首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While screening Old Order Amish children for glutaric aciduria type 1 (GA1) between 1989 and 1993, we found three healthy children who excreted abnormal quantities of glutaric acid but low 3-hydroxyglutaric acid, a pattern consistent with glutaric aciduria type 3 (GA3). None of these children had the GCDH c.1262C→T mutation that causes GA1 among the Amish. Using single-nucleotide polymorphism (SNP) genotypes, we identified a shared homozygous 4.7 Mb region on chromosome 7. This region contained 25 genes including C7orf10, an open reading frame with a putative mitochondrial targeting sequence and coenzyme-A transferase domain. Direct sequencing of C7orf10 revealed that the three Amish individuals were homozygous for a nonsynonymous sequence variant (c.895C→T, Arg299Trp). We then sequenced three non-Amish children with GA3 and discovered two nonsense mutations (c.322C→T, Arg108Ter, and c.424C→T, Arg142Ter) in addition to the Amish mutation. Two pathogenic alleles were identified in each of the six patients. There was no consistent clinical phenotype associated with GA3. In affected individuals, urine molar ratios of glutarate to its derivatives (3-hydroxyglutarate, glutarylcarnitine, and glutarylglycine) were elevated, suggesting impaired formation of glutaryl-CoA. These observations refine our understanding of the lysine-tryptophan degradation pathway and have important implications for the pathophysiology of GA1.  相似文献   

2.
This paper describes a stable isotope dilution method for quantification of 3-hydroxyglutaric acid (3-HGA) in body fluids. The method comprises a solid-phase extraction procedure, followed by gas chromatographic separation and negative chemical ionization mass spectrometric detection. This method is selective and sensitive, and enables measurement of 3-HGA concentrations in urine-, plasma-, and CSF- samples of controls. The control ranges for 3-HGA were: urine 0.88-4.5 mmol/mol creatinine (n=12); plasma 0.018-0.10 micro mol/l (n=10), CSF 0.022-0.067 micro mol/l (n=10). We applied this method to measure 3-HGA in body fluids of three patients with glutaric aciduria type I. We also quantified 3-HGA in amniotic fluid of controls (range 0.056-0.11 micro mol/l; n=12) and in two samples from fetuses affected with glutaric aciduria type I.  相似文献   

3.
Glutaric acid (GA) and 3-hydroxyglutaric acids (3-OH-GA) are key metabolites in glutaryl co-enzyme A dehydrogenase (GCDH) deficiency and are both considered to be potential neurotoxins. As cerebral concentrations of GA and 3-OH-GA have not yet been studied systematically, we investigated the tissue-specific distribution of these organic acids and glutarylcarnitine in brain, liver, skeletal and heart muscle of Gcdh-deficient mice as well as in hepatic Gcdh-/- mice and in C57Bl/6 mice following intraperitoneal loading. Furthermore, we determined the flux of GA and 3-OH-GA across the blood-brain barrier (BBB) using porcine brain microvessel endothelial cells. Concentrations of GA, 3-OH-GA and glutarylcarnitine were significantly elevated in all tissues of Gcdh-/- mice. Strikingly, cerebral concentrations of GA and 3-OH-GA were unexpectedly high, reaching similar concentrations as those found in liver. In contrast, cerebral concentrations of these organic acids remained low in hepatic Gcdh-/- mice and after intraperitoneal injection of GA and 3-OH-GA. These results suggest limited flux of GA and 3-OH-GA across the BBB, which was supported in cultured porcine brain capillary endothelial cells. In conclusion, we propose that an intracerebral de novo synthesis and subsequent trapping of GA and 3-OH-GA should be considered as a biochemical risk factor for neurodegeneration in GCDH deficiency.  相似文献   

