首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Liang  Hua; Wu  Hulin; Zou  Guohua 《Biometrika》2008,95(3):773-778
The conventional model selection criterion, the Akaike informationcriterion, AIC, has been applied to choose candidate modelsin mixed-effects models by the consideration of marginal likelihood.Vaida & Blanchard (2005) demonstrated that such a marginalAIC and its small sample correction are inappropriate when theresearch focus is on clusters. Correspondingly, these authorssuggested the use of conditional AIC. Their conditional AICis derived under the assumption that the variance-covariancematrix or scaled variance-covariance matrix of random effectsis known. This note provides a general conditional AIC but withoutthese strong assumptions. Simulation studies show that the proposedmethod is promising.  相似文献   

2.
Yuan Y  Little RJ 《Biometrics》2009,65(2):478-486
Summary .  Selection models and pattern-mixture models are often used to deal with nonignorable dropout in longitudinal studies. These two classes of models are based on different factorizations of the joint distribution of the outcome process and the dropout process. We consider a new class of models, called mixed-effect hybrid models (MEHMs), where the joint distribution of the outcome process and dropout process is factorized into the marginal distribution of random effects, the dropout process conditional on random effects, and the outcome process conditional on dropout patterns and random effects. MEHMs combine features of selection models and pattern-mixture models: they directly model the missingness process as in selection models, and enjoy the computational simplicity of pattern-mixture models. The MEHM provides a generalization of shared-parameter models (SPMs) by relaxing the conditional independence assumption between the measurement process and the dropout process given random effects. Because SPMs are nested within MEHMs, likelihood ratio tests can be constructed to evaluate the conditional independence assumption of SPMs. We use data from a pediatric AIDS clinical trial to illustrate the models.  相似文献   

3.
Roy J  Daniels MJ 《Biometrics》2008,64(2):538-545
Summary .   In this article we consider the problem of fitting pattern mixture models to longitudinal data when there are many unique dropout times. We propose a marginally specified latent class pattern mixture model. The marginal mean is assumed to follow a generalized linear model, whereas the mean conditional on the latent class and random effects is specified separately. Because the dimension of the parameter vector of interest (the marginal regression coefficients) does not depend on the assumed number of latent classes, we propose to treat the number of latent classes as a random variable. We specify a prior distribution for the number of classes, and calculate (approximate) posterior model probabilities. In order to avoid the complications with implementing a fully Bayesian model, we propose a simple approximation to these posterior probabilities. The ideas are illustrated using data from a longitudinal study of depression in HIV-infected women.  相似文献   

4.
Model choice in linear mixed-effects models for longitudinal data is a challenging task. Apart from the selection of covariates, also the choice of the random effects and the residual correlation structure should be possible. Application of classical model choice criteria such as Akaike information criterion (AIC) or Bayesian information criterion is not obvious, and many versions do exist. In this article, a predictive cross-validation approach to model choice is proposed based on the logarithmic and the continuous ranked probability score. In contrast to full cross-validation, the model has to be fitted only once, which enables fast computations, even for large data sets. Relationships to the recently proposed conditional AIC are discussed. The methodology is applied to search for the best model to predict the course of CD4+ counts using data obtained from the Swiss HIV Cohort Study.  相似文献   

5.
Although multicenter data are common, many prediction model studies ignore this during model development. The objective of this study is to evaluate the predictive performance of regression methods for developing clinical risk prediction models using multicenter data, and provide guidelines for practice. We compared the predictive performance of standard logistic regression, generalized estimating equations, random intercept logistic regression, and fixed effects logistic regression. First, we presented a case study on the diagnosis of ovarian cancer. Subsequently, a simulation study investigated the performance of the different models as a function of the amount of clustering, development sample size, distribution of center-specific intercepts, the presence of a center-predictor interaction, and the presence of a dependency between center effects and predictors. The results showed that when sample sizes were sufficiently large, conditional models yielded calibrated predictions, whereas marginal models yielded miscalibrated predictions. Small sample sizes led to overfitting and unreliable predictions. This miscalibration was worse with more heavily clustered data. Calibration of random intercept logistic regression was better than that of standard logistic regression even when center-specific intercepts were not normally distributed, a center-predictor interaction was present, center effects and predictors were dependent, or when the model was applied in a new center. Therefore, to make reliable predictions in a specific center, we recommend random intercept logistic regression.  相似文献   

