首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ovary of Sarcophaga lineatocollis is a typical polytrophic ovary. Each of its 25-30 ovarioles is composed of a small terminal filament, a small germarium and a vitellarium consisting of the egg follicle. The tunica propria is a noncellular, PAS-positive membrane. The ovarian follicle contains fifteen trophocytes and one oocyte. RNA is synthesized with the aid of the nuclei in the trophocyte cytoplasm, which are RNA- and PAS-positive. Protein is deposited intensively in the early stages of the trophocytes. The trophocytes of Sarcophaga lineatocollis synthesize RNA and protein more actively than the oocyte. In this fly, protein yolk precursor (PYP) bodies are supplied by the trophocyte cytoplasm to the ooplasm at an advanced stage of development. Nucleolar budding and vacuolation are observed in the trophocytes. RNA, DNA, protein and PYP bodies appear to be transported to the ooplasm from the trophocytes. Pyknotic trophocyte nuclei can be seen entering the ooplasm. The perinuclear Golgi bodies of the trophocytes help in the production and maturation of PYP bodies in the trophocytes before they are organized and passed on to the oocytes. Some RNA is contributed to the oocyte by the follicular epithelium. All these processes leading to maturation and development of the oocyte are discussed and interpreted.  相似文献   

2.
Batalova FM 《Tsitologiia》2000,42(7):624-634
The distribution of pre-mRNA splicing factors and protein coilin was examined in trophocyte nuclei (TN) in polytrophic ovarioles of Panorpa communis. In situ hybridization, using antisense U1 and U6 snRNA 3H-riboprobes, showed that TN were labeled evenly. Immunostaining at light and electron microscopic levels revealed in some TN nucleolar structures containing small nuclear RNP (snRNP) and protein coilin characteristic of the Cajal bodies/coiled bodies (CB). No free CBs were found in TN. These data showed that CB in TN are present only in the nucleoli. One of characteristic features of P. communis trophocytes is the presence of several types of perinuclear bodies (PB) in the cytoplasm. We distinguish between three types of PBs. PB-1 consist of spherical bodies (10-20 microns) with vacuoles composed of closely packed fibrils. PB-2 are irregularly shaped bodies (0.3-2.0 microns) consisting of a fibro-granular material. PB-2 are located near the nuclear envelope and contact the nucleoplasm material through nuclear pores. PB-1 and PB-2 join together to form a complex PB of the third type. All types of PB are not surrounded with a membrane and sometimes have mitochondria on their surface. The immunogold technique at the ultrastructural level revealed snRNP in PB-2. These results have enabled us to make a conclusion that PB-2 may be storage sites of snRNPs required for a future development of the embryo.  相似文献   

3.
M N Gruzova 《Ontogenez》1974,5(6):623-633
The nuclear structures in the ovarioles have been studied in Laspeyresia pomonella by means of light and electron microscopy, autoradiography (RNA and DNA synthesis) and molecular hybridization in situ. The karyosphere was shown to form in oocyte nuclei at the beginning of oocyte growth. Numerous protein granules appeared in close contact with the karyosphere chromosomes; the true nucleolus was absent and the whole nucleus was inactive in RNA synthesis. A special attention was paid to studying nuclear structures in trophocytes. Numerous complex nucleoli actively synthesizing RNA formed in highly endopolyploid nuclei of trophocytes. Besides, each trophocyte had a spheroid vacuolized body of DNA which developed from one of meiotic bivalents soon after trophocyte differentiation and increased in diameter up to 10-15 mu. The DNA body in trophocytes and follicle cells was in close contact with the nucleolar material. Ribosomal DNA was present in these bodies as was shown by molecular hybridization in situ. A suggestion is put forward to the effect that the DNA bodies take part in the formation of complex nucleolar apparatus of trophocytes. On the basis of both the author's and literary data, a conclusion is drawn that DNA spheres in trophocytes and follicle cells are sex chromatin bodies formed, however, by both the X- and Y-chromosomes, rather than by one Y-chromosome.  相似文献   

