共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Vera LM López-Olmeda JF Bayarri MJ Madrid JA Sánchez-Vázquez FJ 《Chronobiology international》2005,22(1):67-78
Melatonin production by the pineal organ is influenced by light intensity, as has been described in most vertebrate species, in which melatonin is considered a synchronizer of circadian rhythms. In tench, strict nocturnal activity rhythms have been described, although the role of melatonin has not been clarified. In this study we investigated daily activity and melatonin rhythms under 12:12 light-dark (LD) conditions with two different light intensities (58.6 and 1091 microW/cm2), and the effect of I h broad spectrum white light pulses of different intensities (3.3, 5.3, 10.5, 1091.4 microW/cm2) applied at middarkness (MD) on nocturnal circulating melatonin. The results showed that plasma melatonin in tench under LD 12:12 and high light conditions displayed rhythmic variation, where values at MD (255.8 +/- 65.9 pg/ml) were higher than at midlight (ML) (70.7 +/- 31.9 pg/ml). Such a difference between MD and ML values was reduced in animals exposed to LD 12: 12 and low light intensity. The application of 1 h light pulses at MD lowered plasma melatonin to 111.6 +/- 3.2 pg/ml (in the 3.3-10.5 microW/cm2 range) and to 61.8 +/- 18.3 pg/ml (with the 1091.4 microW/cm2 light pulse) and totally suppressed nocturnal locomotor activity. These results show that melatonin rhythms persisted in tench exposed to low light intensity although the amplitude of the rhythm is affected. In addition, it was observed that light pulses applied at MD affected plasma melatonin content and locomotor activity. Such a low threshold suggests that the melatonin system is capable of transducing light even under dim conditions, which may be used by this nocturnal fish to synchronize to weak night light signals (e.g., moonlight cycles). 相似文献
4.
Sleep in the domestic pigeon (Columba livia) 总被引:1,自引:0,他引:1
5.
Itsuki Oshima Hideki Yamada Maki Goto Koji Sato Shizufumi Ebihara 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1989,166(2):217-226
Summary Although pinealectomy or blinding resulted in loss of the clarity of the free-running rhythm of locomotor activity and body temperature and reduced the peak level of circulating melatonin rhythms to approximately a half in intact pigeons, neither pinealectomy nor blinding abolished any of these rhythms. However, when pinealectomy and blinding were combined, the rhythms of locomotor activity and body temperature disappeared in prolonged constant dim light, and melatonin concentration was reduced to the minimum level of detection. In order to examine the role of melatonin in the pigeon's circadian system, it was administered either daily or continuously to PX + EX-pigeons in LLdim. Daily administration of melatonin restored circadian rhythms of locomotor activity which entrained to melatonin injections, but continuous administration did not induce any remarkable change of locomotor activity. These results suggest that melatonin synthesized in the pineal body and the eye contributes to circulating melatonin and its rhythmicity is important for the control of circadian rhythms of locomotor activity and body temperature in the pigeon.Abbreviations
LD
Light-dark
-
LLdim
constant dim light
-
LLbright
constant bright light
-
PX
pinealectomy
-
EX
blinding
-
SCN
suprachiasmatic nucleus 相似文献
6.
R. Bout H. P. Zeigler 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1994,174(4):443-450
The relation between jaw movements and jaw muscle activity was examined during two different types of drinking in pigeons: tip and rictus drinking. The amplitude and duration of jaw opening is greater for rictus than for tip drinking, but both types involve individual cycles of jaw-opening and closing movements, organized into bouts. Cycle duration increases gradually over the initial portion of the bout and is relatively constant thereafter.Each drinking cycle is composed of an initial rapid jaw-opening component, a sustained opening phase of variable duration and a closing movement. The initial and final phases are related, respectively, to activity in the upper beak levator (protractor) and the jaw closer (adductor, pterygoid) muscles. The amplitude and duration of the sustained phase are correlated with the magnitude and duration of activity in the lower jaw opener (depressor). The kinematic and electromyographic organization of jaw movements during drinking is discussed in relation to the morphology of the jaw apparatus and the functional requirements of the behavior.Abbreviations AMEM
adductor mandibulae externus muscle
- DM
depressor mandibulae muscle
- EMG
electromyographic
- PQP
protractor quadrati et pterygoidei muscle
- PTP
pseudotemporalis profundus muscle
- PVL/PVM
pterygoideus ventralis muscle, pars lateralis and medialis 相似文献
7.
