首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Little is known about the mechanism of the transition between native proteins and partially folded intermediates. Complete assignments of 2D 1H-NOESY spectra of CHABII at 5 degrees C, pH 6.3, 5.5, 4.6 and 4.0, reveal that lowering of pH results in an extensive but gradual disappearance of NOEs, implying a gradual disruption of tight side-chain packing. Moreover, a tertiary packing core is identified at 5 degrees C and pH 4.0, characterized by persistent long-range NOEs. Thus, we suggest that severe disruption of tight side-chain packing of CHABII can occur at a stage where its secondary structure and tertiary topology remain highly native-like.  相似文献   

2.
We present a detailed investigation of unfolded and partially folded states of a mutant apomyoglobin (apoMb) where the distal histidine has been replaced by phenylalanine (H64F). Previous studies have shown that substitution of His64, located in the E helix of the native protein, stabilizes the equilibrium molten globule and native states and leads to an increase in folding rate and a change in the folding pathway. Analysis of changes in chemical shift and in backbone flexibility, detected via [1H]-15N heteronuclear nuclear Overhauser effect measurements, indicates that the phenylalanine substitution has only minor effects on the conformational ensemble in the acid- and urea-unfolded states, but has a substantial effect on the structure, dynamics, and stability of the equilibrium molten globule intermediate formed near pH 4. In H64F apomyoglobin, additional regions of the polypeptide chain are recruited into the compact core of the molten globule. Since the phenylalanine substitution has negligible effect on the unfolded ensemble, its influence on folding rate and stability comes entirely from interactions within the compact folded or partly folded states. Replacement of His64 with Phe leads to favorable hydrophobic packing between the helix E region and the molten globule core and leads to stabilization of helix E secondary structure and overall thermodynamic stabilization of the molten globule. The secondary structure of the equilibrium molten globule parallels that of the burst phase kinetic intermediate; both intermediates contain significant helical structure in regions of the polypeptide that comprise the A, B, E, G, and H helices of the fully folded protein.  相似文献   

3.
Acid unfolding pathway of conalbumin (CA), a monomeric glycoprotein from hen egg white, has been investigated using far- and near-UV CD spectroscopy, intrinsic fluorescence emission, extrinsic fluorescence probe 1-anilino-8-napthalene sulfonate (ANS) and dynamic light scattering (DLS). We observe pH-dependent changes in secondary and tertiary structure of CA. It has native-like α-helical secondary structure at pH 4.0 but loss structure at pH 3.0. The CA existed exclusively as a pre-molten globule state and molten globule state in solution at pH 4.0 and pH 3.0, respectively. The effect of pH on the conformation and thermostability of CA points toward its heat resistance at neutral pH. DLS results show that MG state existed as compact form in aqueous solutions with hydrodynamic radii of 4.7 nm. Quenching of tryptophan fluorescence by acrylamide further confirmed the accumulation of an intermediate state, partly unfolded, in-between native and unfolded states.  相似文献   

4.
The molten globule state of equine lysozyme is more stable than that of alpha-lactalbumin and is stabilized by non-specific hydrophobic interactions and native-like hydrophobic interactions. We constructed a chimeric protein which is produced by replacing the flexible loop (residues 105-110) in human alpha-lactalbumin with the helix D (residues 109-114) in equine lysozyme to investigate the possible role of the helix D for the high stability and native-like packing interaction in the molten globule state of equine lysozyme. The stability of the molten globule state formed by the chimeric protein to guanidine hydrochloride-induced unfolding is the same as that of equine lysozyme and is substantially greater than that of human alpha-lactalbumin, although only six residues come from equine lysozyme. Our results also suggest that the non-native interaction in the molten globule state of alpha-lactalbumin changes to the native-like packing interaction due to helix substitution. The solvent-accessibility of the Trp residues in the molten globule state of the chimeric protein is similar to that in the molten globule state of equine lysozyme in which packing interaction around the Trp residues in the native state is partially preserved. Therefore, the helix D in equine lysozyme is one of the contributing factors to the high stability and native-like packing interaction in the molten globule state of equine lysozyme. Our results indicate that the native-like packing interaction can stabilize the rudimentary intermediate which is stabilized by the non-specific hydrophobic interactions.  相似文献   

