首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have recently identified farnesol, an intermediate in the mevalonate pathway, as a potent endogenous modulator and blocker of N-type calcium channels (Roullet, J. B., R. L. Spaetgens, T. Burlingame, and G. W. Zamponi. 1999. J. Biol. Chem. 274:25439-25446). Here, we investigate the action of structurally related compounds on various types of voltage-dependent Ca(2+) channels transiently expressed in human embryonic kidney cells. 1-Dodecanol, despite sharing the 12-carbon backbone and headgroup of farnesol, exhibited a significantly lower blocking affinity for N-type Ca(2+) channels. Among several additional 12-carbon compounds tested, dodecylamine (DDA) mediated the highest affinity inhibition of N-type channels, indicating that the functional headgroup is a critical determinant of blocking affinity. This inhibition was concentration-dependent and relatively non-discriminatory among N-, L-, P/Q-, and R-Ca(2+) channel subtypes. However, whereas L-type channels exhibited predominantly resting channel block, the non-L-type isoforms showed substantial rapid open channel block manifested by a speeding of the apparent time course of current decay and block of the inactivated state. Consistent with these findings, we observed significant frequency-dependence of block and dependence on external Ba(2+) concentration for N-type, but not L-type, channels. We also systematically investigated the drug structural requirements for N-type channel inhibition. Blocking affinity varied with carbon chain length and showed a clear maximum at C12 and C13, with shorter and longer molecules producing progressively weaker peak current block. Overall, our data indicate that aliphatic monoamines may constitute a novel class of potent inhibitors of voltage-dependent Ca(2+) channels, with block being governed by rigid structural requirements and channel-specific state dependencies.  相似文献   

2.
Synthesis and structure-activity relationship (SAR) study of L-amino acid-based N-type calcium channel blockers are described. The compounds synthesized were evaluated for inhibitory activity against both N-type and L-type calcium channels focusing on selectivity to reduce cardiovascular side effects due to blocking of L-type calcium channels. In the course of screening of our compound library, N-(t-butoxycarbonyl)-L-aspartic acid derivative 1a was identified as an initial lead compound for a new series of N-type calcium channel blockers, which inhibited calcium influx into IMR-32 human neuroblastoma cells with an IC(50) of 3.4 microM. Compound 1a also exhibited blockade of N-type calcium channel current in electrophysiological experiment using IMR-32 cells (34% inhibition at 10 microM, n=3). As a consequence of conversion of amino acid residue of 1a, compound 12a, that include N-(t-butoxycarbonyl)-L-cysteine, was found to be a potent N-type calcium channel blocker with an IC(50) of 0.61 microM. Thus, L-cysteine was selected as a potential structural motif for further modification. Optimization of C- and N-terminals of L-cysteine using S-cyclohexylmethyl-L-cysteine as a central scaffold led to potent and selective N-type calcium channel blocker 21f, which showed improved inhibitory potency (IC(50) 0.12 microM) and 12-fold selectivity for N-type calcium channels over L-type channels.  相似文献   

3.
Selective N-type voltage sensitive calcium channel (VSCC) blockers have shown efficacy in several animal models of stroke and pain. In the process of searching for small molecule N-type calcium channel blockers, we have identified a series of N-methyl-N-aralkyl-peptidylamines with potent functional activity at N-type VSCCs. The most active compound discovered in this series is PD 173212 (11, IC50 = 36 nM in the IMR-32 assays). SAR and pharmacological evaluation of this series are described.  相似文献   

4.
Selective N-type Voltage Activated Calcium Channel (VACC) blockers have shown utility in several models of stroke and pain. In the process of searching for small molecules as N-type calcium channel blockers, we have identified a series of N,N-dialkylpeptidylamines (e.g., PD 175069) with potent functional activity at N-type VACC. Further modification of the leucine moiety of PD 175069 with a cyclized ring structure provides a series of novel molecules. Syntheses and pharmacological evaluation of the series are presented.  相似文献   

