首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Neisseria meningitidis (Nm) is a human specific opportunistic pathogen that occasionally penetrates mucosal barriers via the action of adhesins and invasins and evades host immune mechanisms during further dissemination via capsule expression. From in vitro studies, the primary adhesion of capsulate bacteria is believed to be mediated by polymeric pili, followed by invasion via outer membrane adhesins such as Opa proteins. As the latter requires the surface capsule to be down-modulated, invading bacteria would be serum sensitive and thus avirulent. However, there is recent evidence that capsulate bacteria may interact via Opa proteins when host cells express high levels of carcinoembryonic antigen-related cell adhesion molecules (CEACAMs), their target receptors. Such a situation may arise following increased circulation of inflammatory cytokines that upregulate certain adhesion molecules on host cells. In this study, using a tetracycline controlled expression system, we have developed cell lines with inducible CEACAM expression to mimic post-inflammation state of target tissues and analysed the interplay between the three surface components capsule, pili and Opa proteins in cellular interactions. With two distinct cell lines, not only the level but also the rate of adhesion of capsulate Opa-expressing Nm increased concurrently with CEACAM density. Moreover, when threshold levels of receptor were reached, cellular invasion ensued in an Opa-dependent manner. In studies with cell lines intrinsically expressing pilus receptors, notable synergism in cellular interactions between pili and Opa of several meningococcal strains was observed and was independent of capsule type. A number of internalized bacteria were shown to express capsule and when directly isolated from host cells, these bacteria were as serum resistant as the inoculated phenotype. Furthermore, we observed that agents that block Opa-CEACAM binding substantially reduced cellular invasion, while maintaining a low level of cellular adhesion. These studies highlight some of the factors that may determine increased host susceptibility to infection by serum resistant phenotypes; and demonstrate the potential of selective inhibition of key interactions in preventing target tissue penetration while maintaining a level of colonization.  相似文献   

2.
Moraxella catarrhalis is a human-restricted pathogen that can cause respiratory tract infections. In this study, we identified a previously uncharacterized 24-kDa outer membrane protein with a high degree of similarity to Neisseria Opa protein adhesins, with a predicted beta-barrel structure consisting of eight antiparallel beta-sheets with four surface-exposed loops. In striking contrast to the antigenically variable Opa proteins, the M. catarrhalis Opa-like protein (OlpA) is highly conserved and constitutively expressed, with 25 of 27 strains corresponding to a single variant. Protease treatment of intact bacteria and isolation of outer membrane vesicles confirm that the protein is surface exposed yet does not bind host cellular receptors recognized by neisserial Opa proteins. Genome-based analyses indicate that OlpA and Opa derive from a conserved family of proteins shared by a broad array of gram-negative bacteria.  相似文献   

3.
Neisseria meningitidis capsule is an important virulence determinant required for survival in the blood but is reportedly involved in inhibiting cellular interactions mediated by meningococcal outer membrane adhesins. However, evidence from our previous studies suggested that target receptor density on host cells may determine whether or not capsulate bacteria can adhere via outer membrane proteins such as Opa. To confirm this and evaluate the impact of capsulation on bacterial interactions, we used Opa(+) and Opa(-) derivatives of capsulate and acapsulate meningococcal isolates and transfected cell lines expressing CEACAM1, a receptor targeted by Opa proteins. To assess the extent and rate of cell association, subpopulations of stably transfected Chinese hamster ovary cells with different receptor levels were derived. A quantitative correlation of CEACAM1 levels and Opa-dependent binding of both capsulate and acapsulate bacteria was demonstrated, which was accelerated at high receptor densities. However, it appears that invasion by Opa(+) capsulate bacteria only occurs when a threshold level of CEACAM density has been reached. Target cells expressing high levels of CEACAM1 (MFI c. 400) bound threefold more, but internalized 20-fold more Opa(+) capsulate bacteria than those with intermediate expression (MFI c. 100). No overall selection of acapsulate phenotype was observed in the internalized population. These observations confirm that capsule may not be an adequate barrier for cellular interactions and demonstrate the role of a host factor that may determine capsulate bacterial invasion potential. Upregulation of CEACAMs, which can occur in response to inflammatory cytokines, could lead to translocation of a small number of fully capsulate bacteria across mucosal epithelium into the bloodstream sufficient to cause a rapid onset of disseminated disease. Thus the data also suggest a novel rationale for the epidemiological observations that individuals with prior infectious/inflammatory conditions carry a high risk of invasive meningococcal disease.  相似文献   