4.
Homogentisic acid (HGA) (50 mg/kg) was given orally to 22 obligate heterozygotes for hereditary tyrosinemia type 1 (HT) and to 11 controls. After 1 h the mean +/- standard error (SE) plasma level of HGA was 30.42 +/- 1.41 micrograms/ml in carriers and 19.29 +/- 1.62 in controls. Mean +/- SE fasting delta-amino-levulinate dehydratase (delta-ALD) was 40.05 +/- 1.79 m microM/min/g Hb in carriers, much lower than the 60.81 +/- 5.11 found in controls. After 3 h this difference in levels of delta-ALD remained, with mean +/- SE values of 25.70 +/- 2.89 m microM/min/g Hb in carriers, compared with 48.83 +/- 5.37 in controls. Three-hour mean +/- SE excretion of fumarylacetone "equivalent" [FAc] in urine in carriers, 51.597 +/- 5.580 micrograms/mg/creatinine, was significantly higher than the 27.941 +/- 5.916 in controls. Three-hour excretion of succinylacetone "equivalent" [SAc] was also significantly higher in the urine of carriers. FAc in 3-h urine was identified by thin-layer chromatography and confirmed by gas chromatography/mass spectrometry. Multivariate stepwise discriminant analysis showed that the inclusion order of significant variables was as follows: HGA levels at 1 hr, fasting level of delta-ALD, residual level of HGA at 3 h, and 3-h excretion of [FAc]. Non-significant variables were HGA tolerance, levels of delta-ALD at 3 h, sex, and 3-h excretion of [SAc].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Glutaric acidemia type I (GA I) is an inherited neurometabolic disorder caused by glutaryl-CoA dehydrogenase deficiency, which leads to accumulation in body fluids and in brain of predominantly glutaric acid (GA), and to a lesser extent of 3-hydroxyglutaric and glutaconic acids. Neurological presentation is common in patients with GA I. Although the mechanisms underlying brain damage in this disorder are not yet well established, there is growing evidence that excitotoxicity may play a central role in the neuropathogenesis of this disease. In the present study, preparations of synaptosomes, synaptic plasma membranes and synaptic vesicles, as well as cultured astrocytes from rat forebrain were exposed to various concentrations of GA for the determination of the basal and potassium-induced release of [(3)H]glutamate by synaptosomes, Na(+)-independent glutamate binding to synaptic membranes and vesicular glutamate uptake and Na(+)-dependent glutamate uptake into astrocytes, respectively. GA (1-100 nM) significantly stimulated [(3)H]glutamate binding to brain plasma membranes (40-70%) in the absence of extracellular Na(+) concentrations, reflecting glutamate binding to receptors. Furthermore, this stimulatory effect was totally abolished by the metabotropic glutamate ligands DHPG, DCG-IV and l-AP4, attenuated by the ionotropic non-NMDA glutamate receptor agonist AMPA and had no interference of the NMDA receptor antagonist MK-801. Moreover, [(3)H]glutamate uptake into synaptic vesicles was inhibited by approximately 50% by 10 and 100 nM GA and Na(+)-dependent [(3)H]glutamate uptake by astrocytes was significantly increased (up to 50%) in a dose-dependent manner (maximal stimulation at 100 microM GA). In contrast, synaptosomal glutamate release was not affected by the acid at concentrations as high as 1 mM. These results indicate that the inhibition of glutamate uptake into synaptic vesicles by low concentrations GA may result in elevated concentrations of the excitatory neurotransmitter in the cytosol and the stimulatory effect of this organic acid on glutamate binding may potentially cause excitotoxicity to neural cells. Finally, taken together these results and previous findings showing that GA markedly decreases synaptosomal glutamate uptake, it is possible that the stimulatory effect of GA on astrocyte glutamate uptake might indicate that astrocytes may protect neurons from excitotoxic damage caused by GA by increasing glutamate uptake and therefore reducing the concentration of this excitatory neurotransmitter in the synaptic cleft.  相似文献   