5.
N-type calcium channels located on presynaptic nerve terminals regulate neurotransmitter release, including that from the spinal terminations of primary afferent nociceptors. Accordingly, N-type calcium channel blockers may have clinical utility as analgesic drugs. A selective N-type calcium channel inhibitor, ziconotide (Prialt), is a neuroactive peptide recently marketed as a novel nonopioid treatment for severe chronic pain. To develop a small-molecule N-type calcium channel blocker, the authors developed a 96-well plate high-throughput screening scintillation proximity assay (SPA) for N-type calcium channel blockers using [125I]-labeled omega-conotoxin GVIA as a channel-specific ligand. Assay reagents were handled using Caliper's Allegro automation system, and bound ligands were detected using a PerkinElmer TopCount. Using this assay, more than 150,000 compounds were screened at 10 microM and approximately 340 compounds were identified as hits, exhibiting at least 40% inhibition of [125I]GVIA binding. This is the 1st demonstration of the use of [125I]-labeled peptides with SPA beads to provide a binding assay for the evaluation of ligand binding to calcium channels. This assay could be a useful tool for drug discovery.  相似文献   

6.
Voltage activated calcium channel (VACC) blockers have been demonstrated to have utility in the treatment of stroke and pain. A series of aminomethyl substituted phenol derivatives has been identified with good functional activity and selectivity for N-type VACC's over sodium and potassium channels. The methods of synthesis and preliminary pharmacology are discussed herein.  相似文献   

7.
A benzothiazole-derived compound (4a) designed to mimic the C(alpha)-C(beta) bond vectors and terminal functionalities of Lys2, Tyr13 and Arg17 in omega-conotoxin GVIA was synthesised, together with analogues (4b-d), which had each side-chain mimic systematically truncated or eliminated. The affinity of these compounds for rat brain N-type and P/Q-type voltage gated calcium channels (VGCCs) was determined. In terms of N-type channel affinity and selectivity, two of these compounds (4a and 4d) were found to be highly promising, first generation mimetics of omega-conotoxin. The fully functionalised mimetic (4a) showed low microM binding affinity to N-type VGCCs (IC(50)=1.9 microM) and greater than 20-fold selectivity for this channel sub-type over P/Q-type VGCCs, whereas the mimetic in which the guanidine-type side chain was truncated back to an amine (4d, IC(50)= 4.1 microM) showed a greater than 25-fold selectivity for the N-type channel.  相似文献   

8.
A structure-activity relationship study of 6-unsubstituted-1,4-dihydropyridine and 2,6-unsubstituted-1,4-dihydropyridine derivatives was conducted in an attempt to discover N-type calcium channel blockers that were highly selective over L-type calcium channel blockers. Among the tested compounds, (+)-4-(3,5-dichloro-4-methoxy-phenyl)-1,4-dihydro-pyridine-3,5-dicarboxylic acid 3-cinnamyl ester was found to be an effective and selective N-type calcium channel blocker with oral analgesic potential.  相似文献   

9.
Selective N-type voltage sensitive calcium channel (VSCC) blockers have shown utility in several models of stroke and pain. We are especially interested in small molecule N-type calcium channel blockers for therapeutic use. Herein, we report a series of N,N-dialkyl-dipeptidylamines with potent functional activity at N-type VSCCs and in vivo efficacy. The synthesis, SAR, and pharmacological evaluation of this series are discussed.  相似文献   

10.
Voltage-gated calcium channels couple changes in membrane potential to neuronal functions regulated by calcium, including neurotransmitter release. Here we report that presynaptic N-type calcium channels not only control neurotransmitter release but also regulate synaptic growth at Drosophila neuromuscular junctions. In a screen for behavioral mutants that disrupt synaptic transmission, an allele of the N-type calcium channel locus (Dmca1A) was identified that caused synaptic undergrowth. The underlying molecular defect was identified as a neutralization of a charged residue in the third S4 voltage sensor. RNA interference reduction of N-type calcium channel expression also reduced synaptic growth. Hypomorphic mutations in syntaxin-1A or n-synaptobrevin, which also disrupt neurotransmitter release, did not affect synapse proliferation at the neuromuscular junction, suggesting calcium entry through presynaptic N-type calcium channels, not neurotransmitter release per se, is important for synaptic growth. The reduced synapse proliferation in Dmca1A mutants is not due to increased synapse retraction but instead reflects a role for calcium influx in synaptic growth mechanisms. These results suggest N-type channels participate in synaptic growth through signaling pathways that are distinct from those that mediate neurotransmitter release. Linking presynaptic voltage-gated calcium entry to downstream calcium-sensitive synaptic growth regulators provides an efficient activity-dependent mechanism for modifying synaptic strength.  相似文献   

