共查询到20条相似文献,搜索用时 7 毫秒
1.
In vivo packaging of brome mosaic virus RNA3, but not RNAs 1 and 2, is dependent on a cis-acting 3' tRNA-like structure 下载免费PDF全文
The four encapsidated RNAs of brome mosaic virus (BMV; B1, B2, B3, and B4) contain a highly conserved 3' 200-nucleotide (nt) region encompassing the tRNA-like structure (TLS) which is required for packaging in vitro (Y. G. Choi, T. W. Dreher, and A. L. N. Rao, Proc. Natl. Acad. Sci. USA 99:655-660, 2002). To validate these observations in vivo, we performed packaging assays using Agrobacterium-mediated transient expression of RNAs and coat protein (CP) (P. Annamalai and A. L. N. Rao, Virology 338:96-111, 2005). Coexpression of TLS-less constructs of B1 or B2 or B3 and CP mRNAs in Nicotiana benthamiana leaves resulted in packaging of TLS-less B1 and B2 but not B3, suggesting that packaging of B3 requires the TLS in cis. This conjecture was confirmed by the efficient packaging of a B3 chimera in which the viral TLS was replaced with a cellular tRNA(Tyr). When N. benthamiana leaves were infiltrated with a mixture of transformants containing wild-type B1 (wtB1) plus wtB2 plus a TLS-less B3 (wtB1+wtB2+TLS-lessB3), the 3' end of progeny B3 was restored by heterologous recombination with that of either B1 or B2. This intrinsic cis-requirement of TLS in promoting B3 packaging was further confirmed when a mixture containing agrotransformants of TLS-less B1+B2+B3 was supplemented with either wtB4 or a 3' 200-nt or 3' 336-nt untranslated region (UTR) of B3. Northern blot analysis followed by sequencing of B3 progeny revealed that replication of TLS-less B3, but not TLS-less B1 or B2, was fully restored due to recombination with TLS from transiently expressed wtB4 or the B3 3' UTR. Collectively, these observations suggested that the requirement of a cis-acting TLS is distinct for B3 compared with B1 or B2. 相似文献
2.
Temperature dependent chemical and enzymatic probing of the tRNA-like structure of TYMV RNA 总被引:2,自引:5,他引:2 下载免费PDF全文
In this paper we report on the thermal unfolding of the tRNA-like structure present at the 3' end of turnip yellow mosaic virus (TYMV) RNA. Diethyl pyrocarbonate (DEP), sodium bisulphite, nuclease S1 and ribonuclease T1 were used as structure probes at a broad range of temperatures. In this way most of the nucleotides present in the tRNA-like moiety were analysed. The melting behaviour of both secondary and tertiary interactions could be followed on the basis of the temperature dependent accessibility of the individual nucleotides or bases towards the various probes. The three-dimensional model of the tRNA-like domain (Dumas et al., J. Biomol. Struct. and Dyn. 4, 707 (1987] was supported by the results to a large extent. The interactions occurring between the T- and D-loop appear to be more complex than proposed in the latter model. Additional evidence for the presence of the RNA pseudoknot (Rietveld et al., Nucleic Acids Res. 10, 1929 (1982] was derived from the fact that the three coaxially stacked helical segments in the aminoacylacceptor arm displayed different melting transitions under certain experimental conditions. Aspects of melting behaviour and thermal stability of double helical regions within the tRNA-like structure are discussed, as well as the applicability of nucleases and modifying reagents at various temperatures in the analysis of RNA structure. 相似文献
3.
4.
The tRNA-like structure at the 3' terminus of turnip yellow mosaic virus RNA. Differences and similarities with canonical tRNA. 总被引:12,自引:10,他引:12 下载免费PDF全文
K Rietveld R Van Poelgeest C W Pleij J H Van Boom L Bosch 《Nucleic acids research》1982,10(6):1929-1946
The 3' terminus of TYMV RNA, which possesses tRNA-like properties, has been studied. A 3' terminal fragment of 112 nucleotides was obtained by cleavage with RNase H after hybridization of a synthetic oligodeoxynucleotide to the viral RNA. The accessibility of cytidine and adenosine residues was probed with chemical modification. Enzymatic digestion studies were performed with RNase T1, nuclease S1 and the double-strand specific RNase from the venom of the cobra Naja naja oxiana. A model is proposed for the secondary structure of the 3' terminal region of TYMV RNA comprising 86 nucleotides. The main feature of this secondary structure is the absence of a conventional acceptor stem as present in canonical tRNA. However, the terminal 42 nucleotides can be folded in a tertiary structure which bears strong resemblance with the acceptor arm of canonical tRNA. Comparison of this region of TYMV RNA with that of other RNAs from both the tymovirus group and the tobamovirus group gives support to our proposal for such a three-dimensional arrangement. The consequences for the recognition by TYMV RNA of tRNA-specific enzymes is discussed. 相似文献
5.
6.
7.
8.
