首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Every day, pulp and paper mills in the USA discharge millions of liters of wastewater. Primary and secondary treatment of this wastewater often enriches it with phosphorus, resulting in uncontrolled eutrophication of receiving water bodies. A new method of tertiary wastewater treatment uses controlled growth of algae in a photobioreactor to sequester phosphorus into algal biomass, which is then harvested. This typically requires addition of a nitrogen fertilizer (nitrate, ammonium, or urea) to the water. We show on the laboratory scale that chitin can be used as an alternative source of nitrogen for the tertiary treatment of pulp mill wastewater using algae. We demonstrate that phosphorus can be efficiently removed from pulp wastewater using algae and chitin. Furthermore, phosphorus removal with chitin did not result in an increase in dissolved nitrogen in the wastewater because it is insoluble, unlike conventional nitrogen fertilizers. Despite its insolubility, it has recently been found that many diverse algae and cyanobacteria can use it as a source of nitrogen. Chitin has many advantages over conventional nitrogen fertilizers for use in wastewater treatment technologies. It is the second-most abundant natural polymer and is a waste product of the shellfish industry. Chitin is sustainable, inexpensive, and carbon neutral. Thus, chitin improves the sustainability and carbon footprints associated with water treatment, while the production of commercially attractive algal biomass helps to offset costs associated with the water treatment system itself.  相似文献   

2.
A microcosm study of nitrogen utilization in the Great Salt Lake,Utah   总被引:1,自引:0,他引:1  
Microcosms were used to study the effects of two inorganic nitrogen sources (ammonia and nitrate) and two organic nitrogen sources (urea and glutamic acid) on the growth of algae and bacteria found in the Great Salt Lake, Utah. Ammonia, nitrate and urea stimulated bacterial growth indirectly through increased algal production of unknown organic substances. Glutamic acid, representing readily available organic carbon and nitrogen, stimulated the bacteria directly. No nitrification was observed in the microcosms although nitrite was found when the microcosms were supplemented with nitrate. Lake sediment contained a number of anaerobic bacteria producing hydrogen sulfide, methane and other gases. Production of these gases was stimulated in the columns with high algal and bacterial activity.  相似文献   

3.
While the global increase in the use of nitrogen-based fertilizers has been well recognized, another change in fertilizer usage has simultaneously occurred: a shift toward urea-based products. Worldwide use of urea has increased more than 100-fold in the past 4 decades and now constitutes >50% of global nitrogenous fertilizer usage. Global urea usage extends beyond agricultural applications; urea is also used extensively in animal feeds and in manufacturing processes. This change has occurred to satisfy the world’s need for food and more efficient agriculture. Long thought to be retained in soils, new data are suggestive of significant overland transport of urea to sensitive coastal waters. Urea concentrations in coastal and estuarine waters can be substantially elevated and can represent a large fraction of the total dissolved organic nitrogen pool. Urea is used as a nitrogen substrate by many coastal phytoplankton and is increasingly found to be important in the nitrogenous nutrition of some harmful algal bloom (HAB) species. The global increase from 1970 to 2000 in documented incidences of paralytic shellfish poisoning, caused by several HAB species, is similar to the global increase in urea use over the same 3 decades. The trend toward global urea use is expected to continue, with the potential for increasing pollution of sensitive coastal waters around the world.  相似文献   

4.
Summary The effect of different methods of nitrogen fertilizer application on the algal flora and biological nitrogen fixation (Acetylene-reducing activity) in a wetland rice soil was studied in pot and field experiments. Broadcast application of urea inhibited nitrogen fixation and favored the growth of green algae. In contrast, deep placement of urea supergranules (1–2 g urea granules) did not suppress the growth of N2-fixing blue-green algae and permitted acetylene-reducing activity on the soil surface to continue virtually uninhibited.  相似文献   