5.
Experimental approaches, including circular dichroism, small angle X-ray scattering, steady-state fluorescence, and fluorescence energy transfer, were applied to study the 3D-structure of apomyolgobin in different conformational states. These included the native and molten globules, along with either less ordered conformations induced by the addition of anions or completely unfolded states. The results show that the partially folded forms of apomyoglobin stabilized by KCl and/or Na(2)SO(4) under unfolding conditions (pH 2) exhibit a significant amount of secondary structure (circular dichroism), low packing density of protein molecules (SAXS), and native-like dimensions of the AGH core (fluorescence energy transfer). This finding indicates that a native-like tertiary fold of the polypeptide chain, i.e., the spatial organization of secondary structure elements, most likely emerges prior to the formation of the molten globule state.  相似文献   

6.
NMR spectroscopy has been used to follow the urea-induced unfolding of the low pH molten globule states of a single-disulfide variant of human alpha-lactalbumin ([28-111] alpha-LA) and of two mutants, each with a single proline substitution in a helix. [28-111] alpha-LA forms a molten globule very similar to that formed by the wild-type four-disulfide protein, and this variant has been used as a model for the alpha-lactalbumin (alpha-LA) molten globule in a number of studies. The urea-induced unfolding behavior of [28-111] alpha-LA is similar to that of the four-disulfide form of the protein, except that [28-111] alpha-LA is less stable and has greater cooperativity in the loss of different elements of structure. For one mutant, L11P, the helix containing the mutation is highly destabilized such that it is completely unfolded even in the absence of urea. By contrast, for the other mutant, Q117P, the helix containing the mutation retains its compact structure. Both mutations, however, show significant long-range destabilization of the overall fold showing that the molten globule state has a degree of global cooperativity. The results reveal that different permutations of three of the four major alpha-helices of the protein can form a stable, locally cooperative, compact structural core. Taken together, these findings demonstrate that the molten globule state of alpha-LA is an ensemble of conformations, with different subsets of structures linked by a range of long-range interactions.  相似文献   

7.
Dissecting a protein unfolding process into individual steps can provide valuable information on the forces that maintain the integrity of the folded structure. Solvation of the protein core determines stability, but it is not clear when such solvation occurs during unfolding. In this study, far-UV circular dichroism measurements suggest a simplistic two-state view of the unfolding of barstar, but the use of multiple other probes brings out the complexity of the unfolding reaction. Near-UV circular dichroism measurements show that unfolding commences with the loosening of tertiary interactions in a native-like intermediate, N. Fluorescence resonance energy transfer measurements show that N then expands rapidly but partially to form an early unfolding intermediate IE. Fluorescence spectral measurements indicate that both N and IE have retained native-like solvent accessibility of the core, suggesting that they are dry molten globules. Dynamic quenching measurements at the single tryptophan buried in the core suggest that the core becomes solvated only later in a late wet molten globule, IL, which precedes the unfolded form. Fluorescence anisotropy decay measurements show that tight packing around the core tryptophan is lost when IL forms. Of importance, the slowest step is unfolding of the wet molten globule and involves a solvated transition state.  相似文献   

8.
Acid-induced unfolding of the tetrameric glucose/xylose isomerase (GXI) from Streptomyces sp. NCIM 2730 has been investigated using intrinsic fluorescence, fluorescence quenching, second derivative spectroscopy, hydrophobic dye (1-anilino-8-naphthalene-sulfonate) binding and CD techniques. The pH dependence of tryptophanyl fluorescence of GXI at different temperatures indicated the presence of two stable intermediates at pH 5.0 and pH 3.0. The pH 3.2 intermediate was a dimer and exhibited molten globule-like characteristics, such as the presence of native-like secondary structure, loss of tertiary structure, increased exposure of hydrophobic pockets, altered microenvironment of tyrosine residues and increased accessibility to quenching by acrylamide. Fluorescence and CD studies on GXI at pH 5.0 suggested the involvement of a partially folded intermediate state in the native to molten globule state transition. The partially folded intermediate state retained considerable secondary and tertiary structure compared to the molten globule state. This state was characterized by its hydrophobic dye binding capacity, which is smaller than the molten globule state, but was greater than that of the native state. This state shared the dimeric status of the molten globule state but was prone to aggregate formation as evident by the Rayleigh light scattering studies. Based on these results, the unfolding pathway of GXI can be illustrated as: N-->PFI-->MG-->U; where N is the native state at pH 7.5; PFI is the partially folded intermediate state at pH 5.0; MG is the molten globule state at pH 3.2 and U is the monomeric unfolded state of GXI obtained in the presence of 6 M GdnHCl. Our results demonstrate the existence of a partially folded state and molten globule state on the unfolding pathway of a multimeric alpha/beta barrel protein.  相似文献   