6.
The metabolic disorder glutaric aciduria type 1 (GA1) is caused by deficiency of the mitochondrial glutaryl-CoA dehydrogenase (GCDH), leading to accumulation of the pathologic metabolites glutaric acid (GA) and 3-hydroxyglutaric acid (3OHGA) in blood, urine and tissues. Affected patients are prone to metabolic crises developing during catabolic conditions, with an irreversible destruction of striatal neurons and a subsequent dystonic–dyskinetic movement disorder. The pathogenetic mechanisms mediated by GA and 3OHGA have not been fully characterized. Recently, we have shown that GA and 3OHGA are translocated through membranes via sodium-dependent dicarboxylate cotransporter (NaC) 3, and organic anion transporters (OATs) 1 and 4. Here, we show that induced metabolic crises in Gcdh?/? mice lead to an altered renal expression pattern of NaC3 and OATs, and the subsequent intracellular GA and 3OHGA accumulation. Furthermore, OAT1 transporters are mislocalized to the apical membrane during metabolic crises accompanied by a pronounced thinning of proximal tubule brush border membranes. Moreover, mitochondrial swelling and increased excretion of low molecular weight proteins indicate functional tubulopathy. As the data clearly demonstrate renal proximal tubule alterations in this GA1 mouse model during induced metabolic crises, we propose careful evaluation of renal function in GA1 patients, particularly during acute crises. Further studies are needed to investigate if these findings can be confirmed in humans, especially in the long-term outcome of affected patients.  相似文献   

7.
Sheu WH  Chin HM  Lee WJ  Wan CJ  Su HY  Lang HF 《Life sciences》2005,76(18):2137-2145
Elevated total homocysteine concentrations and obesity are both associated with an increased risk of cardiovascular disease. However, previous studies of weight reduction on serum homocysteine concentrations have obtained inconsistent reports. We investigated the effect of folic acid supplementation on serum homocysteine concentrations via a randomized, double-blinded, placebo-controlled study. Seventy-four obese women [age (mean +/- SEM) 41 +/- 1 years; body mass index, 29.6 +/- 0.5 kgs/m2] completed a 12 weeks weight reduction program with dietary advice and light exercise. They were also randomized to take either folic acid supplementation (5 mg daily, n = 36) or placebo (n = 38) groups. This program led to a weight reduction of 7.7% and 8.9% of initial weight for folic acid supplementation and placebo groups, respectively. Serum folate concentrations increased for 3 folds (p < 0.001) in the folic acid group. In the folic acid group, there was a trend of lower fasting serum homocysteine concentrations (7.6 +/- 0.2 vs. 7.3 +/- 0.3 micromol/L), but it did not reach statistical significance (p = 0.170). However, we found that serum homocysteine concentrations decreased significantly in those with higher baseline homocysteine concentrations (8.7 +/- 1.3 vs. 7.8 +/- 1.5 micromol/L, p = 0.004), while it did not change in those with lower baseline homocysteine concentrations (6.6 +/- 0.6 vs. 6.8 +/- 1.2 micromol/L, p = 0.334). Reduction of serum homocysteine concentrations did not correlate with elevation of serum folate concentrations (p = 0.646) in obese women with higher baseline homocysteine concentrations. In conclusion, serum homocysteine concentrations can be maintained in obese women during mild to moderate weight loss. Folic acid supplementation decreased serum homocysteine concentrations in those women who had higher serum homocysteine concentrations before participating in the weight reduction program.  相似文献   

8.
The deficiency of the enzyme glutaryl-CoA dehydrogenase leads to predominant accumulation of glutaric acid (GA) in the organism and is known as glutaric acidemia type I (GA1). Despite the mechanisms of brain damage involved in GA1 are not fully understood, oxidative stress may be involved in this process. Treatment is based on protein/lysine (Lys) restriction and l-carnitine (L-car) supplementation. L-car was recently shown to have an important antioxidant role. A knockout mice model (Gcdh?/?) submitted to a dietary overload of Lys was developed to better understand the GA1 pathogenesis. In this study, we evaluated L-car and glutarylcarnitine levels, the lipid and protein damage, reactive oxygen species (ROS) production and antioxidant enzymes activities in striatum of Gcdh?/? and wild-type (WT) mice. We also determined the effect of the L-car treatment on these parameters. Thirty-day-old Gcdh?/? and WT mice were fed a normal chow (0.9% Lys) or submitted to a high Lys diet (4.7%) for 72 h. Additionally, these animals were administered with three intraperitoneal injections of saline or L-car in different times. Gcdh?/? mice were deficient in L-car and presented a higher glutarylcarnitine levels. They also presented lipid and protein damage, an increased ROS production and altered antioxidant enzymes compared to WT mice. Additionally, mice exposed to Lys overload presented higher alterations in these parameters than mice under normal diet, which were significantly decreased or normalized in those receiving L-car. Thus, we demonstrated a new beneficial effect of the L-car treatment attenuating or abolishing the oxidative stress process in Gcdh?/? mice.  相似文献   

