首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S Moravec  D Liepsch 《Biorheology》1983,20(6):745-759
Together with biochemical factors, fluid mechanical factors play a role in atherogenesis and the deposition of blood platelets at bends and bifurcations in human arteries. Hence, flow patterns were investigated in a simplified 3-dimensional model of a human renal artery bifurcation using Newtonian (aqueous glycerol) and non-Newtonian (aqueous solution of polyacrylamide) fluids. Studies were carried out in steady as well as pulsatile flow at inflow Reynolds numbers of 498 and 951 with flow rate ratios main tube V1: right branch V4: left branch V3 of 1: 0.25: 0.25 and 1: 0.18: 0.18 respectively. The velocity distribution proximal and distal to the bifurcations was measured using a laser-Doppler anemometer. In steady flow, zones of flow separation and reverse flow were observed distal to the bifurcations. In pulsatile flow using non-Newtonian fluids, there was a significant enlargement of these zones. Differences between the Newtonian and non-Newtonian fluids occurred especially distal to the bifurcations. Shear stresses along all measuring positions were computed from the velocity gradients.  相似文献   

2.
In continuing the investigation of AAA hemodynamics, unsteady flow-induced stresses are presented for pulsatile blood flow through the double-aneurysm model described in Part I. Physiologically realistic aortic blood flow is simulated under pulsatile conditions for the range of time-average Reynolds numbers 50< or =Re(m) < or =300. Hemodynamic disturbance is evaluated for a modified set of indicator functions which include wall pressure (p(w)), wall shear stress (tau(w)), Wall Shear Stress Gradient (WSSG), time-average wall shear stress (tau(w)*), and time-average Wall Shear Stress Gradient WSSG*. At peak flow, the highest shear stress and WSSG levels are obtained at the distal end of both aneurysms, in a pattern similar to that of steady flow. The maximum values of wall shear stresses and wall shear stress gradients are evaluated as a function of the time-average Reynolds number resulting in a fourth order polynomial correlation. A comparison between numerical predictions for steady and pulsatile flow is presented, illustrating the importance of considering time-dependent flow for the evaluation of hemodynamic indicators.  相似文献   

3.

In continuing the investigation of AAA hemodynamics, unsteady flow-induced stresses are presented for pulsatile blood flow through the double-aneurysm model described in Part I. Physiologically realistic aortic blood flow is simulated under pulsatile conditions for the range of time-average Reynolds numbers 50 h Re m h 300. Hemodynamic disturbance is evaluated for a modified set of indicator functions which include wall pressure ( p w ), wall shear stress ( w ), Wall Shear Stress Gradient (WSSG), time-average wall shear stress ( w *), and time-average Wall Shear Stress Gradient WSSG *. At peak flow, the highest shear stress and WSSG levels are obtained at the distal end of both aneurysms, in a pattern similar to that of steady flow. The maximum values of wall shear stresses and wall shear stress gradients are evaluated as a function of the time-average Reynolds number resulting in a fourth order polynomial correlation. A comparison between numerical predictions for steady and pulsatile flow is presented, illustrating the importance of considering time-dependent flow for the evaluation of hemodynamic indicators.  相似文献   

4.
We have determined the velocity profiles and wall shear rates along the New Zealand White (NZW) rabbit aortoiliac bifurcation. A pulsatile perfusion apparatus was used to impose physiologic pressure and flow waveforms on nine freshly excised NZW bifurcation segments. Pulsed Doppler velocimetry (PDV) was utilized to construct velocity profiles at five measurement sites: within the infrarenal aorta; immediately distal to the apex of the bifurcation; and, more distally along the iliac arteries. Wall shear rate was derived from a numerical differentiation of the experimental velocity profiles. The results of this study indicate that the average shear rate was lower along the lateral (approximately 40 s-1) vs medial (approximately 240 s-1) wall of the proximal iliac branch. The degree of flow reversal along the proximal lateral walls (20 +/- 2%) exceeded that along the proximal flow divider wall (1 +/- 1%). Flow at the distal iliac measurement sites and within the infrarenal aorta was approximately symmetric. These findings complement our companion in vivo study [Berceli et al., Arteriosclerosis 10, 688-694 (1990)] wherein we determined the rates of low-density lipoprotein (LDL) incorporation and catabolism along this symmetrically bifurcating conduit. Taken together, these studies provide original information regarding the effects of hemodynamics on one presumed atherogenic risk factor, namely, LDL metabolism.  相似文献   