The immune response of the pigeon (Columba livia) 总被引:1,自引:0,他引:1
R M Guttman T Tebo J Edwards J J Barboriak J N Fink 《Journal of immunology (Baltimore, Md. : 1950)》1971,106(2):392-396
8.
Lucitti JL Hedrick MS 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2006,143(1):103-111
Birds have a remarkable capacity to regulate circulation yet little is known about the avian baroreflex. Although both linear regression and curve-fitting techniques are frequently used to assess baroreflex function in mammals, only the former technique has been used in birds. We characterized baroreflex gain in domestic pigeons (Columba livia) and compared gain values derived from applying linear regression to ramp changes in mean arterial pressure (MAP) to values derived from fitting a four-parameter sigmoidal function to steady-state alterations in MAP. We found that, unlike mammals, pigeons do not display circadian patterns in MAP, HR or gain derived from bolus injections of vasoactive drugs. The pressor, but not depressor response, was attenuated by administration of the NMDA-antagonist ketamine, suggesting that central processing of the baroreflex may be similar in birds and mammals despite anatomical differences in arterial baroreceptive zones. Because graded infusions of vasoactive drugs could not consistently produce a plateau in the HR response, fitting data to a sigmoidal curve was difficult. Thus, we propose that variations of the Oxford method and linear regression analysis are superior method to assess baroreflex gain in pigeons than curve fitting. 相似文献
9.
10.
L. E. Hart V. Ravindran A. Young 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》1992,162(6):535-538
Summary Calcium and phosphorus were measured in the yolk and albumen of fertile pigeon (Columba livia) eggs incubated for 0–17 days, and in embryos and hatchlings. Shell provided most of the calcium for skeletal mineralization of the embryos, whereas phosphorus was derived from the yolk and albumen. Mobilization of calcium from the shell to the embryo commenced at approximately day 11 of incubation, accumulating both in the embryo and the yolk sac. There was 1.4 times more calcium in squab yolk sacs than that contained in newly laid egg yolks. The results suggest that whereas general patterns of calcium and phosphorus accumulation during embryogenesis in altricial birds closely resemble those of precocial birds, calcium mobilization from the shell begins later, proceeds at a slower rate and results in a less mineralized hatchling.CIDA/NSERC Visiting Research Associate
Permanent address: Department of Animal Science, University of Peradeniya, Peradeniya, Sri Lanka 相似文献
11.
Arieli Y Peltonen L Ophir E 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2002,131(3):497-504
The present study provides an up-to-date overview of the cutaneous water-evaporation cooling mechanism in the rock pigeon. Cutaneous water evaporation fully replaces the classic respiratory cooling mechanism in the resting, heat-acclimated bird, and is more economical in terms of water conservation. It enables the pigeon to maintain homeostasis, and to breed successfully in harsh environments. Adrenergic signaling is involved in the initiation of this novel mechanism, either by deactivation of the beta-adrenergic receptors (ARs), or activation of the alpha-AR. The adrenergic signaling results in a marked increase in cutaneous blood flow and in the arterial-to-venous blood-flow ratio. This is associated with alterations in the cutaneous capillary wall ultrastructure, which increase its permeability to plasma proteins and water. The end result of this process might be an increase in water efflux from the capillary lumen. The properties of beta-ARs were measured in the cardiac muscle of thermal-acclimated pigeons. Significant down-regulation in the density of beta-ARs, associated with increased affinity of these receptors, was measured in the heat-acclimated pigeon. Concomitantly, changes in the skin ultrastructure and lipid composition were found in very well defined patches in the epidermis of heat-acclimated pigeons. These suppress the skin resistance to water transfer. We suggest that this cooling mechanism involves finely orchestrated adjustments in the ultrastructure of the skin and the cutaneous capillaries, and in skin blood flow. Adrenergic signals are among those factors that regulate this cooling mechanism during exposure to a hot environment. 相似文献
12.