9.
Dissecting a protein unfolding process into individual steps can provide valuable information on the forces that maintain the integrity of the folded structure. Solvation of the protein core determines stability, but it is not clear when such solvation occurs during unfolding. In this study, far-UV circular dichroism measurements suggest a simplistic two-state view of the unfolding of barstar, but the use of multiple other probes brings out the complexity of the unfolding reaction. Near-UV circular dichroism measurements show that unfolding commences with the loosening of tertiary interactions in a native-like intermediate, N. Fluorescence resonance energy transfer measurements show that N then expands rapidly but partially to form an early unfolding intermediate IE. Fluorescence spectral measurements indicate that both N and IE have retained native-like solvent accessibility of the core, suggesting that they are dry molten globules. Dynamic quenching measurements at the single tryptophan buried in the core suggest that the core becomes solvated only later in a late wet molten globule, IL, which precedes the unfolded form. Fluorescence anisotropy decay measurements show that tight packing around the core tryptophan is lost when IL forms. Of importance, the slowest step is unfolding of the wet molten globule and involves a solvated transition state.  相似文献   

10.
pH and chemical denaturant dependent conformational changes of a serine protease cryptolepain from Cryptolepis buchanani are presented in this paper. Activity measurements, near UV, far UV CD, fluorescence emission spectroscopy, and ANS binding studies have been carried out to understand the folding mechanism of the protein in the presence of denaturants. pH and chemical denaturants have a marked effect on the stability, structure, and function of many globular proteins due to their ability to influence the electrostatic interactions. The preliminary biophysical study on cryptolepain shows that major elements of secondary structure are beta-sheets. Under neutral conditions the enzyme was stable in urea while GuHCl-induced equilibrium unfolding was cooperative. Cryptolepain shows little ANS binding even under neutral conditions due to more hydrophobicity of beta-sheets. Multiple intermediates were populated during the pH-induced unfolding of cryptolepain. Temperature-induced denaturation of cryptolepain in the molten globule like state is non-cooperative, contrary to the cooperativity seen with the native protein, suggesting the presence of two parts, possibly domains, in the molecular structure of cryptolepain, with different stability that unfolds in steps. Interestingly, the GuHCl-induced unfolding of A state (molten globule state) of cryptolepain is unique, as lower concentration of denaturant, not only induces structure but also facilitate transition from one molten globule like state (MG(1)) into another (MG(2)). The increase of pH drives the protein into alkaline denatured state characterized by the absence of any ANS binding. GuHCl- and urea-induced unfolding transition curves at pH 12.0 were non-coincidental indicating the presence of an intermediate in the unfolding pathway.  相似文献   

11.
Whereas melittin at micromolar concentrations is unfolded under conditions of low salt at neutral pH, it transforms to a tetrameric alpha-helical structure under several conditions, such as high peptide concentration, high anion concentration, or alkaline pH. The anion- and pH-dependent stabilization of the tetrameric structure is similar to that of the molten globule state of several acid-denatured proteins, suggesting that tetrameric melittin might be a state similar to the molten globule state. To test this possibility, we studied the thermal unfolding of tetrameric melittin using far-UV CD and differential scanning calorimetry. The latter technique revealed a broad but distinct heat absorption peak. The heat absorption curves were consistent with the unfolding transition observed by CD and were explainable by a 2-state transition mechanism between the tetrameric alpha-helical state and the monomeric unfolded state. From the peptide or salt-concentration dependence of unfolding, the heat capacity change upon unfolding was estimated to be 5 kJ (mol of tetramer)-1 K-1 at 30 degrees C and decreased with increasing temperature. The observed change in heat capacity was much smaller than that predicted from the crystallographic structure (9.2 kJ (mol of tetramer)-1 K-1), suggesting that the hydrophobic residues of tetrameric melittin in solution are exposed in comparison with the crystallographic structure. However, the results also indicate that the structure is more ordered than that of a typical molten globule state. We consider that the conformation is intermediate between the molten globule state and the native state of globular proteins.  相似文献   