5.
The pulsatile flow of non-Newtonian fluid in a bifurcation model with a non-planar daughter branch is investigated numerically by using the Carreau-Yasuda model to take into account the shear thinning behavior of the analog blood fluid. The objective of this study is to deal with the influence of the non-Newtonian property of fluid and of out-of-plane curvature in the non-planar daughter vessel on wall shear stress (WSS), oscillatory shear index (OSI), and flow phenomena during the pulse cycle. The non-Newtonian property in the daughter vessels induces a flattened axial velocity profile due to its shear thinning behavior. The non-planarity deflects flow from the inner wall of the vessel to the outer wall and changes the distribution of WSS along the vessel, in particular in systole phase. Downstream of the bifurcation, the velocity profiles are shifted toward the flow divider, and low WSS and high shear stress temporal oscillations characterized by OSI occur on the outer wall region of the daughter vessels close to the bifurcation. Secondary motions become stronger with the addition of the out-of-plane curvature induced by the bending of the vessel, and the secondary flow patterns swirl along the non-planar daughter vessel. A significant difference between the non-Newtonian and the Newtonian pulsatile flow is revealed during the pulse cycle; however, reasonable agreement between the non-Newtonian and the rescaled Newtonian flow is found. Calculated results for the pulsatile flow support the view that the non-planarity of blood vessels and the non-Newtonian properties of blood are an important factor in hemodynamics and may play a significant role in vascular biology and pathophysiology.  相似文献   

6.
A pulsatile flow in vitro model of the distal end-to-side anastomosis of an arterial bypass graft was used to examine the effects that different flow ratios between the proximal outlet segment (POS) and the distal outlet segment (DOS) have on the flow patterns and the distributions of hemodynamic factors in the anastomosis. Amberlite particles were tracked by flow visualization to determine overall flow patterns and velocity measurements were made with Laser Doppler anemometry (LDA) to obtain detailed hemodynamic factors along the artery floor and the graft hood regions. These factors included wall shear stress (WSS), spatial wall shear stress gradient (WSSG), and oscillatory index (OSI). Statistical analysis was used to compare these hemodynamic factors between cases having different POS:DOS flow ratios (Case 1-0:100, Case 2-25:75, Case 3-50:50). The results showed that changes in POS:DOS flow ratios had a great influence on the flow patterns in the anastomosis. With an increase in proximal outlet flow, the range of location of the stagnation point along the artery floor decreased, while the extent of flow separation along the graft hood increased. The statistical results showed that there were significant differences (p<0.05) for the mean WSS between cases along the graft hood, but no significant differences were detected along the artery floor. There were no significant differences for the spatial WSSG along both the artery floor and the graft hood. However, there were significant differences (p<0.05) in the mean OSI between Cases 1 and 2 and between Cases 1 and 3 both along the artery floor and along the graft hood. Comparing these mechanical factors with histological findings of intimal hyperplasia formation obtained by previous canine studies, the results of the statistical analysis suggest that regions exposed to a combination of low mean WSS and high OSI may be most prone to the formation of intimal hyperplasia.  相似文献   

7.
Pulsatile poststenotic flow studies with laser Doppler anemometry   总被引:2,自引:1,他引:1  
The pulsatile flow field distal to axisymmetric constrictions in a straight tube was studied using laser Doppler anemometry. The upstream centerline velocity waveform was sinusoidal at a frequency parameter of 7.5 and mean Reynolds number of 600. Stenosis models of 25, 50 and 75% area reduction were employed and velocity data were derived by ensemble averaging methods. Extensive measurements of the pulsatile velocity profiles are reported, and wall shear rates were computed from the near wall velocity profile gradients. The experiments indicate that a permanent region of poststenotic flow separation does not exist even for the severest constriction, in contrast to results for steady flow. Values of wall shear stress were greatest near the throat of the constriction and were relatively low in the poststenotic region, including the region of most intense flow disturbance. Turbulence was found only for the 75% stenosis model and was created only during a segment of the cycle. Although much emphasis has been placed upon turbulence in the detection of arterial stenoses, particularly as identified by Doppler ultrasound spectral broadening, the present study implies that identification of flow disturbances of an organized nature may be more fundamental in recognizing mild to moderate disease. Additionally, the relationship of these flow field results to the animal aortic coarctation model often employed in atherogenesis studies is discussed.  相似文献   