5.
The actual extracellular release of organic matter by algae was determined in water samples in which the heterotrophic activity of bacteria was inhibited by gentamycin. Gentamycin rapidly and efficiently inhibited the activity of aquatic bacteria without affecting phytoplankton metabolism. Aquatic bacteria utilized the products of algal extracellular release. The amount of algal photosynthetic products metabolized by bacteria can be taken as a measure of their heterotrophic activity in waters.  相似文献   

6.
1. Stream riffles in southern Ontario and western Quèbec were sampled for biomass (58 stations from 51 streams) and production (22 stations from 21 streams) of algae and bacteria in periphyton to test the hypothesis that bacteria in benthic biofilms compete with algae for nutrients. 2. Algal and bacterial biomass were positively correlated, as were algal and bacterial production. Bacterial production was also positively correlated to algal and bacterial biomass, but the relationship was not significant. The ratio of algal to bacterial biomass did not vary with nutrients whereas algal production tended to increase with nutrients more rapidly than bacterial production. 3. Instream nitrogen concentrations explained 38–58% of the variability in algal biomass and production. Bacterial abundance explained an additional 9–29% of the residual variance in algal production and biomass. However, the relationship between bacterial abundance and algal production and biomass, once nutrients were taken into account, was positive, in contrast to the predicted effect of competition. 4. Hence, we reject our original hypothesis that bacteria in biofilms compete with algae for nutrients and instead suggest that bacteria and algae in biofilms coexist in an association that offers space and resources to sustain production of both groups of organisms.  相似文献   

7.
Liu H  Zhou Y  Xiao W  Ji L  Cao X  Song C 《Microbiological research》2012,167(5):292-298
The impacts of different nutrient additions (N + P, N + P + C, 4N + P, 4N + P + C, N + 2P) on the growth of algae and bacteria were studied in a microcosm experiment. Since alkaline phosphatase activity (APA) provides an indication of phosphorus deficiency, the higher value for algal APA in the treatments with excess nitrogen and for bacterial APA in the treatments with excess carbon suggested that, algal and bacterial phosphorus-limited status were induced by abundant nitrogen and carbon input, respectively. Bacterial phosphorus-limited status was weakened due to higher bacterial competition for phosphorus, compared to algae. In comparison with the bacterial and specific bacterial APA, higher values of algal and specific algal APA were found, which showed a gradual increase that coincided with the increase of chlorophyll a concentration. This fact indicated not only a stronger phosphorus demand by algae than by bacteria, but also a complementary relationship for phosphorus demand between algae and bacteria. However, this commensalism could be interfered by glucose input resulting in the decline of chlorophyll a concentration. Furthermore, the correlation between bacterial numbers and chlorophyll a concentration was positive in treatments without carbon and blurry in treatments with carbon. These observations validate a hypothesis that carbon addition can stimulate bacterial growth justifying bacterial nutrient demand, which decreases the availability of nutrients to algae and affects nutrient relationship between algae and bacteria. However, this interference would terminate after algal and bacterial adaption to carbon input.  相似文献   

8.
The effects on edaphic algae associated with a pure stand of the cord grass, Spartina alterniflora Loisel of manipulating light intensity and additions of inorganic nitrogen and phosphorus as fertilizers to the marsh surface have been investigated for one year. The standing crop of edaphic algae as measured by chlorophyll a production was limited only by phosphorus supplies during fall and winter, by both phosphorus and nitrogen in spring, and only by nitrogen during the summer. Since the responses were in phase with the seasonal fluctuations in the concentration of nitrogen and phosphorus, it is concluded that the flood tide is the major source of nitrogen and phosphorus compounds for edaphic algal growth. Reduction in the quantity of light reaching the edaphic algae by Spartina cover is always a limiting factor for the standing crop. A gradient in the composition of the algal flora is directly related to light intensity, and indicates that this factor determines the relative contribution of diatoms and filamentous algae to the community. The interaction of light intensity and nutrients in regulating the production of edaphic algae and cord grass on the marsh under study over a yearly cycle has also been investigated.  相似文献   