Jörg Lewald 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1990,167(4):533-543
Summary The directionality of cochlear microphonic potentials in the azimuthal plane was investigated in the pigeon (Columba livia), using acoustic free-field stimulation (pure tones of 0.25–6 kHz).At high frequencies in the pigeon's hearing range (4–6 kHz), changing azimuth resulted in a maximum change of the cochlear microphonic amplitude by about 20 dB (SPL). The directionality decreased clearly with decreasing frequency.Acoustic blocking of the contralateral ear canal could reduce the directional sensitivity of the ipsilateral ear by maximally 8 dB. This indicates a significant sound transmission through the bird's interaural pathways. However, the magnitude of these effects compared to those obtained by sound diffraction (maximum > 15 dB) suggests that pressure gradients at the tympanic membrane are only of subordinate importance for the generation of directional cues.The comparison of interaural intensity differences with previous behavioral results confirms the hypothesis that interaural intensity difference is the primary directional cue of azimuthal sound localization in the high-frequency range (2–6 kHz).Abbreviations
CM
cochlear microphonic potential
-
IID
interaural intensity difference
-
IID-MRA
minimum resolvable angle calculated from interaural intensity difference
-
MRA
minimum resolvable angle
-
OTD
interaural ongoing time difference
-
RMS
root mean square
-
SPL
sound pressure level 相似文献
13.
We isolated five classes of retinal opsin genes rh1(Cl), rh2(Cl), sws1(Cl), sws2(Cl), and lws(Cl) from the pigeon; these encode RH1(Cl), RH2(Cl), SWS1(Cl), SWS2(Cl), and LWS(Cl) opsins, respectively. Upon binding to 11-cis-retinal, these opsins regenerate the corresponding photosensitive molecules, visual pigments. The absorbance spectra of visual pigments have a broad bell shape with the peak, being called lambdamax. Previously, the SWS1(Cl) opsin cDNA was isolated from the pigeon retinal RNA, expressed in cultured COS1 cells, reconstituted with 11-cis-retinal, and the lambdamax of the resulting SWS1(Cl) pigment was shown to be 393 nm. In this article, using the same methods, the lambdamax values of RH1(Cl), RH2(Cl), SWS2(Cl), and LWS(Cl) pigments were determined to be 502, 503, 448, and 559 nm, respectively. The pigeon is also known for its UV vision, detecting light at 320-380 nm. Being the only pigments that absorb light below 400 nm, the SWS1(Cl) pigments must mediate its UV vision. We also determined that a nonretinal P(Cl) pigment in the pineal gland of the pigeon has a lambdamax value at 481 nm. 相似文献
14.
R. Bermejo M. Remy H. P. Zeigler 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1992,170(3):303-309
Summary Movements of the maxilla and mandible were recorded during drinking in the head-fixed pigeon and correlated with electromyographic activity in representative jaw muscle groups. During drinking, each jaw exhibits opening and closing movements along both the dorso-ventral and rostro-caudal axes which may be linked with or independent of each other. All subjects showed small but systematic increases in cycle duration over the course of individual drinking bouts. Cyclic jaw movements during drinking were correlated with nearly synchronous activity in the protractor (levator) of the upper jaw and in several jaw closer muscles, as well as with alternating activity in tongue protractor and retractor muscles. No EMG activity was ever recorded in the lower jaw opener muscle, suggesting that lower jaw opening in this preparation is produced, indirectly, by the contraction of other muscles. The results clarify the contribution of the individual jaws to the generation of gape variations during drinking in this species.Abbreviations
AMEM
adductor mandibulae externus muscle
-
DM
depressor mandibulae muscle
-
EMG
electromyographic
-
GENIO
geniohyoideus muscle
-
LB
lower beak
-
LED
light-emitting diode
-
PQP
protractor quadrati et pterygoidei muscle
-
PVL
pterygoideus ventralis muscle, pars lateralis
-
SeH/StH
serpihyoideus or stylohyoideus muscle
-
UB
upper beak 相似文献
15.