9.
Glutaric aciduria type 1 (GA1) is caused by the deficiency of glutaryl-CoA dehydrogenase (GCDH). Affected patients are prone to the development of encephalopathic crises during an early time window with destruction of striatal neurons and a subsequent irreversible movement disorder. 3-Hydroxyglutaric acid (3OHGA) accumulates in tissues and body fluids of GA1 patients and has been shown to mediate toxic effects on neuronal as well as endothelial cells. Injection of (3H)-labeled into 6 week-old Gcdh(-/-) mice, a model of GA1, revealed a low recovery in kidney, liver, or brain tissue that did not differ from control mice. Significant amounts of 3OHGA were found to be excreted via the intestinal tract. Exposure of Gcdh(-/-) mice to a high protein diet led to an encephalopathic crisis, vacuolization in the brain, and death after 4-5 days. Under these conditions, high amounts of injected 3H-3OHGA were found in kidneys of Gcdh(-/-) mice, whereas the radioactivity recovered in brain and blood was reduced. The data demonstrate that under conditions mimicking encephalopathic crises the blood-brain barrier appears to remain intact.  相似文献   

10.
Spermatozoan maturation, motility, and fertility are, in part, dependent upon the progressive increase in epididymal and spermatozoal carnitine, critical for mitochondrial fatty acid oxidation, as sperm pass from the caput to the cauda of the epididymis. We demonstrate that the organic cation/carnitine transporters, OCTN1, OCTN2, and OCTN3, are expressed in sperm as three distinct proteins with an expected molecular mass of 63 kDa, using Western blot analysis and our transporter-specific antibodies. Carnitine uptake studies in normal control human sperm samples further support the presence of high-affinity (OCTN2) carnitine uptake (K(m) of 3.39+/-1.16 microM; V(max) of 0.23+/-0.14 pmol/min/mg sperm protein; and mean+/-SD; n=12), intermediate-affinity (OCTN3) carnitine uptake (K(m) of 25.9+/-14.7 microM; V(max) of 1.49+/-1.03 pmol/min/mg protein; n=26), and low-affinity (OCTN1) carnitine uptake (K(m) of 412.6+/-191 microM; V(max) of 32.7+/-20.5 pmol/min/mg protein; n=18). Identification of individuals with defective sperm carnitine transport may provide potentially treatable etiologies of male infertility, responsive to L-carnitine supplementation.  相似文献   