9.
Samples from 28 stations along the St. Joeeph River in Michigan and Indiana were collected in the Summer and late Fall of 1972. The samples were analyzed chemically (BOD, soluble orthophosphate, total phosphate, and NH3), physically (temperature and suspended solids) and biologically (algal units, Palmer's index, bacteria, and microalgal spectral analysis). Three methods of algal evaluation (microalgal spectral analysis, algal units, and the Palmer's index) provided especially good information indicating that nutrients and degradation were a distinct problem in the lower half of the river, not only in the Indiana portion, but also in Michigan. A pronounced water quality deterioration occurred in Michigan at Niles and at St. Joseph-Benton Harbor at the mouth of the river. Evidence of improved water quality was provided by the algal analyses after the installation of improved waste water treatment facilities. Microalgal spectral analysis was judged the best and most accurate of the methods of algal analysis in spite of its extensive terminology and necessity of determination of the algae to species.  相似文献   

10.
Yan D  Lu Y  Chen YF  Wu Q 《Bioresource technology》2011,102(11):6487-6493
The by-product of sugar refinery—waste molasses was explored as alternative to glucose-based medium of Chlorella protothecoides in this study. Enzymatic hydrolysis is required for waste molasses suitable for algal growth. Waste molasses hydrolysate was confirmed as a sole source of full nutrients to totally replace glucose-based medium in support of rapid growth and high oil yield from algae. Under optimized conditions, the maximum algal cell density, oil content, and oil yield were respectively 70.9 g/L, 57.6%, and 40.8 g/L. The scalability of the waste molasses-fed algal system was confirmed from 0.5 L flasks to 5 L fermenters. The quality of biodiesel from waste molasses-fed algae was probably comparable to that from glucose-fed ones. Economic analysis indicated the cost of oil production from waste molasses-fed algae reduced by 50%. Significant cost reduction of algal biodiesel production through fermentation engineering based on the approach is expected.  相似文献   

11.
The functional aspects of specific associations between bluegreen algae and bacteria were investigated using both naturally occurring and cultured species of Anabaena. In take waters where bacteria were associated with Anabaena heterocysls, the bacteria exhibited a chemotactic response to a variety of amino acids and glucose. Earlier autoradiographic evidence that bacteria associated with heterocysts incorporate identical substrates indicates that associated bacteria probably benefit by utilizing algal excretion products. In return, the bacteria stimulate algal N2fixation. The most likely mechanism explaining such stimulation appeared to be bacterial oxygen removal in microzones (< 3 μm diam) bordering heterocysts during periods of high ambient oxygen concentrations. In the presence of bacteria, Anabaena rapidly overcame nitrogenase- inhibiting concentrations of oxygen. Axenic cullures had more extensive nitrogenase inhibition, and took longer to recover in response to oxygenation. Algal-bacterial mutualism aids Anabaena in maintaining concurrent optimal N2 fixation and high photosynthetic rates in highly oxygenated surface waters.  相似文献   

12.
Dissolved organic carbon (DOC) constitutes the bulk of organic carbon in aquatic environments. The importance of DOC utilization by mixotrophic algae is unclear since heterotrophic bacteria are regarded as more efficient users. We tested the hypothesis that algae decrease the DOC concentration in the light to lower levels than in darkness resulting in competitive exclusion of heterotrophic bacteria according to the mechanistic competition theory. We investigated (a) the uptake kinetics of glucose as a model substrate by two cultured algae and mixed bacteria populations, (b) the competition for glucose between algae and bacteria in chemostats, (c) the effect of discontinuous glucose supply in chemostats, and (d) the minimum glucose concentrations achieved in cultures of algae and bacteria. Bacteria showed higher specific‐glucose‐uptake rates than algae. In chemostats, algae became extinct in the dark and coexisted in the light where they decreased bacteria to lower densities. Discontinuous glucose supply promoted the algae compared to continuous substrate addition. Several algae consumed glucose to lower concentrations in the dark than in the light and showed lower or equal residual glucose concentrations than bacteria. Residual concentrations were not related to allometric traits (cell volume) and photosynthetic potential (chl content). Overall, the hypothesis was not supported, and mechanisms of competition for DOC obviously differed from those for particulate prey. However, since some algae showed lower or equal residual glucose concentrations than bacteria, algal dark uptake of DOC may be important in deep layers of many waters.  相似文献   