11.
Diapause and hibernation during periods of environmental adversity are essential features of the life cycle in many organisms, yet the molecular basis for these events differs among animals. We have identified an endogenous diapause/hibernation-specific peptide, from the leaf beetle Gastrophysa atrocyanea. This peptide provides antifungal activity, acts as a N-type voltage-gated Ca2+ channel blocker, and has a new consensus sequence with an unknown polypeptide encoded in the insect iridescent virus. These results indicate that the diapause-specific peptide may be utilized as a probe to analyze and compare functional and evolutional aspects of the life cycles of insects and iridoviruses.  相似文献   

12.
N-type calcium channels are critical for pain transduction. Inhibitors of these channels are powerful analgesics, but clinical use of current N-type blockers remains limited by undesirable actions in other regions of the nervous system. We now demonstrate that a unique splice isoform of the N-type channel is restricted exclusively to dorsal root ganglia. By a combination of functional and molecular analyses at the single-cell level, we show that the DRG-specific exon, e37a, is preferentially present in Ca(V)2.2 mRNAs expressed in neurons that contain nociceptive markers, VR1 and Na(V)1.8. Cell-specific inclusion of exon 37a correlates closely with significantly larger N-type currents in nociceptive neurons. This unique splice isoform of the N-type channel could represent a novel target for pain management.  相似文献   

13.
Due to their selectivity towards voltage-sensitive calcium channels (VSCCs) omega-conotoxins are being exploited as a new class of therapeutics in pain management and may also have potential application in ischaemic brain injury. Here, the structure-activity relationships (SARs) of several omega-conotoxins including GVIA, MVIIA, CVID and MVIIC are explored. In addition, the three-dimensional structures of these omega-conotoxins and some structurally related peptides that form the cysteine knot are compared, and the effects of the solution environment on structure discussed. The diversity of binding and functional assays used to measure omega-conotoxin potencies at the N-type VSCC warranted a re-evaluation of the relationship between these assays. With one exception, [A22]-GVIA, this analysis revealed a linear correlation between functional (peripheral N-type VSCCs) and radioligand binding assays (central N-type VSCCs) for the omega-conotoxins and analogues that were tested over three studies. The binding and functional results of several studies are compared in an attempt to identify and distinguish those residues that are important in omega-conotoxin function as opposed to those that form part of the structural scaffold. Further to determining what omega-conotoxin residues are important for VSCC binding, the range of possible interactions between the ligand and channel are considered and the factors that influence the selectivity of MVIIA, GVIA and CVID towards N-type VSCCs examined.  相似文献   

14.
Both N- and T-type calcium ion channels have been implicated in pain transmission and the N-type channel is a well-validated target for the treatment of neuropathic pain. An SAR investigation of a series of substituted aminobenzothiazoles identified a subset of five compounds with comparable activity to the positive control Z160 in a FLIPR-based intracellular calcium response assay measuring potency at both CaV2.2 and CaV3.2 channels. These compounds may form the basis for the development of drug leads and tool compounds for assessing in vivo effects of variable modulation of CaV2.2 and CaV3.2 channels.  相似文献   

15.
How many different calcium channels does it take to make a nervous system? The answer: more than any of us predicted. In 1975 Hagiwara and colleagues published the first evidence that functionally different calcium channels are expressed in cells. By 1999, the calcium channel family could boast ten members, each member defined by a unique set of attributes to support their cellular functions and by unique amino acid sequences. Although nine of these genes are expressed in the nervous system, that number still seemed insufficient to support the wide spectrum of neuronal functions controlled by voltage-gated calcium channels. This discrepancy is probably explained by alternative pre-messenger RNA splicing which substantially expands the number of protein activities available from a limited number of genes. Like many other ion channel genes, each Ca(V)alpha(1) gene has the capacity to generate perhaps thousands of unique splice isoforms with unique functional properties. The high level of conservation among alternatively spliced exons in Ca(V)2.2 genes of different species and in some cases closely related genes implies biological importance. A number of Ca(V)alpha(1) isoforms have been identified from neural tissue but until recently we lacked direct evidence linking a specific splice site in a calcium channel gene to a specific function in an identified neuron population. Our recent studies show that alternative pre-mRNA splicing of a pair of 32 amino acid encoding exons in the C-terminus of Ca(V)2.2, e37a and e37b, underlie the expression of two mutually exclusive N-type channel isoforms. The inclusion of e37a creates a module that couples the N-type channel to a powerful form of G protein-dependent inhibition. The inhibitory pathway that works through e37a is voltage-independent, requires G(i/o) and tyrosine kinase activation, and is used by mu opioid and GABA(B) receptors to downregulate N-type channel activity. Combined with our previous studies that show enrichment of e37a in nociceptors, our data suggest a molecular basis for the high susceptibility of N-type currents in sensory neurons to voltage-independent inhibition following G protein activation.  相似文献   