4.
The fine structure of the fat body and associated nephrocytes of the American dog tick,Dermacentor variabilis (Say), was described in unfed larvae, unfed nymphs, and in unfed and fed adults of both sexes. The fat body consisted of one type of cell, the trophocyte. Morphological changes that occured in the trophocytes of both sexes were dependent on feeding. The ultrastructure of feeding male trophocytes was distinct from trophocytes of feeding females. In the feeding female, the trophocyte developed an ultrastructure characteristic of cells that produce secretory proteins. A type of scalariform cell junction was found associated with rough endoplasmic reticulum of the trophocytes. Nephrocytes were closely associated with trophocytes but were not part of the fat body. Nephrocyte ultrastructure was unaltered throughout the life-stages we examined, except at the end of oviposition. Organelles in the nephrocytes were not randomly distributed, but were found in distinct regions of the cytoplasm. Slit diaphragms at the surface of the nephrocytes were extracellular specializations that had a periodic ultrastructure.  相似文献   

5.
Telotrophic ovarioles of scale insects are subdivided into tropharia (=trophic chambers) and vitellaria that contain single developing oocytes. Tropharium encloses trophocytes (=nurse cells) and arrested oocytes. The central area of the tropharium, termed the trophic core, is devoid of cells. Both trophocytes and oocytes are connected to the trophic core: trophocytes by cytoplasmic processes, oocytes by means of nutritive cords. The trophic core, processes and nutritive cords are filled with bundles of microtubules. The trophocytes contain large lobated nuclei with giant nucleoli. Fluorescent labelling with DAPI has shown that trophocyte nuclei are characterized by high contents of DNA. In the cortical cytoplasm of trophocytes, numerous microfilaments are present. The developing oocyte is surrounded by a simple follicular epithelium. The cortical cytoplasm of follicular cells contains numerous microtubules and microfilaments.  相似文献   

6.
In the oocyte nuclei (germinal vesicle or GV) of a variety of avian species, prominent spherical entities termed protein bodies (PBs) arise at the centromeric regions of the lampbrush chromosomes (LBCs). In spite of the obvious protein nature of PBs, nothing is known about their composition. We show that an antibody against DNA topoisomerase II (topo II), the DNA unwinding enzyme, recognizes PBs from chaffinch and pigeon oocytes. In later chaffinch oocytes, the PBs fuse to form a karyosphere, which is also labeled by the anti-topo II antibody. Furthermore, we show that proteins characteristic of Cajal bodies and B-snurposomes are not found in PBs, despite morphological similarities among these structures. Using immunoelectron microscopy and immunofluorescent laser scanning microscopy we demonstrated that topo II localizes predominantly in the dense material of PBs. Two antigens of 170 kDa (which corresponds to topo II) and 100 kDa were revealed with the antibody against topo II on immunoblots of avian GV proteins. We propose that the smaller protein results from oocyte specific topo II cleavage, since it was not detected in nuclei from testis cells. This represents the first report of a defined protein in the centromeric PBs on avian LBCs.  相似文献   

7.
A fetal origin of the isalnds was supposed after light microscopical observations, investigated especially on young placentas. Electron microscopical examination confirm this supposition. The following facts prove, that the islands are products of the trophoblast: 1. The development of Langhans-cells to the differentiated cytotrophoblast, passing the state of the transitional cell type - I have called the differentiated cytotrophoblast "trophocyte". 2. The linkage of the trophocyte to the syncytiotrophoblast of the islands by desmosomes. 3. Definite morphological differences between the trophocytes and the decidual cells. 4. The absence of connective tissue and vessels in the islands.  相似文献   

8.
Ovaries of heteropterans consist of telotrophic meroistic ovarioles that are composed of apically located tropharium and basal vitellarium, containing developing oocytes. The tropharium (trophic chamber) houses trophocytes (nurse cells) that are connected with the centrally located trophic core. The organization of the heteropteran tropharia is highly variable and differs in representatives of primitive versus advanced families. The differences concern the mitotic activity of the apical nurse cells, organization of the trophocytes (individual cells or "syncytial lobes"), their connection with the trophic core and the development of F-actin meshwork around the trophic core. In members of primitive taxa of the Heteroptera, tropharia are composed of individual, usually mononucleate trophocytes. On the contrary, tropharia in advanced heteropterans are built of large "cytoplasmic lobes" that contain several trophocyte nuclei. Mitotic divisions of the trophocytes in the apical part of the trophic chamber are observed in most bugs (except Dipsocoridae, Miridae and Cimicidae). Tropharia of Miridae represent an entirely different organization (they are built of one type of highly polyploid trophocytes). Anagenesis of heteropteran trophic chamber is discussed in the context of presented data.  相似文献   