8.
9.
Fluid mechanical shear stress elicits humoral, metabolic, and structural responses in vascular endothelial cells (ECs); however, the mechanisms involved in shear stress sensing and transduction remain incompletely understood. Beyond being responsive to shear stress, ECs distinguish among and respond differently to different types of shear stress. Recent observations suggest that endothelial shear stress sensing may occur through direct interaction of the flow with cell-surface structures that act as primary flow sensors. This paper presents a mathematical model for the shear stress-induced deformation of a flow sensor on the EC surface. The sensor is modeled as a cytoskeleton-coupled viscoelastic structure exhibiting standard linear solid behavior. Since ECs respond differently to different types of flow, the deformation and resulting velocity of the sensor in response to steady, non-reversing pulsatile, and oscillatory flow have been studied. Furthermore, the sensitivity of the results to changes in various model parameters including the magnitude of applied shear stress, the constants that characterize the viscoelastic behavior, and the pulsatile flow frequency (f) has been investigated. The results have demonstrated that in response to a suddenly applied shear stress, the sensor exhibits a level of instantaneous deformation followed by gradual creeping to the long-term response. The peak deformation increases linearly with the magnitude of the applied shear stress and decreases for viscoelastic constants that correspond to stiffer sensors. While the sensor deformation depends on f for low f values, the deformation becomes f -independent above a critical threshold frequency. Finally, the peak sensor deformation is considerably larger for steady and non-reversing pulsatile flow than for oscillatory flow. If the extent of sensor deformation correlates with the intensity of flow-mediated endothelial signaling, then our results suggest possible mechanisms by which ECs distinguish among steady, non-reversing pulsatile, and oscillatory shear stress.  相似文献   

10.
Attenuation of flow disturbances in tapered arterial grafts   总被引:1,自引:0,他引:1  
Flow disturbances in tapered arterial grafts of angles of taper between 0.5 and 1.0 deg were measured in vitro using a pulsed ultrasound Doppler velocimeter. The increase in transition Reynolds numbers with angle of taper and axial distance was determined for steady flow. The instantaneous centerline velocities were measured distal to a 50 percent area stenosis (as a model of a proximal anastomosis), in steady and pulsatile flow, from which the disturbance intensities were calculated. A significant reduction in post-stenotic disturbance intensity was recorded in the tapered grafts, relative to a conventional cylindrical graft. In pulsatile flow with a large backflow component, however, there was an increase in disturbance intensity due to diverging flow during flow reversal. This was observed only in the 1.0 deg tapered graft. These findings indicate that taper is an important consideration in the design of vascular prostheses.  相似文献   

11.
Cheer AY  Dwyer HA  Barakat AI  Sy E  Bice M 《Biorheology》1998,35(6):415-435
Arterial hemodynamic forces may play a role in the localization of early atherosclerotic lesions. We have been developing numerical techniques based on overset or "Chimera" type formulations to solve the Navier-Stokes equations in complex geometries simulating arterial bifurcations. This paper presents three-dimensional steady flow computations in a model of the rabbit aorto-celiac bifurcation. The computational methods were validated by comparing the numerical results to previously-obtained flow visualization data. Once validated, the numerical algorithms were used to investigate the sensitivity of the computed flow field and resulting wall shear stress distribution to various geometric and hemodynamic parameters. The results demonstrated that a decrease in the extent of aortic taper downstream of the celiac artery induced looping fluid motion along the lateral walls of the aorta and shifted the peak wall shear stress from downstream of the celiac artery to upstream. Increasing the flow Reynolds number led to a sharp increase in spatial gradients of wall shear stress. The flow field was highly sensitive to the flow division ratio, i.e., the fraction of total flow rate that enters the celiac artery, with larger values of this ratio leading to the occurrence of flow separation along the dorsal wall of the aorta. Finally, skewness of the inlet velocity profile had a profound impact on the wall shear stress distribution near the celiac artery. While not physiological due to the assumption of steady flow, these results provide valuable insight into the fluid physics at geometries simulating arterial bifurcations.  相似文献   