4.
Neisseria meningitidis is a major global pathogen causing invasive disease with a mortality of 5–10%. Most disease in developed countries is caused by serogroup B infection, against which there is no universal vaccine. Opacity-associated adhesin (Opa) proteins are major meningococcal outer membrane proteins, which have shown recent promise as a potential novel vaccine. Immunisation of mice with different Opa variants elicited high levels of meningococcal-specific bactericidal antibodies, demonstrating proof in principle for this approach. Opa proteins are critical in meningococcal pathogenesis, mediating bacterial adherence to host cells, and modulating human cellular immunity via interactions with T cells and neutrophils, although there are conflicting data regarding their effects on CD4+ T cells. We constructed Opa-positive and Opa-negative meningococcal strains to allow further evaluation of Opa as a vaccine component. All four opa genes from N. meningitidis strain H44/76 were sequentially disrupted to construct all possible combinations of N. meningitidis strains deficient in one, two, three, or all four opa genes. The transformations demonstrated that homologous recombination of exogenous DNA into the meningococcal chromosome can occur with as little as 80 bp, and that minor sequence differences are permissible. Anti-Opa bactericidal antibody responses following immunisation of mice with recombinant Opa were specific to the Opa variant used in immunisation. No immunomodulatory effects were observed when Opa was contained within meningococcal outer membrane vesicles (OMVs), compared to Opa-negative OMVs. These observations support the incorporation of Opa in meningococcal vaccines.  相似文献   

5.
Neisseria meningitidis (Nm) isolates from disease or during carriage express, on their outer membranes, one or more of a family of closely related proteins designated Opa proteins. In this study, we have examined the potential rotes of Nm Opa proteins in bacterial attachment and invasion of endothelial as well as epithelial cells and compared the influence of Opa proteins with that of Ope protein, which has been previously shown to increase bacterial interactions with eukaryotic cells. Several variants expressing different Opa proteins (A, B, D) or Opc were selected from a culture of capsule-deficient non-piliated bacteria of strain C751. Although the Opa proteins increased bacterial attachment and invasion of endothelial cells, Opc was the most effective protein in increasing bacterial interactions with these cells. In contrast, attachment to several human epithelial cells was facilitated at least as much by OpaB as Opc protein. OpaA was largely without effect whereas OpaD conferred intermediate attachment. OpaB also increased invasion of epithelial cells; more bacteria were internalized by Chang conjunctival cells compared with Hep-2 larynx carcinoma or A549 lung carcinoma cells. Monoclonal antibody reacting with OpaB inhibited bacterial interactions with the host cells. Opa-mediated interactions were also eliminated or significantly reduced in variants expressing capsule or those with sialylated lipopolysaccharide. These data are consistent with the notion that environmental factors controlling capsule and lipopolysaccharide phenotype may modulate bacterial interactions mediated by these OM proteins. In permissive microenvironments, some Opa proteins may be important in bacterial colonization and translocation in addition to Opc. The data also support the notion that Nm Opa may confer tissue tropism.  相似文献   

6.
Using COS (African green monkey kidney) cells transfected with cDNAs encoding human cell surface molecules, we have identified human cellular receptors for meningococcal virulence-associated Opa proteins, which are expressed by the majority of disease and carrier isolates. These receptors belong to the immunoglobulin superfamily of adhesion molecules and are expressed on epithelial, endothelial and phagocytic cells. Using soluble chimeric receptor molecules, we have demonstrated that meningococcal Opa proteins bind to the N-terminal domain of biliary glycoproteins (classified as BGP or CD66a) that belong to the CEA (CD66) family. Moreover, the Opa proteins of the related pathogen Neisseria gonorrhoeae , responsible for urogenital infections, also interact with this receptor, making CD66a a common target for pathogenic neisseriae. Over 95% of Opa-expressing clinical and mucosal isolates of meningococci and gonococci were shown to bind to the CD66 N-domain, demonstrating the presence of a conserved receptor-binding function in the majority of neisserial Opa proteins.  相似文献   