9.
Early stages of differentiation of the oocytes and nurse cells are comparatively studied in the polytrophic ovarioles in larvae, pupae and imago of the butterfly Laspeyresia pomonella and in the telotrophic ovarioles in larvae and imago of the bug Eurigaster integriceps. In L. pomonella, the oocytes and trophocytes, being the descendants of one oogonial cell, pass synchroniously through early stages of meiotic prophase up to the pachyten. After the pachyten chromosomes of the future trophocytes transform into diakinetic bivalents, whereas in the oocyte nucleus chromosomes retain their pachyten stage appearance. In the fifth instar larva of E. integriceps, two zones may be seen in the germarium of the telotrophic ovariole: the apical trophocyte zone and the distal oocyte zone. The oocytes develop up to the zygotene("bouquet") stage. As to the future trophocytes, they miss zygotene and reach directly diakinesis. Thus,the earlier divergence in the development ways of oocytes and trophocytes is observed in the telotrophic ovarioles, since the trophocyeres pass themeiotic stages more quickly then oocytes. The supposition is advanced that the quicker development of the nurse cells in the bug's ovarioles takes place due to missing the synaptonemal complex formation. The patterns of similarity and distinction between the telotrophic ovarioles in Coleoptera, on the one hand, and the polytrophic ovarioles of the butterfly L. pomonella and telotrophic ovarioles of the bug E. integricept, on the other hand, are discussed.  相似文献   

10.
Z P Za?chikova  M N Gruzova 《Tsitologiia》1975,17(11):1253-1262
The light and electron microscope and autoradiographic studies (H3-uridin incorporation) were carried out on the trophocyte nuclei of imago polytrophic ovarioles of Chrysopa perla (Neuroptera), from the trophocyte differentiation up to their degeneration. Like the oocytes, one of the seven nurse cells o every ovariole chamber contains extrachromosomal DNA bodies. This nurse cell is formed during differential mitoses in the germarium as one of two prooocytes. In contrast to extrachromosomal DNA of oocytes the trophocyte DNA bodies are less active structures. Several (2--4) complex nucleoli develop in the trophocytes of Chrysopa in the early stages of oogenesis. They consist of three main components: the chromatin mass, fibrillar bodies and granular strands. Such nucleoli grow, through increasing in number of fibrillar bodies and granular strands. They are most developed by the start of the vitellogenesis. At the middle vitellogenesis the general nucleolar structure modify due to the beginning of trophocyte degeneration. The consecutive stages of nuclear degeneration are described. The trophocyte nucleoli synthesize RNA still in germarium. The most intensive RNA synthesis is observed at the beginning of the vitellogenesis to decrease by the beginning of trophocyte degeneration.  相似文献   

11.
A monoclonal antibody, directed against an H+ translocating V-ATPase of the midgut of Manduca sexta, has been used for immunolocalization studies in ovarian follicles and testes of Manduca sexta. In testes, no distinct staining above background levels was observed. In vitellogenic follicles, V-ATPase immunoreactivity first appears in the cytoplasm of the trophocytes and then in the oocyte, but by far the strongest reaction is present in the region of the oolemma during endocytosis. All types of follicle cells surrounding both the oocyte and the trophocyte compartments show a distinct positive reaction. In the cylindrical follicle cells surrounding the oocyte, the immunoreactivity is clearly restricted to the basal part. Our results suggest an important role for V-ATPase in vitellogenin uptake in Manduca, similar to that suggested on electro-physiological grounds in Hyalophora cecropia. © 1995 Wiley-Liss, Inc.  相似文献   