12.
13.
A flow visualization study using selective dye injection and frame by frame analysis of a movie provided qualitative and quantitative data on the motion of marked fluid particles in a 60 degree artery branch model for simulation of physiological femoral artery flow. Physical flow features observed included jetting of the branch flow into the main lumen during the brief reverse flow period, flow separation along the main lumen wall during the near zero flow phase of diastole when the core flow was in the downstream direction, and inference of flow separation conditions along the wall opposite the branch later in systole at higher branch flow ratios. There were many similarities between dye particle motions in pulsatile flow and the comparative steady flow observations.  相似文献   

14.
Pulsatile flows in glass models simulating fusiform and lateral saccular aneurysms were investigated by a flow visualization method. When resting fluid starts to flow, the initial fluid motion is practically irrotational. After a short period of time, the flow began to separate from the proximal wall of the aneurysm. Then the separation bubble or vortex grew rapidly in size and filled the whole area of the aneurysm circumferentially. During this period of time, the center of the vortex moved from the proximal end to the distal point of the aneurysm. The transient reversal flow, for instance, which may occur at the end of the ejection period, passed between the wall of the aneurysm and the centrally located vortex. When the rate and pulsatile frequency of flow were high, the vortex broke down into highly disturbed flow (or turbulence) at the distal portion of the aneurysm. The same effect was observed when the length of the aneurysm was increased. A reduction in pulsatile amplitude made the flow pattern close to that in steady flow. A finite element analysis was made to obtain velocity and pressure fields in pulsatile flow through a tube with an axisymmetric expansion. Calculations were performed with the pulsatile flows used in the visualization experiment in order to study the effects of change in the pulsatile wave form by keeping the time-mean Reynolds number and Womersley's parameter unchanged. Calculated instantaneous patterns of velocity field and stream lines agreed well with the experimental results. The appearance and disappearance of the vortex in the dilated portion and its development resulted in complex distributions of pressure and shear fields. Locally minimum and maximum values of wall shear stress occurred at points just upstream and downstream of the distal end of the expansion when the flow rate reached its peak.  相似文献   

15.
To study the flow behavior in regions where hemodynamic effects have been suggested to participate in atherogenesis, we evaluated flow in a mold of the aorta and renal arteries of a previously healthy 27-year-old woman who died of trauma. A birefringent solution (vanadium-pentoxide) was used. When diluted, this material behaves like a Newtonian fluid. This method gives a complete picture of the entire flow field. Zones of flow separation and disturbed flow can be seen and the location and size of disturbed areas observed. Unseparated flow regions downstream from disturbed zones can be properly visualized and the method can be used for pulsatile flow as well as steady flow. During steady flow (only at branch to-trunk flow ratios greater than 0.20), zones of flow separation were observed in the aorta distal to the renal arteries. During pulsatile flow, disturbances were found at nearly all branch-to-trunk flow ratios.  相似文献   

16.
In the present study a two-dimensional finite element model for incompressible Newtonian flow is applicated to the modelling of carotid artery flow. In earlier studies, the numerical model was validated experimentally for several flow configurations. In general the pulsatile flow is characterized by reversed flow regions at the non-divider side walls of both the internal and external carotid arteries. The unsteadiness of the flow is associated with rather complex spatial and temporal velocity distributions and leads to temporal variations of the location and length of the reversed flow regions. As a consequence, pronounced spatial and temporal variations in the wall shear stresses are found. At the non-divider side walls, wall shear stresses are relatively low and exhibits an oscillatory behaviour in space and time. At the divider side walls, wall shear stresses are relatively high and approximately follow the flow rate distribution in time. The aim of this study is not only to present two-dimensional calculations but also to compare the calculated two-dimensional velocity profiles with those from three-dimensional experiments. It is observed that in the common carotid artery and in the proximal parts of the internal and external carotid arteries, the two-dimensional numerical model provides valuable information with respect to the three-dimensional configuration. In the more distal parts of especially the internal carotid artery, deviations are found between the two-dimensional numerical and three-dimensional experimental model. These deviations can mainly be attributed to the neglect of the secondary velocity distribution in the two-dimensional model. In the two-dimensional numerical model the influence of a minor stenosis in the internal carotid artery is hardly distinguishable from a minor geometrical variation without stenosis. Full three-dimensional analyses of the influence of minor stenoses are needed to prove numerically whether in-vivo measurements of the axial velocity distribution are useful in the detection of minor stenoses.  相似文献   