7.
Neisseria gonorrhoeae is the causative agent of gonorrhea and an obligate pathogen of humans. The Opa proteins of these bacteria are known to mediate attachment and internalization by host cells, including neutrophils. The Opa protein repertoire of a typical N. gonorrhoeae isolate is encoded on ∼11 genes distributed throughout the chromosome and is subject to stochastic changes in expression through phase variation. Together, these characteristics make Opa proteins a critical yet unpredictable aspect of any experimental investigation into the interaction of N. gonorrhoeae with host cells. The goal of this study was to identify novel virulence factors of N. gonorrhoeae by assessing the contribution of a set of uncharacterized hydrogen peroxide-induced genes to bacterial survival against neutrophil-mediated killing. To this end, a strain harboring an engineered mutation in the NGO0322 gene was identified that exhibited increased sensitivity to neutrophil-mediated killing, enhanced internalization by neutrophils, and the ability to induce high levels of neutrophil-generated reactive oxygen species. Each of these phenotypes reverted to near wild-type levels following genetic complementation of the NGO0322 mutation. However, after immunoblot analysis of Opa proteins expressed by the isogenic parent, mutant, and genetically complemented strains, it was determined that phase variation had resulted in a disparity between the Opa profiles of these strains. To determine whether Opa phase variation, rather than NGO0322 mutation, was the cause of the observed neutrophil-related phenotypes, NGO0322 function was investigated in N. gonorrhoeae strains lacking all Opa proteins or constitutively expressing the OpaD variant. In both cases, mutation of NGO0322 did not alter survival of gonococci in the presence of neutrophils. These results demonstrate the importance of controlling for the frequent and random variation in Opa protein production by N. gonorrhoeae when investigating host cell interactions.  相似文献   

8.
The opacity (Opa) proteins of pathogenic Neisseria spp. are adhesins, which play an important role in adhesion and invasion of host cells. Most members of this highly variable family of outer membrane proteins can bind to the human carcinoembryonic antigen-related cell adhesion molecules (CEACAMs). Several studies have identified the Opa-binding region on the CEACAM receptors; however, not much is known about the binding sites on the Opa proteins for the corresponding CEACAM-receptors. The high degree of sequence variation in the surface-exposed loops of Opa proteins raises the question how the binding sites for the CEACAM receptors are conserved. Neisseria meningitidis strain H44/76 possesses four different Opa proteins, of which OpaA and OpaJ bind to CEACAM1, while OpaB and OpaD bind to CEACAM1 and CEA. A sequence motif involved in binding to CEACAM1 was identified by alanine scanning mutagenesis of those amino acid residues conserved within the hypervariable (HV) regions of all four Opa proteins. Hybrid Opa variants with different combinations of HV-1 and HV-2 derived from OpaB and OpaJ showed a reduced binding to CEACAM1 and CEA, indicating that particular combinations of HV-1 and HV-2 are required for the Opa binding capacity. Homologue scanning mutagenesis was used to generate more refined hybrids containing novel combinations of OpaB and OpaJ sequences within HV-1 and HV-2. They could be used to identify residues determining the specificity for CEA binding. The combined results obtained with mutants and hybrids strongly suggest the existence of a conserved binding site for CEACAM receptors by the interaction of HV-1 and HV-2 regions.  相似文献   