12.
Vasa and Belle are conserved DEAD box RNA helicases required for germ cell function. Homologs of this group of proteins in several species, including mammals, are able to complement a mutation in yeast (DED1) suggesting that their function is highly conserved. It has been proposed that these proteins are required for mRNA translation regulation, but their specific mechanism of action is still unknown. Here we describe functions of VBH-1, a C. elegans protein closely related to Belle and Vasa. VBH-1 is expressed specifically in the C. elegans germline, where it is associated with P granules, the C. elegans germ plasm counterpart. vbh-1(RNAi) animals produce fewer offspring than wild type because of defects in oocyte and sperm production, and embryonic lethality. We also find that VBH-1 participates in the sperm/oocyte switch in the hermaphrodite gonad. We conclude that VBH-1 and its orthologs may perform conserved roles in fertility and development.  相似文献   

13.
Oocyte nuclear structures were studied for the scorpionfly Panorpa communis at different stages of oocyte growth, from pachytene to the first meiotic division. Using immunofluorescent and immunogold microscopy, we analyzed the nuclear distribution of RNA polymerase II, splicing factors and coilin. These factors were revealed in close association with perichromatin fibrils and, later, with some elements of the karyosphere and extrachromosomal nuclear bodies (NBs). Besides, it was shown that large amounts of P. communis oocyte NBs represent Cajal bodies (CBs) and contain CB marker protein, coilin, as well as RNA polymerase II, and in some cases an essential splicing factor, SC35. The presence of SC35 is commonly not characteristic of CBs in somatic cells. CB dynamics was traced in inactivated oocyte nuclei, during a gradual condensation of chromosomes and their final assembling into the karyosphere. It has been shown that coilin, RNA polymerase II and SC35 protein are common compounds shared by CBs and some granular material associated with these condensed chromosomes. CB remnants were demonstrated in the ooplasm after the breakdown of nuclear envelope before the first meiotic division. In inactivated oocyte nuclei, CBs serve presumably as storage compartments for some inactive components essential for gene expression.  相似文献   

14.
A cysteine proprotease has been identified in developing embryos of the cockroach Blattella germanica and found to be a maternally encoded gene product that is transferred endocytically to the oocyte. The present study aims at establishing how this maternally derived proprotease is synthesized, packaged, and secreted during vitellogenesis. To this end, proprotease was localized immunocytochemically in the fat body of postmating females and its localization compared with that of vitellogenin over the same developmental periods. Fat bodies in cockroaches are comprised of two different cell types: trophocytes and bacteriocytes. Data show that proprotease and vitellogenin come to colocalize in compound granules of the fat body trophocytes. While synthesis of vitellogenin can be traced back to granules resulting from the coalescence of Golgi-derived vesicles in the trophocyte cytoplasm, proprotease appears to be localized predominantly on the cytolysosomes of both trophocytes and bacteriocytes. When probed with an anti-proprotease antiserum, bacteria are also positively labeled, regardless of whether they are segregated inside the cytolysosomes or free in the bacteriocyte cytoplasm. Since vitellogenin and proprotease colocalize within the same cell organelle, it is assumed that Golgi-derived vesicles, which contain vitellogenin, may fuse with cytolysosomes bearing proprotease to yield compound secretory granules. To account for the present observations, the origin and role of proprotease are discussed in relation to the turnover of bacteria in the fat body and to the requirements of endosymbiosis.  相似文献   