16.
N-type calcium channels represent a promising target for the treatment of neuropathic pain. The selective N-type calcium channel blocker ziconotide ameliorates severe chronic pain but has a narrow therapeutic window and requires intrathecal administration. We identified tetrahydroisoquinoline derivative 1a as a novel potent N-type calcium channel blocker. However, this compound also exhibited potent inhibitory activity against hERG channels. Structural optimizations led to identification of (1S)-(1-cyclohexyl-3,4-dihydroisoquinolin-2(1H)-yl)-2-{[(1-hydroxycyclohexyl)methyl]amino}ethanone ((S)-1h), which exhibited high selectivity for hERG channels while retaining potency for N-type calcium channel inhibition. (S)-1h went on to demonstrate in vivo efficacy as an orally available N-type calcium channel blocker in a rat spinal nerve ligation model of neuropathic pain.  相似文献   

17.
Omega-conotoxin MVIIA, a highly potent antagonist of the N-type voltage sensitive calcium channel, has shown utility in several models of pain and ischemia. We report a series of three alkylphenyl ether based analogues which mimic three key amino acids of the toxin. Two of the compounds have been found to exhibit IC50 values of 2.7 and 3.3 microM at the human N-type voltage sensitive calcium channel.  相似文献   

18.
We have cloned and characterized a new member of the voltage-dependent Ca(2+) channel gamma subunit family, with a novel gene structure and striking properties. Unlike the genes of other potential gamma subunits identified by their homology to the stargazin gene, CACNG7 is a five-, and not four-exon gene whose mRNA encodes a protein we have designated gamma(7). Expression of human gamma(7) has been localized specifically to brain. N-type current through Ca(V)2.2 channels was almost abolished when co-expressed transiently with gamma(7) in either Xenopus oocytes or COS-7 cells. Furthermore, immunocytochemistry and western blots show that gamma(7) has this effect by causing a large reduction in expression of Ca(V)2.2 rather than by interfering with trafficking or biophysical properties of the channel. No effect of transiently expressed gamma(7) was observed on pre-existing endogenous N-type calcium channels in sympathetic neurones. Low homology to the stargazin-like gamma subunits, different gene structure and the unique functional properties of gamma(7) imply that it represents a distinct subdivision of the family of proteins identified by their structural and sequence homology to stargazin.  相似文献   

19.
The developmental regulation of the N-type calcium channel during synaptogenesis was studied using cultured rat hippocampal neurons to elucidate the roles of extrinsic versus intrinsic cues in the expression and distribution of this channel. Prior to synapse formation, α1B and β3 subunits of the N-type calcium channel were distributed diffusely throughout neurites, growth cones, and somata. As synaptogenesis proceeded, the subunit distributions became punctate and colocalized with the synaptic vesicle protein synaptotagmin. Isolated neurons were also examined to test for the requirement of extrinsic cues that control N-type calcium channel expression and distribution. These neurons expressed N-type calcium channel subunits, but their distributions remained diffuse. Functional ω-conotoxin GVIA-sensitive channels were expressed in isolated neurons, although the distribution of α1B subunits was diffuse. The distribution of the α1B subunit and synaptotagmin only became punctate when neuron-neuron contact was allowed. Thus, the expression of functional N-type calcium channels is the result of an intrinsic program while extrinsic regulatory cues mediated by neuron-neuron contact are required to control their distribution during synaptogenesis. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 198–208, 1998  相似文献   

20.
M R Plummer  D E Logothetis  P Hess 《Neuron》1989,2(5):1453-1463
The major component of whole-cell Ca2+ current in differentiated, neuron-like rat pheochromocytoma (PC12) cells and sympathetic neurons is carried by dihydropyridine-insensitive, high-threshold-activated N-type Ca2+ channels. We show that these channels have unitary properties distinct from those of previously described Ca2+ channels and contribute both slowly inactivating and large sustained components of whole-cell current. The N-type Ca2+ currents are modulated by GTP binding proteins. The snail toxin omega-conotoxin reveals two pharmacological components of N-type currents, one blocked irreversibly and one inhibited reversibly. Contrary to previous reports, neuronal L-type channels are insensitive to omega-conotoxin. N-type Ca2+ channels appear to be specific for neuronal cells, since their functional expression is greatly enhanced by nerve growth factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号