9.
Neisseria gonorrhoeae opacity-associated (Opa) proteins are a family of outer membrane proteins involved in gonococcal adherence to and invasion of human cells. We wanted to identify additional roles for Opa in the infectious process and used the yeast two-hybrid system to identify human epithelial cell proteins that interact with Opa proteins. Although this system has been used successfully to identify many types of interacting proteins, it has not been used to screen a human cell cDNA library for binding partners of a prokaryotic outer membrane protein. Therefore, we were also interested in exploring the versatility of the yeast two-hybrid system in identifying bacteria–host interactions. Using OpaP from strain F62SF as bait, we screened a HeLa cell cDNA library for Opa-interacting proteins (OIPs). We identified five different OIPs, designated OIP1–OIP5, two of which are homologous to human proteins — thyroid hormone receptor interacting protein (TRIP6) and pyruvate kinase isoenzyme M2 (PK). In the studies presented here, we investigated the interaction between Opa proteins and PK in more depth. Opa–PK interactions were confirmed by in vitro and in vivo assays independent of the yeast two-hybrid system. Escherichia coli expressing six different Opa proteins from gonococcal strain FA1090 all bound more PK than Opa-negative E. coli in in vitro binding assays. Using anti-PK antibody and fluorescence microscopy, we showed that human epithelial cell PK co-localizes with intracellular Opa+ gonococci and E. coli expressing Opa proteins. Using a mutant of N. gonorrhoeae unable to grow on pyruvate or lactate, it appears that intracellular pyruvate is essential for gonococcal growth and survival. These results suggest a novel mechanism in bacterial pathogenesis, i.e. the requirement for direct molecular interaction with a host metabolic enzyme (PK) for the acquisition of an essential intracellular carbon source and growth substrate (pyruvate). These results demonstrate that the yeast two-hybrid system is a valuable tool for identifying biologically relevant interactions between bacteria and host proteins, providing valuable leads for further investigations into novel mechanisms of bacterial pathogenesis.  相似文献   

10.
Opa proteins are variable outer membrane proteins of Neisseria gonorrhoeae and Neisseria meningitidis that mediate tight interaction of these pathogens with human cells. They have emerged as a paradigm of a bacterial toolbox allowing recognition of different host receptors and orchestrating the cell type tropism displayed by pathogenic Neisseriae. Recent work has highlighted the molecular basis of Opa-protein-host-receptor interaction and has shed new light on the functional consequences of this interaction with regard to bacterial attachment, invasion, and responses elicited in particular host cells.  相似文献   

11.
Opacity proteins (Opa) of Neisseria gonorrhoeae, a family of variant outer membrane proteins implicated in pathogenesis, are subject to phase variation. In strain MS11, 11 different opa gene alleles have been identified, the expression of which can be turned on and off independently. Using a reverse genetic approach, we demonstrate that a single Opa protein variant of strain MS11, Opa50, enables gonococci to invade epithelial cells. The remaining variant Opa proteins show no, or very little, specificity for epithelial cells but instead confer interaction with human polymorphonuclear neutrophils (PMNs). Thus, depending on the opa allele expressed, gonococci are capable of invading epithelial cells or of interacting with human leukocytes. The respective properties of Opa proteins are maintained independent of the gonococcal strain; thus, the specificity for epithelial cells or leukocytes is intrinsic to Opa proteins. Significant homology exists in the surface exposed variable regions of two invasion supporting Opa proteins from independent strains. Efficient epithelial cell invasion is favoured by high level Opa production, however, a 10-fold reduction still allows significant invasion by gonococci. In contrast, recombinant Escherichia coli expressing Opa proteins adhered or invaded poorly under similar experimental conditions, thus indicating that additional factors besides Opa are required in the Opa-mediated interaction with human cells.  相似文献   