12.
pH-induced conformational states of bovine growth hormone   总被引:1,自引:0,他引:1  
The folding behavior of bovine growth hormone (bGH) is examined by chemical and pH denaturation using several spectroscopic probes of protein secondary and tertiary structure. Partially denaturing concentrations of urea eliminate the native-state quenching of intrinsic tryptophan fluorescence, from the single protein tryptophan, but the fluorescence emission spectrum is not red-shifted like the unfolded state, and the protein retains substantial secondary structure. A neutral-to-acid pH shift also eliminates tryptophan quenching; however, the loss of quenching is not accompanied by an emission red-shift. In addition, the protein undergoes a pH-dependent UV absorbance transition; the changes in absorptivity have the same midpoint as the transition associated with the change in intrinsic tryptophan fluorescence. The magnitude of the absorption transition is similar to that observed previously for urea denaturation of the protein. In a similar fashion, a pH-dependent CD transition is also observed; however, the transition occurs at a higher pH. The behavior of the various optical probes indicates that the pH-induced conformational transition produces a highly populated species in which the microenvironment surrounding the single protein tryptophan residue resembles that observed during the urea-induced unfolding/refolding transition. The pH-induced changes in tertiary structure occur at a lower pH than the changes associated with a portion of the secondary structure. Proton NMR of the low-pH intermediate indicates that the three His and six Tyr resonances are indistinguishable from the unfolded state. The intermediate(s) observed by either chemical or pH-induced denaturation resemble(s) a molten globule state which contains significant secondary structure. The residual secondary structure present in the intermediate could be nonnative.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The structural and functional properties of arginine kinase (AK) in alkaline conditions in the absence or presence of salt have been investigated. The conformational changes of AK during alkaline unfolding and salt-induced folding at alkaline pH were monitored using intrinsic fluorescence emission, binding of the fluorescence probe 1-anilino-8-naphthalenesulfonate and circular dichroism. The results for the alkaline unfolded enzyme showed that much lower pH (11.0) was required to cause the complete loss of AK activity than was required to cause an obvious conformational change of the enzyme. Compared with the completely unfolded state in 5 M urea, the high pH denatured enzyme had some residual secondary and tertiary structure even at pH 13.0. Increasing the ionic strength by adding salt at pH 12.75 resulted in the formation of a relatively compact tertiary structure and a little new secondary structure with hydrophobic surface enhancement. These results indicate that the partially folded state formed under alkaline conditions may have similarities to the molten globule state which is compact, but it has a poorly defined tertiary structure and a native-like secondary structure.  相似文献   

14.
The urea-induced equilibrium unfolding of ovine placental lactogen, purified from ovine placenta, was followed by size-exclusion chromatography, far-UV CD, and intrinsic tryptophan fluorescence. The data obtained by each of these methods showed a poor fit to a two-state model involving only a native and an unfolded form. A satisfactory fit required, instead, a model that involved a stable, partially folded form in addition to the native and unfolded ones. The results obtained from the best-fitting theoretical curves for the three-state model indicated that this intermediate state, which is the predominant species in solution at 3.6 M of urea activity, is compact, largely alpha-helical, and changes considerably the native-like tertiary packing around its tryptophan residues. These findings suggest that this stable intermediate exhibits properties similar to those that characterize the molten globule state.  相似文献   

15.
We have investigated the thermal unfolding of bovine alpha-lactalbumin by means of circular dichroism spectroscopy in the far- and near-ultraviolet regions, and shown that the native alpha-lactalbumin undergoes heat and cold denaturation. The guanidine hydrochloride-induced unfolding of alpha-lactalbumin was also investigated by circular dichroism spectroscopy at various temperatures from 261 to 318 K. It is shown that the population of the molten globule state is strongly dependent on temperature and that the molten globule state does not accumulate during the guanidine hydrochloride-induced unfolding transition at 261 K. Our results indicate that the molten globule state of alpha-lactalbumin undergoes cold denaturation as the native alpha-lactalbumin does, and that the heat capacity change of unfolding from the molten globule to the unfolded state is positive and significant. The present results further support the idea that the molten globule and the unfolded states do not belong to the same thermodynamic state, and that the native, molten globule and unfolded states are sufficient for interpreting the guanidine hydrochloride-induced unfolding behavior of alpha-lactalbumin.  相似文献   

16.
Luo Y  Baldwin RL 《Biochemistry》2001,40(17):5283-5289
The apomyoglobin molten globule has a complex, partly folded structure with a folded A[B]GH subdomain; the factors determining its stability are not yet known in detail. Ala-->Gly mutations, made at solvent-exposed positions, are used to probe the role of helix propensity of individual helices in stabilizing the molten globule. Molten globule stability is measured by reversible urea unfolding, monitored both by circular dichroism and by tryptophan fluorescence. Two-state unfolding is tested by superposition of these two unfolding curves, and stability data are reported only for variants which satisfy the superposition test. Results for sites Q8 in the A helix and E109 in the G helix confirm that the helix propensities of the A and G helices both strongly affect molten globule stability, in contrast to results for the G65A/G73A double mutant which show that changing the helix propensity of the E-helix sequence has no significant stabilizing effect. Changing the helix propensity of the B-helix sequence with the G23A/G25A double mutant affects molten globule stability to an intermediate extent, confirming an earlier report that this mutant has increased stability. These results are consistent with the bipartite structure for the molten globule in which the A, G, and H helices are stably folded, while the long E helix is unfolded and the B helix has intermediate stability. Some differences are found in the shapes of the unfolding curves of different mutants even though they satisfy the superposition test for two-state unfolding, and possible explanations are discussed.  相似文献   