11.
Carnitine has a potential effect on exercise capacity due to its role in the transport of long-chain fatty acids into the mitochondria for beta-oxidation, the export of acyl-coenzyme A compounds from mitochondria and the activation of branched-chain amino acid oxidation in the muscle. We studied the effect of carnitine supplementation on palmitate oxidation, maximal exercise capacity and nitrogen balance in rats. Daily carnitine supplementation (500 mg.kg-1 body mass for 6 weeks) was given to 30 rats, 15 of which were on an otherwise carnitine-free diet (group I) and 15 pair-fed with a conventional pellet diet (group II). A control group (group III, n = 6) was fed ad libitum the pellet diet. Palmitate oxidation was measured by collecting 14CO2 after an intraperitoneal injection of [1-14C]palmitate and exercise capacity by swimming to exhaustion. After carnitine supplementation carnitine concentrations in serum were supranormal [group I, total 150.8 (SD 48.5), free 78.9 (SD 18.4); group II, total 170.9 (SD 27.9), free 115.8 (SD 24.6) mumol.l-1] and liver carnitine concentrations were normal in both groups [group I, total 1.6 (SD 0.3), free 1.2 (SD 0.2); group II, total 1.3 (SD 0.3), free 0.9 (SD 0.2) mumol.g-1 dry mass]. In muscle carnitine concentrations were normal in group I [total 3.8 (SD 1.2), free 3.2 (SD 1.0) mumol.g-1 dry mass] and increased in group II [total 6.6 (SD 0.5), free 4.9 (SD 0.9) mumol.g-1 dry mass].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The role of excitotoxicity in the cerebral damage of glutaryl-CoA dehydrogenase deficiency (GDD) is under intense debate. We therefore investigated the in vitro effect of glutaric (GA) and 3-hydroxyglutaric (3-OHGA) acids, which accumulate in GDD, on [(3)H]glutamate uptake by slices and synaptosomal preparations from cerebral cortex and striatum of rats aged 7, 15 and 30 days. Glutamate uptake was significantly decreased by high concentrations of GA in cortical slices of 7-day-old rats, but not in cerebral cortex from 15- and 30-day-old rats and in striatum from all studied ages. Furthermore, this effect was not due to cellular death and was prevented by N-acetylcysteine preadministration, suggesting the involvement of oxidative damage. In contrast, glutamate uptake by brain slices was not affected by 3-OHGA exposure. Immunoblot analysis revealed that GLAST transporters were more abundant in the cerebral cortex compared to the striatum of 7-day-old rats. Moreover, the simultaneous addition of GA and dihydrokainate (DHK), a specific inhibitor of GLT1, resulted in a significantly higher inhibition of [(3)H]glutamate uptake by cortical slices of 7-day-old rats than that induced by the sole presence of DHK. We also observed that both GA and 3-OHGA exposure did not alter the incorporation of glutamate into synaptosomal preparations from cerebral cortex and striatum of rats aged 7, 15 and 30 days. Finally, GA in vivo administration did not alter glutamate uptake into cortical slices from 7-day-old rats. Our findings may explain at least in part why cortical neurons are more vulnerable to damage at birth as evidenced by the frontotemporal cortical atrophy observed in newborns affected by GDD.  相似文献   

13.
Hyperlipidemia is the major risk factors of heart disease such as atherosclerosis, stroke, and death. In the present study, we studied the effect of gallic acid (GA), linoleic acid (LA), mixture of GA and LA (MGL), and chemically synthesized gallic acid-linoleic acid ester (octadeca-9,12-dienyl-3,4,5-trihydroxybenzoate, GLE) on the ability to ameliorate hyperlipidemia in C57BL/6 mice fed a high-fat diet (HFD). GLE, GA, LA, and MGL were mixed with HFD and the composition of the test compounds were 1% of the diet for 7 weeks. After 7 weeks, the average body weight of ND and GLE groups was lower than that of HFD group (P<0.05). The liver weight of mice decreased (P<0.05) in all treatment groups relative to HFD fed group. The plasma lipids such as triglyceride and LDL-cholesterol were found to be decreased (P<0.05) in GLE, GA, LA, and MGL fed mice when compared to that of HFD fed mice. But high-density lipoprotein (HDL) cholesterol increased (P<0.05) in HFD and GLE fed mice when compared to that of ND fed mice. The hepatic accumulation of fat droplets of GA, LA, GLE, and MGL group showed considerably lower than that of HFD group. Adipose histology showed that GLE supplementation was found to be more effective in decreasing the size of adipocyte relative to those of other treatment groups. In conclusion, the supplementation of synthetic GLE from gallic acid and linoleic acid ester may have a potential hypolipidemic effect on mice fed high-fat diet. Further studies are required to prove GLE as a hypolipidemic agent.  相似文献   