12.
Neisseria meningitidis and Neisseria gonorrhoeae are globally important pathogens, which in part owe their success to their ability to successfully evade human immune responses over long periods. The phase-variable opacity-associated (Opa) adhesin proteins are a major surface component of these organisms, and are responsible for bacterial adherence and entry into host cells and interactions with the immune system. Most immune interactions are mediated via binding to members of the carcinoembryonic antigen cell adhesion molecule (CEACAM) family. These Opa variants are able to bind to different receptors of the CEACAM family on epithelial cells, neutrophils, and T and B lymphocytes, influencing the innate and adaptive immune responses. Increased epithelial cell adhesion creates the potential for prolonged infection, invasion and dissemination. Furthermore, Opa proteins may inhibit T-lymphocyte activation and proliferation, B-cell antibody production, and innate inflammatory responses by infected epithelia, in addition to conferring increased resistance to antibody-dependent, complement-mediated killing. While vaccines containing Opa proteins could induce adhesion-blocking and bactericidal antibodies, the consequence of CEACAM binding by a candidate Opa-containing vaccine requires further investigation. This review summarizes current knowledge of the immunological consequences of the interaction between meningococcal and gonococcal Opa proteins and human CEACAMs, considering the implications for pathogenesis and vaccine development.  相似文献   

13.
Neisseria gonorrhoeae is a facultative intracellular bacterium capable of penetrating into certain human epithelial cell types. In order to identify gonococcal factors essential for invading Chang human conjunctiva cells, a gentamicin selection assay for the quantification of viable intracellular bacteria was used in conjunction with microscopy. The results demonstrate a correlation between the invasive behaviour of gonococci and the expression of Opa proteins, a family of variable outer membrane proteins present in all pathogenic Neisseria species. However, only particular Opa proteins supported invasion into Chang cells as indicated by the use of two unrelated gonococcal strains. Invasion was sensitive to cytochalasin D, and strong adherence mediated by the Opa proteins appeared to be essential for the internalization of gonococci. In contrast pili, which also conferred binding to Chang conjunctiva cells, did not support cellular invasion but rather were inhibitory.  相似文献   

14.
Opa protein-expressing pathogenic neisseriae interact with CD66a-transfected COS (African green monkey kidney) and CHO (Chinese hamster ovary) cells. CD66a (BGP) is a member of carcinoembryonic antigen (CEA, CD66) family. The interactions occur at the N-terminal domain of CD66a, a region that is highly conserved between members of the CEA subgroup of the CD66 family. In this study, we have investigated the roles of CD66 expressed on human epithelial cells and polymorphonuclear phagocytes (PMNs) in adhesion mediated via Opa proteins. Using human colonic (HT29) and lung (A549) epithelial cell lines known to express CD66 molecules, we show that these receptors are used by meningococci. A monoclonal antibody, YTH71.3, against the N-terminal domain of CD66, but not 3B10 directed against domains, A1/B1, inhibited meningococcal adhesion to host cells. When acapsulate bacteria expressing Opa proteins were used, large numbers of bacteria adhered to HT29 and A549 cells. In addition, both CD66a-transfected CHO cells and human epithelial cells were invaded by Opa-expressing meningococci, suggesting that epithelial cell invasion may occur via Opa–CD66 interactions. In previous studies we have shown that serogroup A strain C751 expresses three Opa proteins, all of which mediate non-opsonic interactions with neutrophils. We have examined the mechanisms of these interactions using antibodies and soluble chimeric receptors. The results indicate that the nature of their interactions with purified CD66a molecules and with CD66 on neutrophils is alike and that these interactions occur at the N-terminal domain of CD66. Thus, the Opa family of neisserial ligands may interact with several members of the CD66 family via their largely conserved N-terminal domains.  相似文献   

15.
Gonorrhea is characterized by a purulent urethral or cervical discharge consisting primarily of neutrophils associated with Neisseria gonorrhoeae. These interactions are facilitated by gonococcal colony opacity-associated (Opa) protein binding to host cellular CEACAM receptors. Of these, CEACAM3 is restricted to neutrophils and contains an immunoreceptor tyrosine-based activation motif (ITAM) reminiscent of that found within certain phagocytic Fc receptors. CEACAM3 was tyrosine phosphorylated by a Src family kinase-dependent process upon infection by gonococci expressing CEACAM-specific Opa proteins. This phosphorylation was necessary for efficient bacterial uptake; however, a less efficient uptake process became evident when kinase inhibitors or mutagenesis of the ITAM were used to prevent phosphorylation. Ligated CEACAM3 was recruited to a cytoskeleton-containing fraction, intense foci of polymerized actin were evident where bacteria attached to HeLa-CEACAM3, and disruption of polymerized actin by cytochalasin D blocked all bacterial uptake by these cells. These data support a model whereby CEACAM3 can mediate the Opa-dependent uptake of N. gonorrhoeae via either an efficient, ITAM phosphorylation-dependent process that resembles phagocytosis or a less efficient, tyrosine phosphorylation-independent mechanism.  相似文献   