Jun -Xian Shen 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1983,152(2):251-255
Summary The pigeon (Columba livia) has a well-developed ability to detect weak vibrations. Using the method of heart-rate conditioning the vibrational sensitivity was determined for four pigeons at an error probability of P<0.025. The threshold-frequency relationships indicate that the greatest sensitivity to vibrational stimuli is found in the frequency range from 300 to 1,000 Hz with thresholds of about 0.1 m; lowest threshold is 0.04 m at 500 Hz (Fig. 4). Pigeons can respond not only to the frequency of a stimulus, but also to its intensity. The interval decrement (in %) of ECG is a positive correlative function of the stimulus intensity, the calculated values being approximately 4–5% per order of magnitude of the stimulus amplitude (in m) at best frequencies (Fig. 5). The value of vibration detection for birds is discussed.Abbreviation
ECG
electrocardiogram 相似文献
16.
Oliveira C Ortega A López-Olmeda JF Vera LM Sánchez-Vázquez FJ 《Chronobiology international》2007,24(4):615-627
Light is the most important synchronizer of melatonin rhythms in fish. This paper studies the influence of the characteristics of light on plasma melatonin rhythms in sole. The results revealed that under long-term exposure to constant light conditions (LL or DD), the total 24 h melatonin production was significantly higher than under LD, but LL and DD conditions influenced the rhythms differently. Under LL, melatonin remained at around 224 pg/ml throughout the 24 h, while under DD a significant elevation (363.6 pg/ml) was observed around the subjective evening. Exposure to 1 h light pulses at MD (mid-dark) inhibited melatonin production depending on light intensity (3.3, 5.3, 10.3, and 51.9 microW/cm(2)). The light threshold required to reduce nocturnal plasma melatonin to ML (mid-light) values was 5.3 microW/cm(2). Melatonin inhibition by light also depended on the wavelength of the light pulses: while a deep red light (lambda>600 nm) failed to reduce plasma melatonin significantly, far violet light (lambda(max)=368 nm) decreased indoleamine's concentration to ML values. These results suggest that dim light at night (e.g., moonlight) may be perceived and hence affect melatonin rhythms, encouraging synchronization to the lunar cycle. On the other hand, deep red light does not seem to inhibit nocturnal melatonin production, and so it may be used safely during sampling at night. 相似文献
17.
Stefanini MA Orsi AM Gregório EA Viotto MJ Baraldi-Artoni SM 《Journal of morphology》1999,242(3):247-255
The efferent ductules of the pigeon are localized in the epididymal region and are topographically divided into proximal and distal, both portions being lined with stereociliated pseudostratified epithelium. Transmission electron microscopy shows five distinct cell types: light, dark, and angular non-ciliated cells with possible apocrine secretory role cells and halo cells, possibly intraepithelial leucocytes. The proximal efferent ductules have the widest diameter among all ductules in the epididymal region. 相似文献
18.
Melvin L. Kreithen William T. Keeton 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1974,89(1):73-82
Summary Homing pigeons were tested for their ability to detect air pressure changes in an otherwise constant environment chamber. Ten of 12 birds tested did respond to the pressure changes. The 50% threshold of detection was 10 mm H2O or less, which is approximately equivalent to a change in altitude of 10 m or less. Performance was better in a chamber with artificial background noise than in an abnormally quiet chamber.We thank Drs. D. R. Griffin, K. Adler, and J. Hatch for reading and criticizing an early draft of this paper. This work was supported by an NSF Graduate Fellowship to M. Kreithen, a grant from the Cornell Office of Sponsored Research, and NSF Research Grants GB 13046 X and GB 35199 X to W. T. Keeton. 相似文献
19.