14.
Vitamin C (ascorbic acid) is a non-enzymatic antioxidant important in protecting the lung against oxidative damage and is decreased in lung lining fluid of horses with airway inflammation. To examine possible therapeutic regimens in a species with ascorbate-synthesising capacity, we studied the effects of oral supplementation of two forms of ascorbic acid, (each equivalent to 20 mg ascorbic acid per kg body weight) on the pulmonary and systemic antioxidant status of six healthy ponies in a 3 x 3 Latin square design. Two weeks supplementation with ascorbyl palmitate significantly increased mean plasma ascorbic acid concentrations compared to control (29 +/- 5 and 18 +/- 7 micromol/l, respectively; p < 0.05). Calcium ascorbyl-2-monophosphate, a more stable form of ascorbic acid, also increased mean plasma ascorbic acid concentrations, but not significantly (23 +/- 1 micromol/l; p = 0.07). The concentration of ascorbic acid in bronchoalveolar lavage fluid increased in five out of six ponies following supplementation with either ascorbyl palmitate or calcium ascorbyl-2-monophosphate compared with control (30 +/- 10, 25 +/- 4 and 18 +/- 8 micromol/l, respectively; p < 0.01). Neither supplement altered the concentration of glutathione, uric acid or alpha-tocopherol in plasma or bronchoalveolar lavage fluid. In conclusion, the concentration of lung lining fluid ascorbic acid is increased following ascorbic acid supplementation (20 mg/kg body weight) in an ascorbate-synthesising species.  相似文献   

15.
Maintaining hyperinsulinemia ( approximately 160 mU/l) during steady-state hypercarnitinemia ( approximately 550 mumol/l) increases skeletal muscle total carnitine (TC) content by approximately 15% within 5 h. The aim of the present study was to further examine the relationship between serum insulin concentration and skeletal muscle carnitine accumulation by attempting to identify the serum insulin concentration at which this stimulatory effect of insulin on carnitine retention becomes apparent. On four randomized experimental visits, eight healthy men (body mass index 23.8 +/- 0.9 kg/m(2)) underwent a 6-h euglycemic insulin clamp of 5, 30, 55, or 105 mU x m(-2) x min(-1) accompanied by a 5-h iv infusion of l-carnitine (15 mg/kg bolus followed by 10 mg x kg(-1) x h(-1)). The clamps produced steady-state serum insulin concentrations of 10.1 +/- 0.5, 48.8 +/- 1.0, 88.9 +/- 2.8, and 173.9 +/- 6.5 mU/l, respectively. During l-carnitine infusion, plasma TC concentration remained above 450 mumol/l during all four visits. However, there was a significant treatment effect of insulin (P < 0.001), such that by the end of infusion the plasma TC concentration in the 55- and 105-mU clamps was lower than that seen in the 5- (P < 0.05 and P < 0.01, respectively) and 30-mU (P < 0.01) clamps. The findings demonstrate that only high circulating serum insulin concentrations (> or =90 mU/l) are capable of stimulating skeletal muscle carnitine accumulation. This is of relevance to athletes, and the treatment of obesity and type 2 diabetes, where increasing skeletal muscle carnitine content may be used as tool to modify skeletal muscle energy metabolism.  相似文献   

16.
3-(N-Methylamino)glutaric acid has been identified as a new free amino acid in extracts from Prochloron didemnii (Lewin), a unique prokaryotic algal symbiont associated with certain didemnid ascidians. Its structure was established by elucidation of the mass spectra of its TMSi and other derivatives and confirmed by synthesis.  相似文献   