Contacts between the tRNA-like domain in brome mosaic virus RNA and yeast tyrosyl-tRNA synthetase have been determined by footprinting with enzymatic probes. Regions in which the synthetase caused protections indicative of direct interaction coincide with loci identified by mutational studies as being important for efficient tyrosylation [Dreher, T. W. & Hall, T. C. (1988) J. Mol. Biol. 201, 41-55]. Additional extensive contacts were found upstream of the core of the tRNA-like structure. In parallel, the contacts of yeast tRNATyr with its cognate synthetase were determined by the same methodology and comparison of protected nucleotides in the two RNAs has permitted the assignment of structural analogies between domains in the viral tRNA-like structure and tRNATyr. Amino acid acceptor stems are similarly recognized by yeast tyrosyl-tRNA synthetase in the two RNAs, indicating that the pseudoknotted fold in the viral RNA does not perturb the interaction with the synthetase. A further important analogy appears between the anticodon/D arm of the L-conformation of tRNAs and a complex branched arm of the viral tRNA-like structure. However, no apparent anticodon triplet exists in the viral RNA. These results suggest that the major determinants for tyrosylation of yeast tRNATyr lie outside the anticodon stem and loop, possibly in the amino acid acceptor stem. 相似文献
9.
D. Moras A. C. Dock P. Dumas E. Westhof P. Romby J. P. Ebel 《Journal of biomolecular structure & dynamics》2013,31(3):479-493
Abstract The anticodon of yeast tRNAAsp, GUC, presents the peculiarity to be self-complementary, with a slight mismatch at the uridine position. In the orthorhombic crystal lattice, tRNAAsp molecules are associated by anticodon-anticodon interactions through a two-fold symmetry axis. The anticodon triplets of symmetrically related molecules are base paired and stacked in a normal helical conformation. A stacking interaction between the anticodon loops of two two-fold related tRNA molecules also exists in the orthorhombic form of yeast tRNAPhe. In that case however the GAA anticodon cannot be base paired. Two characteristic differences can be correlated with the anticodon-anticodon association: the distribution of temperature factors as determined from the X-ray crystallographic refinements and the interaction between T and D loops. In tRNAAsp T and D loops present higher temperature factors than the anticodon loop, in marked contrast to the situation in tRNAPhe. This variation is a consequence of the anticodon-anticodon base pairing which rigidities the anticodon loop and stem. A transfer of flexibility to the corner of the tRNA molecule disrupts the G19-C56 tertiary interactions. Chemical mapping of the N3 position of cytosine 56 and analysis of self-splitting patterns of tRNAAsp substantiate such a correlation. 相似文献
10.
The 3'-terminal tRNA-like structure of the tobacco mosaic virus RNA interacts with ATP/CTP:tRNA nucleotidyltransferases from Escherichia coli or yeast in much the same manner as do tRNAs. Primary sites of interaction cluster near the 3' end and in the loop proposed to be analogous to the psi-loop of a tRNA. Some modified bases in the tRNA-like structure inhibit interaction with nucleotidyltransferase, yet the analogous bases in a tRNA do not. The location of some of these nucleotides within the analog to the psi-loop suggests that this structure differs slightly from its counterpart in a tRNA. The location of other such bases in the helical stem near the 3' end can be explained if the pseudoknot is disrupted by these modified bases or if the tertiary structure of the RNA is altered in the enzyme-RNA complex. A partially denatured secondary structure that persists on denaturing gels is proposed. 相似文献
11.
12.
Influence of tRNA tertiary structure and stability on aminoacylation by yeast aspartyl-tRNA synthetase. 总被引:2,自引:2,他引:2 下载免费PDF全文
Mutations have been designed that disrupt the tertiary structure of yeast tRNA(Asp). The effects of these mutations on both tRNA structure and specific aspartylation by yeast aspartyl-tRNA synthetase were assayed. Mutations that disrupt tertiary interactions involving the D-stem or D-loop result in destabilization of the base-pairing in the D-stem, as monitored by nuclease digestion and chemical modification studies. These mutations also decrease the specificity constant (kcat/Km) for aspartylation by aspartyl-tRNA synthetase up to 10(3)-10(4) fold. The size of the T-loop also influences tRNA(Asp) structure and function; change of its T-loop to a tetraloop (-UUCG-) sequence results in a denatured D-stem and an almost 10(4) fold decrease of kcat/Km for aspartylation. The negative effects of these mutations on aspartylation activity are significantly alleviated by additional mutations that stabilize the D-stem. These results indicate that a critical role of tertiary structure in tRNA(Asp) for aspartylation is the maintenance of a base-paired D-stem. 相似文献
13.
14.