17.
The multidomain structure of soybean LOX1 was examined over the pH range 1-12. Lipoxygenase-1 activity was reversible over broad pH range of 4-10 due to the reversibility of conformational states of the molecule. Below pH 4.0, due to collapse in hydrophobic interactions, the enzyme unfolded to an irreversible conformation with the properties of molten globule state with a mid point of transition at pH 2.4. This intermediate state lost iron irreversibly. In alkaline pH at 11.5, LOX1 underwent partial unfolding with the exposure of cysteine residues with subsequent oxidation of a pair of cysteine residues in the C-terminal domain and this intermediate showed some properties of molten globule state and retained 35% of activity. Beyond pH 12.0, the enzyme was completely inactivated irreversibly due to irreversible conformational changes. The pH-dependent urea-induced unfolding of LOX1 suggested that LOX1 was more stable at pH 7.0 and least stable at pH 9.0. Furthermore, the urea-induced unfolding of LOX1 indicated that the unfolding was biphasic due to pH-dependent domain interactions and involved sequential unfolding of domains. The loss of enzyme activity at pH 4. 0 and 7.0 occurred much earlier to unfolding of the C-domain at all pHs studied. The combination of urea-induced unfolding measurements and limited proteolysis experiments suggested that at pH 4.0, the domains in LOX1 were less interactive and existed as tightly folded units. Furthermore, these results confirmed the contribution of ionic interactions in the interdomain contacts.  相似文献   

18.
19.
Molten globules are partially folded forms of proteins thought to be general intermediates in protein folding. The 15N-1H HSQC NMR spectrum of the human alpha-lactalbumin (alpha-LA) molten globule at pH 2 and 20 degrees C is characterised by broad lines which make direct study by NMR methods difficult; this broadening arises from conformational fluctuations throughout the protein on a millisecond to microsecond timescale. Here, we find that an increase in temperature to 50 degrees C leads to a dramatic sharpening of peaks in the 15N-1H HSQC spectrum of human alpha-LA at pH 2. Far-UV CD and ANS fluorescence experiments demonstrate that under these conditions human alpha-LA maintains a high degree of helical secondary structure and the exposed hydrophobic surfaces that are characteristic of a molten globule. Analysis of the H(alpha), H(N) and 15N chemical shifts of the human alpha-LA molten globule at 50 degrees C leads to the identification of regions of native-like helix in the alpha-domain and of non-native helical propensity in the beta-domain. The latter may be responsible for the observed overshoot in ellipticity at 222 nm in kinetic refolding experiments.  相似文献   

20.
Chaudhuri TK  Arai M  Terada TP  Ikura T  Kuwajima K 《Biochemistry》2000,39(50):15643-15651
The equilibrium and kinetics of the unfolding and refolding of authentic and recombinant human alpha-lactalbumin, the latter of which had an extra methionine residue at the N-terminus, were studied by circular dichroism spectroscopy, and the results were compared with the results for bovine and goat alpha-lactalbumins obtained in our previous studies. As observed in the bovine and goat proteins, the presence of the extra methionine residue in the recombinant protein remarkably destabilized the native state, and the destabilization was entirely ascribed to an increase in the rate of unfolding. The thermodynamic stability of the native state against the unfolded state was lower, and the thermodynamic stability of the molten globule state against the unfolded state was higher for the human protein than for the other alpha-lactalbumins previously studied. Thus, the population of the molten globule intermediate was higher during the equilibrium unfolding of human alpha-lactalbumin by guanidine hydrochloride. Unlike the molten globule states of the bovine and goat proteins, the human alpha-lactalbumin molten globule showed remarkably more intense circular dichroism ellipticity than the native state in the far-ultraviolet region below 225 nm. During refolding from the unfolded state, human alpha-lactalbumin thus exhibited overshoot kinetics, in which the alpha-helical peptide ellipticity exceeded the native value when the molten globule folding intermediate was formed in the burst phase. The subsequent folding involved reorganization of nonnative secondary structures. It should be noted that the rate constant of the major refolding phase was approximately the same among the three types of alpha-lactalbumin and that the rate constant of unfolding was accelerated 18-600 times in the human protein, and these results interpreted the lower thermodynamic stability of this protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号