16.
Human neutrophil response to recombinant neisserial Opa proteins   总被引:13,自引:0,他引:13  
Interactions of human neutrophils with recombinant Escherichia coli expressing gonococcal outer membrane Opa proteins were examined using chemiluminescent and biological assays. Seven opa loci from Neisseria gonorrhoeae MS11 4.8 were expressed as beta-lactamase-Opa fusion proteins that contained all but the mature N-terminal amino acid of the full-length Opa protein fused to three N-terminal amino acids derived from the mature beta-lactamase. The Opa fusion proteins were exported and assembled in the outer membrane of E. coli in a manner similar to that of Opa in N. gonorrhoeae, as evaluated by antibody binding and in situ proteolytic cleavage. All fusion proteins exhibited the characteristic heat-modifiable migration in SDS-polyacrylamide gel electrophoresis that typifies Opa proteins of neisseriae. Opa fusion proteins conferred on E. coli the ability to stimulate a chemiluminescent response from human neutrophils in the absence of antibody or complement. The nature of the response in terms of chemiluminescence, phagocytosis, and killing was in all cases analogous to that seen using N. gonorrhoeae expressing the equivalent Opa protein. Neither E. coli nor gonococci expressing OpaA elicited a response from neutrophils. Use of E. coli expressing Opa fusions should be useful in defining their biological activities and pathogenic roles.  相似文献   

17.
The adhesion of the pathogen Neisseria meningitidis to host cell surface proteoglycan, mediated by the integral outer membrane proteins OpcA and Opa, plays an important part in the processes of colonization and invasion by the bacterium. The precise specificities of the OpcA and Opa proteins are, however, unknown. Here we use a fluorescence-based binding assay to show that both proteins bind to mono- and disaccharides with high affinity. Binding of saccharides caused a quench in the intrinsic fluorescence emission of both proteins, and mutation of selected Tyr residues within the external loop regions caused a substantial decrease in fluorescence. We suggest that the intrinsic fluorescence arises from resonance energy transfer from Tyr to Trp residues in the beta-barrel portion of the structure. OpcA bound sialic acid with a Kd of 0.31 microM and was shown to be specific for pyranose saccharides. The binding specificities of two different Opa proteins were compared; unlike OpcA, neither protein bound to monosaccharides, but both bound to maltose, lactose, and sialic acid-containing oligosaccharides, with Kd values in the micromolar range. OpaB had a 10-fold higher affinity for sialic acid-containing ligands than OpaD as a result of the mutation Y165V, which was shown to restore this specificity to OpaD. Finally, the OpcA- and Opa-dependent adhesion of meningococci to epithelial cells was shown to be partially inhibited by exogenously added sialic acid and maltose. The results show that OpcA and the Opa proteins can be thought of as outer membrane lectins and that simple saccharides can modulate their recognition of complex proteoglycan receptors.  相似文献   