13.
水葫芦对藻类的克制效应   总被引:16,自引:0,他引:16  
水葫芦对藻类生长有克制作用。其机制主要是由于水葫芦根系向水体分泌的有机物质能伤害和杀死藻类。用水葫芦种植水培养藻类,使藻类的光合作用速率显著降低,叶绿素a破坏,细胞还原TTC的能力下降。在荧光显微镜下可看到藻细胞从鲜红色变为淡蓝绿色。  相似文献   

14.
Synthetic fertilizers and livestock manure are nowadays widely used in agriculture to improve crop yield but nitrogen and phosphorous runoff resulting from their use compromises water quality and contributes to eutrophication phenomena in waterbeds within the countryside and ultimately in the ocean. Alternatively, algae could play an important role in agriculture where they can be used as biofertilizers and soil stabilizers. To examine the possible reuse of the detritus generated by dead algae as fertilizer for crops, we develop three mathematical models building upon each other. A system is proposed in which algae recover waste nutrients (nitrogen and phosphorus) for reuse in agricultural production. The results of our study show that in so doing, the crop yield may be increased and simultaneously the density of algae in the lake may be reduced. This could be a way to mitigate and possibly solve the environmental and economic issues nowadays facing agriculture.  相似文献   

15.
The possibility of growth of intensive cultures of Chlorella vulgaris on industrial wastewater from nitrogen fertizer plant containing ammonia, urea and nitrate was investigated. Good growth of algae was obtained when the waste was enriched with phosphorus and inoculum contained a high number of cells. The optimal pH for the culture was 7.0--8.0. The main factor limiting growth of algae on wastes on the concentration of ammonia nitrogen. Chlorella vulgaris grows quite well in wastes containing 600 mg NH4-N/l but is inhibited at concentration about 100 mg NH4-N/l.  相似文献   

16.
Bacteria associated with oceanic algal blooms are acknowledged to play important roles in carbon, nitrogen, and sulfur cycling. They influence the climate, mediate primary production, participate in biogeochemical cycles, and maintain ecological balance. A greater insight on the control of the interactions between microalgae and other microorganisms, particularly bacteria, would be helpful in exploring the role of bacteria on algal blooms in lakes. The present study is to investigate the effects of bacteria on the occurrence of algal blooms in lakes. We propose a nonlinear mathematical model by taking into account interactions among nutrients, algae, detritus and bacteria in a lake. We assume that bacteria enhance the growth of algal biomass through remineralization only. Equilibria are analyzed for feasibility and stability, substantiated via numerical simulations. Increase in uptake rate of nutrients by algae and bacteria death rate generates transcritical bifurcations. We perform a global sensitivity analysis to identify the important parameters of the model having a significant impact on the densities of algae and bacteria in the lake. Our findings show that massive algal production might occur in the presence of bacteria, and microalgae-bacteria interactions can be beneficial to the massive production of microalgae. Further, the effect of time delays involved in the bacterial decomposition conversion of detritus into nutrients is studied. Chaotic oscillations may arise via equilibrium destabilization on increasing the values of the time lag. To support chaos occurrence, the Poincaré map is drawn and the Lyapunov exponents are also computed. The findings, critically important for lake restoration, indicate that hypoxia in the lake can be prevented if detritus removal is performed on a regular basis, at time intervals smaller than the critical threshold in the delay with which detritus is decomposed into nutrients.  相似文献   

