly increases O(2)* generation from the enzyme at low Ca(2+) concentrations, and PKCalpha-mediated phosphorylation alters the sensitivity of the enzyme to other negative regulatory signals.  相似文献   

14.
Ginsenosides have been shown to stimulate nitric oxide (NO) production in aortic endothelial cells. However, the signaling pathways involved have not been well studied in human aortic endothelial cells. The present study was designed to examine whether purified ginsenoside Rb1, a major active component of ginseng could actually induce NO production and to clarify the signaling pathway in human aortic endothelial cells. NO production was rapidly increased by Rb1. The rapid increase in NO production was abrogated by treatment with nitric oxide synthetase inhibitor, L-NAME. Rb1 stimulated rapid phosphorylation of Akt (Ser473), ERK1/2 (Thr202/Thr204) and eNOS (Ser1177). Rapid phosphorylation of eNOS (Ser1177) was prevented by SH-5, an Akt inhibitor or wortmannin, PI3-kinase inhibitor and partially attenuated by PD98059, an upstream inhibitor for ERK1/2. Interestingly, NO production and eNOS phosphorylation at Ser1177 by Rb1 were abolished by androgen receptor antagonist, nilutamide. The results suggest that PI3kinase/Akt and MEK/ERK pathways and androgen receptor are involved in the regulation of acute eNOS activation by Rb1 in human aortic endothelial cells.  相似文献   

15.
16.
Endothelial nitric-oxide synthase (eNOS) is an important component of vascular homeostasis. During vascular disease, endothelial cells are exposed to excess reactive oxygen species that can alter cellular phenotype by inducing various signaling pathways. In the current study, we examined the implications of H(2)O(2)-induced signaling for eNOS phosphorylation status and activity in porcine aortic endothelial cells. We found that H(2)O(2) treatment enhanced eNOS activity and NO bioactivity as determined by the conversion of l-[(3)H]arginine to l-[(3)H]citrulline and cellular cGMP content. Concomitant with eNOS activation, H(2)O(2) also activated Akt, increased eNOS phosphorylation at Ser-1177, and decreased eNOS phosphorylation at Thr-495. H(2)O(2)-induced promotion of eNOS activity and modulation of the eNOS phosphorylation status at Ser-1177 and Thr-495 were significantly attenuated by selective inhibitors of Src kinase, the ErbB receptor family, and phosphoinositide 3-kinase (PI 3-K). We found that Akt activation, eNOS Ser-1177 phosphorylation, and eNOS activation by H(2)O(2) were calcium-dependent, whereas eNOS dephosphorylation at Thr-495 was not, suggesting a branch point in the signaling cascade downstream from PI 3-K. Consistent with this, overexpression of a dominant negative isoform of Akt inhibited H(2)O(2)-induced phosphorylation of eNOS at Ser-1177 but not dephosphorylation of eNOS at Thr-495. Together, these data indicate that H(2)O(2) promotes calcium-dependent eNOS activity through a coordinated change in the phosphorylation status of the enzyme mediated by Src- and ErbB receptor-dependent PI 3-K activation. In turn, PI 3-K mediates eNOS Ser-1177 phosphorylation via a calcium- and Akt-dependent pathway, whereas eNOS Thr-495 dephosphorylation does not involve calcium or Akt. This response may represent an attempt by endothelial cells to maintain NO bioactivity under conditions of enhanced oxidative stress.  相似文献   

17.
Our laboratory has recently demonstrated that insulin induces relaxation of vascular smooth muscle cells (VSMCs) by activating myosin-bound phosphatase (MBP) and by inhibiting Rho kinase (Begum N, Duddy N, Sandu OA, Reinzie J, and Ragolia L. Mol Endocrinol 14: 1365-1376, 2000). In this study, we tested the hypothesis that insulin via the nitric oxide (NO)/cGMP pathway may inactivate Rho, resulting in a decrease in phosphorylation of the myosin-bound subunit (MBS(Thr695)) of MBP and in its activation. Treatment of confluent serum-starved VSMCs with insulin prevented thrombin-induced increases in membrane-associated RhoA, Rho kinase activation, and site-specific phosphorylation of MBS(Thr695) of MBP and caused MBP activation. Preexposure to N(G)-monomethyl-L-arginine, a NO synthase inhibitor, and R-p-8-(4-chlorophenylthio)cGMP, a cGMP antagonist, attenuated insulin's inhibitory effect on Rho translocation and restored thrombin-mediated Rho kinase activation and site-specific MBS(Thr695) phosphorylation, resulting in MBP inactivation. In contrast, 8-bromo-cGMP, a cGMP agonist, mimicked insulin's inhibitory effects by abolishing thrombin-mediated Rho signaling and promoted dephosphorylation of MBS(Thr695). Furthermore, expression of a dominant-negative RhoA decreased basal as well as thrombin-induced MBS(Thr695) phosphorylation and caused insulin activation of MBP. Collectively, these results indicate that insulin inhibits Rho signaling by decreasing RhoA translocation via the NO/cGMP signaling pathway to cause MBP activation via site-specific dephosphorylation of its regulatory subunit MBS.  相似文献   