18.
The human pathogens Neisseria meningitidis and Neisseria gonorrhoeae express a family of variable outer membrane opacity-associated (Opa) proteins that recognize multiple human cell surface receptors. Most Opa proteins target the highly conserved N-terminal domain of the CD66 family of adhesion molecules, although a few also interact with heparan sulphate proteoglycans. In this study, we observed that at least two Opa proteins of a N. meningitidis strain C751 have the dual capacity to interact with both receptors. In addition, all three Opa proteins of C751 bind equally well to HeLa cells transfected with cDNA encoding the carcinoembryonic antigen [CEA (CD66e)] subgroup of the CD66 family, but show distinct tropism for CGM1- (CD66d) and NCA (CD66c)-expressing cells. Because the C751 Opa proteins make up distinct structures via the surface-exposed hypervariable domains (HV-1 and HV-2), these combinations appear to be involved in tropism for the distinct CD66 subgroups. To define the determinants of receptor recognition, we used mutant proteins of biliary glycoprotein [BGP (CD66a)] carrying substitutions at several predicted exposed sites in the N-domain and compared their interactions with several Opa proteins of both N. meningitidis and N. gonorrhoeae. The observations applied to the molecular model of the BGP N-domain that we constructed show that the binding of all Opa proteins tested occurs at the non-glycosylated (CFG) face of the molecule and, in general, appears to require Tyr-34 and Ile-91. Further, efficient interaction of distinct Opa proteins depends on different non-adjacent amino acids. In the three-dimensional model, these residues lie in close proximity to Tyr-34 and Ile-91 at the CFG face, making continuous binding domains (adhesiotopes). The epitope of the monoclonal antibody YTH71.3 that inhibits Opa/CD66 interactions was also identified within the Opa adhesiotopes on the N-domain. These studies define the molecular basis that directs the Opa specificity for the CD66 family and the rationale for tropism of the Opa proteins for the CD66 subgroups.  相似文献   

19.
Opa proteins are major surface-expressed proteins located in the Neisseria meningitidis outer membrane, and are potential meningococcal vaccine candidates. Although Opa proteins elicit high levels of bactericidal antibodies following immunisation in mice, progress towards human clinical trials has been delayed due to previous findings that Opa inhibits T cell proliferation in some in vitro assays. However, results from previous studies are conflicting, with different Opa preparations and culture conditions being used. We investigated the effects of various Opa+ and Opa- antigens from N. meningitidis strain H44/76 in a range of in vitro conditions using peripheral blood mononuclear cells (PBMCs) and purified CD4+ T cells, measuring T cell proliferation by CFSE dilution using flow cytometry. Wild type recombinant and liposomal Opa proteins inhibited CD4+ T cell proliferation after stimulation with IL-2, anti-CD3 and anti-CD28, and these effects were reduced by mutation of the CEACAM1-binding region of Opa. These effects were not observed in culture with ex vivo PBMCs. Opa+ and Opa- OMVs did not consistently exert a stimulatory or inhibitory effect across different culture conditions. These data do not support a hypothesis that Opa proteins would be inhibitory to T cells if given as a vaccine component, and T cell immune responses to OMV vaccines are unlikely to be significantly affected by the presence of Opa proteins.  相似文献   

20.
Kuespert K  Roth A  Hauck CR 《PloS one》2011,6(1):e14609

Background

Several human-restricted Gram-negative bacteria exploit carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) for host colonization. For example, Neisseria meningitidis engages these human receptors via outer membrane proteins of the colony opacity-associated (Opa) protein family triggering internalization into non-phagocytic cells.

Principal Findings

We report that a non-opaque strain of N. meningitidis selectively interacts with CEACAM1, but not other CEACAM family members. Using functional assays of bacterial adhesion and internalisation, microscopic analysis, and a panel of CEACAM1 deletion mutants we demonstrate that the engagement of CEACAM1 by non-opaque meningococci occurs in a manner distinct from Opa protein-mediated association. In particular, the amino-terminal domain of CEACAM1 is necessary, but not sufficient for Opa protein-independent binding, which requires multiple extracellular domains of the human receptor in a cellular context. Knock-down of CEACAM1 interferes with binding to lung epithelial cells, whereas chemical or pharmacological disruption of host protein glycosylation does not abrogate CEACAM1 recognition by non-opaque meningococci. The previously characterized meningococcal invasins NadA or Opc do not operate in a CEACAM1-dependent manner.

Conclusions

The results demonstrate a mechanistically distinct, Opa protein-independent interaction between N. meningitidis and human CEACAM1. Our functional investigations suggest the presence of a second CEACAM1-binding invasin on the meningococcal surface that associates with the protein backbone and not the carbohydrate structures of CEACAM1. The redundancy in meningococcal CEACAM1-binding factors further highlights the important role of CEACAM recognition in the biology of this human-adapted pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号