All tRNAs have numerous modifications, lack of which often results in growth defects in the budding yeast Saccharomyces cerevisiae and neurological or other disorders in humans. In S. cerevisiae, lack of tRNA body modifications can lead to impaired tRNA stability and decay of a subset of the hypomodified tRNAs. Mutants lacking 7-methylguanosine at G46 (m7G46), N2,N2-dimethylguanosine (m2,2G26), or 4-acetylcytidine (ac4C12), in combination with other body modification mutants, target certain mature hypomodified tRNAs to the rapid tRNA decay (RTD) pathway, catalyzed by 5’-3’ exonucleases Xrn1 and Rat1, and regulated by Met22. The RTD pathway is conserved in the phylogenetically distant fission yeast Schizosaccharomyces pombe for mutants lacking m7G46. In contrast, S. cerevisiae trm6/gcd10 mutants with reduced 1-methyladenosine (m1A58) specifically target pre-tRNAiMet(CAU) to the nuclear surveillance pathway for 3’-5’ exonucleolytic decay by the TRAMP complex and nuclear exosome. We show here that the RTD pathway has an unexpected major role in the biology of m1A58 and tRNAiMet(CAU) in both S. pombe and S. cerevisiae. We find that S. pombe trm6Δ mutants lacking m1A58 are temperature sensitive due to decay of tRNAiMet(CAU) by the RTD pathway. Thus, trm6Δ mutants had reduced levels of tRNAiMet(CAU) and not of eight other tested tRNAs, overexpression of tRNAiMet(CAU) restored growth, and spontaneous suppressors that restored tRNAiMet(CAU) levels had mutations in dhp1/RAT1 or tol1/MET22. In addition, deletion of cid14/TRF4 in the nuclear surveillance pathway did not restore growth. Furthermore, re-examination of S. cerevisiae trm6 mutants revealed a major role of the RTD pathway in maintaining tRNAiMet(CAU) levels, in addition to the known role of the nuclear surveillance pathway. These findings provide evidence for the importance of m1A58 in the biology of tRNAiMet(CAU) throughout eukaryotes, and fuel speculation that the RTD pathway has a major role in quality control of body modification mutants throughout fungi and other eukaryotes. 相似文献
15.
Polyadenylation of the mRNA of hepatitis delta virus is dependent on the structure of the nascent RNA and regulated by the small or large delta antigen. 总被引:1,自引:0,他引:1 下载免费PDF全文
During the hepatitis delta virus (HDV) RNA replication, synthesis of either the mRNA for the delta antigen (HDAg) or the full-length antigenomic RNA is determined by selective usage of the potent poly(A) signal on the antigenome. To elucidate the regulatory mechanism, HDV cDNA cotransfection system was used to examine the potential effect of the secondary structure of the nascent RNA and that of the HDAg on HDV polyadenylation in transfected cells. We found that when the nascent RNA species could fold itself to form the rodlike structure, the HDV polyadenylation was suppressed 3 to 5 fold by the HDAg. In addition, we observed that the small and the large HDAg exerted a similar suppressive effect on the HDV polyadenylation, though they played different roles in HDV replication. We concluded that the HDV polyadenylation could be regulated by the structure of the nascent antigenomic RNA and by either the small or large HDAg. 相似文献
16.
17.
The ubiquitin-like modifier FAT10 targets proteins for degradation by the proteasome, a process accelerated by the UBL-UBA domain protein NEDD8 ultimate buster 1-long. Here, we show that FAT10-mediated degradation occurs independently of poly-ubiquitylation as purified 26S proteasome readily degraded FAT10-dihydrofolate reductase (DHFR) but not ubiquitin-DHFR in vitro. Interestingly, the 26S proteasome could only degrade FAT10-DHFR when NUB1L was present. Knock-down of NUB1L attenuated the degradation of FAT10-DHFR in intact cells suggesting that NUB1L determines the degradation rate of FAT10-linked proteins. In conclusion, our data establish FAT10 as a ubiquitin-independent but NUB1L-dependent targeting signal for proteasomal degradation. 相似文献
18.
M Sprinzl 《European journal of biochemistry》1974,49(3):595-605
19.
20.
Hyper-mutation caused by the reml mutation in yeast is not dependent on error-prone or excision repair 总被引:3,自引:0,他引:3
The reml mutations of Saccharomyces cerevisiae confer a semi-dominant hyper-recombination/hyper-mutation phenotype. Neither reml mutant allele has any apparent meiotic affect. We have examined spontaneous mutation in reml-2 strains and demonstrate that the reml-2 mutation, like reml-1, confers an average 10-fold increase in reversion and forward mutation rates. Unlike certain yeast rad mutations with phenotypes similar to reml, strains containing reml are resistant to MMS and only slightly UV sensitive at very high doses. To understand the mutator phenotype of reml, we have used a double-mutant approach, combining the reml mutation with radiation-sensitive mutations affecting DNA repair. Double mutants of reml-2 and a mutation in the yeast error-prone repair group (rad6-1) or a mutation in excision repair (rad1-2 or rad4) maintain the hyper-mutation phenotype. Since mutation rates remain elevated in these double-mutant strains, it appears as if the mutations which occur in the presence of reml resemble spontaneous mutation since they do not require the action of a repair system. 相似文献