17.
The possibility was investigated that the serum level of 7 alpha-hydroxycholesterol can be used as a marker for cholesterol 7 alpha-hydroxylase activity. Six patients with gallstone disease were found to have a mean level of 7 alpha-hydroxycholesterol in serum of 30 +/- 4 ng/ml (mean +/- SEM) as measured by isotope dilution-mass spectrometry, using deuterated 7 alpha-hydroxycholesterol as internal standard. After treatment with cholestyramine in a dose of 8 g twice daily for 2-3 weeks preoperatively, the serum level increased to 128 +/- 20 ng/ml (P less than 0.001). Eight other patients with gallstone disease had a mean level of 7 alpha-hydroxycholesterol in serum of 29 +/- 7 ng/ml. Treatment with chenodeoxycholic acid, 15 mg per kg body weight per day for 3-4 weeks before surgery, decreased the mean level to 20 +/- 7 ng/ml (P greater than 0.05). The activity of the cholesterol 7 alpha-hydroxylase in liver biopsies taken during operation was found to be 38 +/- 5 pmol/min per mg of protein in the group of patients treated with cholestyramine and 1.3 +/- 0.5 pmol/min per mg in the group of patients treated with chenodeoxycholic acid. Liver biopsies from a group of untreated patients (n = 13) had a mean cholesterol 7 alpha-hydroxylase activity of 7.6 +/- 1.5 pmol/min per mg.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Antenatal diagnosis of glutaric acidemia   总被引:2,自引:0,他引:2       下载免费PDF全文
Two pregnancies at risk for glutaric acidemia were monitored. In one, in which the fetus was not affected, glutaric acid was not detected in the amniotic fluid at amniocentesis (15 weeks) and the glutaryl-CoA dehydrogenase activity of cultured amniotic cells was normal. In the other, a marked elevation of glutaric acid in the amniotic fluid, together with deficiency of glutaryl-CoA dehydrogenase in amniotic cells, prompted termination of the pregnancy, and studies on the abortus confirmed the diagnosis of glutaric acidemia. Glutaric acidemia, is, thus, another inborn error of metabolism which can be diagnosed in utero.  相似文献   

19.
The present study was designed to study the interaction of propionic acid and carnitine on oxidative metabolism by isolated rat hepatocytes. Propionic acid (10 mM) inhibited hepatocyte oxidation of [1-14C]-pyruvate (10 mM) by 60%. This inhibition was not the result of substrate competition, as butyric acid had minimal effects on pyruvate oxidation. Carnitine had a small inhibitory effect on pyruvate oxidation in the hepatocyte system (210 +/- 19 and 184 +/- 18 nmol of pyruvate/60 min per mg of protein in the absence and presence of 10 mM-carnitine respectively; means +/- S.E.M., n = 10). However, in the presence of propionic acid (10 mM), carnitine (10 mM) increased the rate of pyruvate oxidation by 19%. Under conditions where carnitine partially reversed the inhibitory effect of propionic acid on pyruvate oxidation, formation of propionylcarnitine was documented by using fast-atom-bombardment mass spectroscopy. Propionic acid also inhibited oxidation of [1-14C]palmitic acid (0.8 mM) by hepatocytes isolated from fed rats. The degree of inhibition caused by propionic acid was decreased in the presence of 10 mM-carnitine (41% inhibition in the absence of carnitine, 22% inhibition in the presence of carnitine). Propionic acid did not inhibit [1-14C]palmitic acid oxidation by hepatocytes isolated from 48 h-starved rats. These results demonstrate that propionic acid interferes with oxidative metabolism in intact hepatocytes. Carnitine partially reverses the inhibition of pyruvate and palmitic acid oxidation by propionic acid, and this reversal is associated with increased propionylcarnitine formation. The present study provides a metabolic basis for the efficacy of carnitine in patients with abnormal organic acid accumulation, and the observation that such patients appear to have increased carnitine requirements ('carnitine insufficiency').  相似文献   

20.
A simple, highly selective, and sensitive method using stable isotope dilution and gas chromatography-mass spectrometry has been developed to quantify salicylic acid (SA) at concentrations naturally occurring in biological fluids, such as in the serum of subjects not taking aspirin. After extraction of liquid-liquid with diethyl ether and ethyl acetate and preparation of the tert-butyldimethylsilyl derivative, SA content was detected using deuterated SA as internal standard. The mean recovery of SA from serum was 85 +/- 6%. Intra- and interday precision and % relative error were <15% in all cases.With a detection limit of 0.6 ng and a quantification limit of 2 ng, the method is therefore also adequate for population studies because of the small amount of blood necessary to perform the analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号