18.
Endothelial cells release nitric oxide(NO) acutely in response to increased "flow" or fluid shear stress(FSS), and the increase in NO production is correlated with enhancedphosphorylation and activation of endothelial nitric oxide synthase(eNOS). Both vascular endothelial growth factor and FSS activateendothelial protein kinase B (PKB) by way of incompletely understoodpathway(s), and, in turn, PKB phosphorylates eNOS at Ser-1179, causingits activation. In this study, we found that either FSS or insulinstimulated insulin receptor substrate-1 (IRS-1) tyrosine and serinephosphorylation and increased IRS-1-associated phosphatidylinositol3-kinase activity, phosphorylation of PKB Ser-473, phosphorylation ofeNOS Ser-1179, and NO production. Brief pretreatment of bovine aorticendothelial cells with tumor necrosis factor- (TNF-) inhibitedthe above described FSS- or insulin-stimulated protein phosphorylationevents and almost totally inhibited FSS- or insulin-stimulated NOproduction. These data indicate that FSS and insulin regulate eNOSphosphorylation and NO production by overlapping mechanisms. This studysuggests one potential mechanism for the development of endothelialdysfunction in disease states with alterations in insulin regulationand increased TNF- levels.

  相似文献   

19.
Black tea improves endothelial function in patients with coronary artery disease. We sought to determine the responsible components of black tea and elucidate the underlying cell signaling mechanisms. We exposed porcine aortic endothelial cells to components of black tea and found that the polyphenol fraction acutely enhanced nitric oxide bioactivity. This effect involved endothelial nitric-oxide synthase (eNOS) phosphorylation at Ser-1177 and dephosphorylation at Thr-495, consistent with increased eNOS activity. These effects were calcium-dependent, as removal of extracellular calcium prevented eNOS phosphorylation at Ser-1177, whereas inhibition of intracellular calcium mobilization with TMB-8 blunted Thr-495 dephosphorylation. Black tea polyphenol-induced eNOS activation appeared dependent upon the phosphatidylinositol 3-kinase-Akt pathway, as it was significantly inhibited by LY294002 and a dominant negative Akt, respectively. Pharmacological inhibition of p38 mitogen-activated protein kinase (p38 MAPK) with either SB202190 or SB203580 as well as overexpression of a dominant negative p38 MAPKalpha attenuated both eNOS activation and phosphorylation changes in response to black tea polyphenols. Inhibition of p38 MAPKalpha also blunted Akt activation in response to black tea polyphenols, suggesting that p38alpha MAPK is upstream of Akt in this pathway. Finally, a constitutively active mutant of MKK6bE, an upstream kinase for p38 MAPK, enhanced both the basal and stimulated activity of Akt, leading to increased eNOS activity. Taken together, these data identify the p38 MAPK as an upstream component of Akt-mediated eNOS activation.  相似文献   

20.
In this study, we explore the roles of the delta isoform of PKC (PKCdelta) in the regulation of endothelial nitric oxide synthase (eNOS) activity in pulmonary arterial endothelial cells isolated from fetal lambs (FPAECs). Pharmacological inhibition of PKCdelta with either rottlerin or with the peptide, deltaV1-1, acutely attenuated NO production, and this was associated with a decrease in phosphorylation of eNOS at Ser1177 (S1177). The chronic effects of PKCdelta inhibition using either rottlerin or the overexpression of a dominant negative PKCdelta mutant included the downregulation of eNOS gene expression that was manifested by a decrease in both eNOS promoter activity and protein expression after 24 h of treatment. We also found that PKCdelta inhibition blunted Akt activation as observed by a reduction in phosphorylated Akt at position Ser473. Thus, we conclude that PKCdelta is actively involved in the activation of Akt. To determine the effect of Akt on eNOS signaling, we overexpressed a dominant negative mutant of Akt and determined its effect of NO generation, eNOS expression, and phosphorylation of eNOS at S1177. Our results demonstrated that Akt inhibition was associated with decreased NO production that correlated with reduced phosphorylation of eNOS at S1177, and decreased eNOS promoter activity. We next evaluated the effect of endogenously produced NO on eNOS expression by incubating FPAECs with the eNOS inhibitor 2-ethyl-2-thiopseudourea (ETU). ETU significantly inhibited NO production, eNOS promoter activity, and eNOS protein levels. Together, our data indicate involvement of PKCdelta-mediated Akt activation and NO generation in maintaining eNOS expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号