17.
SUMMARY. Levels of cellular orthophosphate concentration, alkaline phosphatase activity, photosynthesis and nitrogenase activity of natural populations of blue-green algae collected during the summer of 1976 from the surface waters of three eutrophic lakes were determined under controlled conditions. Intracellular concentrations of surplus stored phosphorus remained high and alkaline phosphatase activity remained low during the formation and decline of the surface bloom, which indicated that available phosphorus does not become limiting to growth. In contrast, declining rates of nitrogenase activity and net photosynthesis were recorded, particularly in those blooms of shorter duration. An increase in numbers of bacteria during the summer may account for the observed fall of net photosynthetic rates, since gross rates did not change as markedly. There was appreciable nitrogenase activity proceeding and during the differentiation of akinetes, and the cellular C/N atomic ratio of sporulating populations was lower than in non-sporulating algae. It is suggested that the onset of sporulation in surface blooms is initiated by an imbalance of the normal vegetative growth of the algal cells and of their carbon and nitrogen metabolism.  相似文献   

18.
《Harmful algae》2009,8(1):103-110
Cultural eutrophication is frequently invoked as one factor in the global increase in harmful algal blooms, but is difficult to definitively prove due to the myriad of factors influencing coastal phytoplankton bloom development. To assess whether eutrophication could be a factor in the development of harmful algal blooms in California (USA), we review the ecophysiological potential for urea uptake by Pseudo-nitzschia australis (Bacillariophyceae), Heterosigma akashiwo (Raphidophyceae), and Lingulodinium polyedrum (Dinophyceae), all of which have been found at bloom concentrations and/or exhibited noxious effects in recent years in California coastal waters. We include new measurements from a large (Chlorophyll a > 500 mg m−3) red tide event dominated by Akashiwo sanguinea (Dinophyceae) in Monterey Bay, CA during September 2006. All of these phytoplankton are capable of using nitrate, ammonium, and urea, although their preference for these nitrogenous substrates varies. Using published data and recent coastal time series measurements conducted in Monterey Bay and San Francisco Bay, CA, we show that urea, presumably from coastal eutrophication, was present in California waters at measurable concentrations during past harmful algal bloom events. Based on these observations, we suggest that urea uptake could potentially sustain these harmful algae, and that urea, which is seldom measured as part of coastal monitoring programs, may be associated with these harmful algal events in California.  相似文献   

19.
Summary Laboratory scale activated sludge systems were operated under regimes of continuous or intermittent feeding of the waste water. Industrial waste waters from breweries, a dairy plant and a petro-chemical plant were investigated. The systems were started up with sludge from a municipal waste water plant or more often with sludges obtained from the corresponding industrial waste water treatment plants. It was found that intermittently fed systems produced sludges with better settleability characteristics than systems that were continuously supplemented with waste water. Our previous hypothesis that in intermittent systems floc forming bacteria become dominant as a result of higher substrate uptake rates was confirmed and may thus be extended to waste waters containing readily available substrates such as carbohydrates (brewery-and dairy waste water) or acids (petro-chemical waste water). Supplementation of brewery waste water with urea had a negative influence on sludge settleability, especially in continuously operated systems.  相似文献   

20.
The objective of this study was to investigate nutrient limitation of algal abundance in Anderson-Cue Lake, a softwater clear oligotrophic lake in north-central Florida. Nutrient diffusing clay pots and cylindrical enclosures were used in the field to test effects of different combinations of nitrogen, phosphorus, silica, and carbon on algal standing crop and composition of periphytic and planktonic algae, respectively. Effects of nutrient enrichment on periphytic algae were examined in two studies conducted 31 May – 8 July and 10 June – 15 July 1991. Nutrient effects on planktonic algae were examined in one study from 13 June – 1 July 1991. Planktonic and periphytic algal biovolume was significantly higher (p<0.05) when nitrogen and carbon were added in combination than with treatments without nitrogen, carbon, or nitrogen and carbon. Treatments with nitrogen and carbon combined resulted in lower algal diversity and dominance by coccoid green algae andScenedesmus. Results indicate that carbon and nitrogen can be limiting factors to algal growth in Anderson-Cue Lake and possibly other lakes of similar water quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号