17.
Pressure drop and flow rate measurements in a rigid cast of a human aortic bifurcation under both steady and physiological pulsatile flow conditions are reported. Integral momentum and mechanical energy balances are used to calculate impedance, spatially averaged wall shear stress and viscous dissipation rate from the data. In the daughter branches, steady flow impedance is within 30% of the Poiseuille flow prediction, while pulsatile flow impedance is within a factor of 2 of fully developed, oscillatory, straight tube flow theory (Womersley theory). Estimates of wall shear stress are in accord with measurements obtained from velocity profiles. Mean pressure drop and viscous dissipation rate are elevated in pulsatile flow relative to steady flow at the mean flow rate, and the exponents of their Reynolds number dependence are in accord with available theory.  相似文献   

18.
Flow patterns in blood vessels contribute to focal distribution of atherosclerosis; the underlying mechanotransduction pathways remain to be investigated. We demonstrate that different flow patterns elicit distinct responses of Krüppel-like factor-2 (KLF2) in endothelial cells (ECs) in vitro and in vivo. While pulsatile flow with a significant forward direction induced sustained expression of KLF2 in cultured ECs, oscillatory flow with little forward direction caused prolonged suppression after a transient induction. The suppressive effect of oscillatory flow was Src-dependent. Immunohistochemical studies on ECs at arterial branch points revealed that KLF2 protein levels were related to local hemodynamics. Such flow-associated expression patterns were also demonstrated in a rat aortic restenosis model. Inhibition of KLF2 with siRNA sensitized ECs to oxidized LDL-induced apoptosis, indicating a protective role of KLF2. In conclusion, differential regulation of KLF2 may mediate the distinct vascular effects induced by various patterns of shear stress.  相似文献   

19.
In this study, the steady and pulsatile flow field with mass transport analysis in an anatomically correct model of coronary artery is simulated numerically using a specific patient data from a 64-multislice computed tomography scanner. It is assumed that the blood flow is laminar and that the Navier-Stokes equations of motion are applied. Downstream of the bifurcation, a strong skewing occurs towards the flow divider walls as a result of branching. For the low-density lipoprotein (LDL) transport analysis where a specific boundary condition at the arterial walls is applied, LDL is generally elevated at locations where shear stress distribution is low, but it does not co-locate at whole domain. This numerical simulation gives an insight, as well as detailed quantitative data, of haemodynamic conditions in the left coronary artery as well as mass transfer patterns for a specific patient.  相似文献   

20.
Hemodynamics at the human carotid bifurcation is important to the understanding of atherosclerotic plaque initiation and progression as well as to the diagnosis of clinically important disease. Laser Doppler anemometry was performed in a large scale model of an average human carotid. Pulsatile waveforms and physiologic flow divisions were incorporated. Disturbance levels and shear stresses were computed from ensemble averages of the velocity waveform measurements. Flow in the common carotid was laminar and symmetric. Flow patterns in the sinus, however, were complex and varied considerably during the cycle. Strong helical patterns and outer wall flow separation waxed and waned during each systole. The changing flow patterns resulted in an oscillatory shear stress at the outer wall ranging from -13 to 9 dyn cm-2 during systole with a time-averaged mean of only -0.5 dyn cm-2. This contrasts markedly with an inner wall shear stress range of 17-50, (mean 26) dyn cm-2. The region of transient separation was confined to the carotid sinus outer wall with no reverse velocities detected in the distal internal carotid. Notable disturbance velocities were also time-dependent, occurring only during the deceleration phase of systole and the beginning of diastole. The present pulsatile flow studies have aided in identifying hemodynamic conditions which correlate with early intimal thickening and predict the physiologic level of flow disturbances in the bulb of undiseased internal carotid arteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号