15.
Because the mtDNA amount remains stable in the early embryo until uterine implantation, early human development is completely dependent on the mtDNA pool of the mature oocyte. Both quantitative and qualitative mtDNA defects therefore may negatively impact oocyte competence or early embryonic development. However, nothing is known about segregation of mutant and wild-type mtDNA molecules during human meiosis. To investigate this point, we compared the mutant levels in 51 first polar bodies (PBs) and their counterpart (oocytes, blastomeres, or whole embryos), at risk of having (1) the "MELAS" m.3243A>G mutation in MT-TL1 (n = 30), (2) the "MERRF" m.8344A>G mutation in MT-TK (n = 15), and (3) the m.9185T>G mutation located in MT-ATP6 (n = 6). Seven out of 51 of the PBs were mutation free and had homoplasmic wild-type counterparts. In the heteroplasmic PBs, measurement of the mutant load was a rough estimate of the counterpart mutation level (R(2) = 0.52), and high mutant-load differentials between the two populations were occasionally observed (ranging from -34% to +34%). The mutant-load differentials between the PB and its counterpart were higher in highly mutated PBs, suggestive of a selection process acting against highly mutated cells during gametogenesis or early embryonic development. Finally, individual discrepancies in mutant loads between PBs and their counterparts make PB-based preconception diagnosis unreliable for the prevention of mtDNA disorder transmission. Such differences were not observed in animal models, and they emphasize the need to conduct thorough studies on mtDNA segregation in humans.  相似文献   

16.
Histochemical and electron microscopic methods have revealed that there are four types of cell inclusions in the late vitellogenic oocytes of Oncopeltus. (a) Type 1 is a vacuole which seems to be contributed from the tropharium via the nutritive tubes. It is suggested that this type consists partly at least of nucleolus-like material (ribonucleoprotein) emitted from the nuclei of the Zone III trophocytes. (b) Type 2 is lipid yolk which in early stage oocytes seems to be produced in the “Balbiani body.” In the vitellogenic oocytes these lipid spheres are apparently imported by the oocyte from the haemolymph either through the follicle cells, or through the extracellular space in the follicular epithelium. (c) Type 3 is carbohydrate/protein yolk where at least part of the protein (“vitellogenic protein”) is taken up from the haemolymph, transported through the extracellular space in the follicular epithelium, and deposited into the oocyte by pinocytosis. (d) Glycogen is deposited from the early phases of vitellogenesis. The tropharium may contribute, besides Type 1 vacuoles, ribosomes, mitochondria, stacks of annulated lamellae, and “food vacuoles” to the oocytes. Specialized cells which line the tropharium and send projections toward the trophic core have been called “peripheral trophocytes.” Contrary to the regular trophocytes, they contain glycogen and an abundance of Golgi complexes.  相似文献   

17.
18.
19.
The structure of the germaria in the ovaries of the viginoparous morph of the vetch aphid, Megoura viciae Buckton (Homoptera : Aphididae) is described and compared to other insects, including aphids. Each consists of a syncytium of trophocytes and resting oocytes arranged around a trophic core. Trophocytes contain mitochondria, ribosomes, vacuoles and some membrane-bounded material. Golgi complexes were not found. Each trophocyte has a single spherical nucleus with “nuage-like” material confluent between nucleoplasm and cytoplasm via numerous nucleopores. The surrounding monolayer of somatic epithelial sheath cells are bounded externally by an acellular tunica propria. These cells continue into the prefollicular tissue in the base of each germarium. Cells from the prefollicular tissue envelop each oocyte as it is released from a germarium. The “previtellogenic” growth phase of oocytes is relatively short, and vitellogenesis is absent. Virginoparae are reproductively precocious, and newly born larvae have up to 3 oocytes undergoing development in their anterior ovarioles. Interovariole ovulation is asynchronous within, and partially synchronous between, the 2 ovaries.  相似文献   

20.
The vasa gene, first identified in Drosophila, is a key determinant for germline formation in eukaryotes. Homologs of vasa have been identified and linked to germline development, in many invertebrates and vertebrates. Here, we analyze the distribution of Vasa in early germ cells (oogonia and oocytes) and previtellogenic ovarian follicles of the lizard Podarcis sicula. During most of its previtellogenic growth, the oocyte in this lizard species is structurally and functionally integrated through intercellular bridges with special follicle cells called pyriform cells. The pyriform cells function similarly to Drosophila nurse cells, but are somatic in origin. In the oogenesis of P. sicula, Vasa is initially highly detected in the oogonia, but its levels decrease in early stage oocytes before the onset of pyriform cell differentiation. In the later stages of oogenesis, the high level of Vasa is related with the nurse function of the pyriform follicle cells. These observations suggest that cells of somatic origin are engaged in the synthesis of Vasa in the oogenesis of this lizard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号