6.
In a linear mixed effects model, it is common practice to assume that the random effects follow a parametric distribution such as a normal distribution with mean zero. However, in the case of variable selection, substantial violation of the normality assumption can potentially impact the subset selection and result in poor interpretation and even incorrect results. In nonparametric random effects models, the random effects generally have a nonzero mean, which causes an identifiability problem for the fixed effects that are paired with the random effects. In this article, we focus on a Bayesian method for variable selection. We characterize the subject‐specific random effects nonparametrically with a Dirichlet process and resolve the bias simultaneously. In particular, we propose flexible modeling of the conditional distribution of the random effects with changes across the predictor space. The approach is implemented using a stochastic search Gibbs sampler to identify subsets of fixed effects and random effects to be included in the model. Simulations are provided to evaluate and compare the performance of our approach to the existing ones. We then apply the new approach to a real data example, cross‐country and interlaboratory rodent uterotrophic bioassay.  相似文献   

7.
Within the pattern-mixture modeling framework for informative dropout, conditional linear models (CLMs) are a useful approach to deal with dropout that can occur at any point in continuous time (not just at observation times). However, in contrast with selection models, inferences about marginal covariate effects in CLMs are not readily available if nonidentity links are used in the mean structures. In this article, we propose a CLM for long series of longitudinal binary data with marginal covariate effects directly specified. The association between the binary responses and the dropout time is taken into account by modeling the conditional mean of the binary response as well as the dependence between the binary responses given the dropout time. Specifically, parameters in both the conditional mean and dependence models are assumed to be linear or quadratic functions of the dropout time; and the continuous dropout time distribution is left completely unspecified. Inference is fully Bayesian. We illustrate the proposed model using data from a longitudinal study of depression in HIV-infected women, where the strategy of sensitivity analysis based on the extrapolation method is also demonstrated.  相似文献   

8.
Neuhaus JM  Scott AJ  Wild CJ 《Biometrics》2006,62(2):488-494
Case-control studies augmented by the values of responses and covariates from family members allow investigators to study the association between the response and genetics and environment by relating differences in the response directly to within-family differences in covariates. However, existing approaches for case-control family data parameterize covariate effects in terms of the marginal probability of response, the same effects that one estimates from standard case-control studies. This article focuses on the estimation of family-specific covariate effects and develops efficient methods to fit family-specific models such as binary mixed-effects models. We also extend the approach to cover any setting where one has a fully specified model for the vector of responses in a family. We illustrate our approach using data from a case-control family study of brain cancer and consider the use of weighted and conditional likelihood methods as alternatives.  相似文献   

9.
A prospective cohort study of men with newly diagnosed early prostate cancer was undertaken Talcott et al. (1998) in order to evaluate both the patient-level and the physician-level determinants of physician recommendations for radical prostatectomy (surgery) versus radiation therapy. Each patient sought recommendations from as many as six physicians, and each physician provided recommendations for as many as 113 patients. Thus, the recommendations are clustered within physician and within patient. While methods have been developed for binary data with multiple-nested sources of clustering, they have not been fully explored for binary data with non-nested sources of clustering, such as the treatment recommendations. Here we propose reclustering the data to form binary data with one source of clustering. Because the reclustered data result in one very large cluster and several clusters of size one and two, marginal logistic regression models for the probability of a recommendation of surgery fit using a generalized estimating equation approach would produce unreliable estimates of uncertainty for the parameters. Thus, in addition to the mean model, we attempt to model the associations in as much detail as possible. We compare this model to a mixed-effects model that implicitly adjusts for both sources of clustering and to models based on the assumption of conditional independence with regard to one source of clustering.  相似文献   

10.
Generalized hierarchical multivariate CAR models for areal data   总被引:5,自引:0,他引:5  
Jin X  Carlin BP  Banerjee S 《Biometrics》2005,61(4):950-961
In the fields of medicine and public health, a common application of areal data models is the study of geographical patterns of disease. When we have several measurements recorded at each spatial location (for example, information on p>/= 2 diseases from the same population groups or regions), we need to consider multivariate areal data models in order to handle the dependence among the multivariate components as well as the spatial dependence between sites. In this article, we propose a flexible new class of generalized multivariate conditionally autoregressive (GMCAR) models for areal data, and show how it enriches the MCAR class. Our approach differs from earlier ones in that it directly specifies the joint distribution for a multivariate Markov random field (MRF) through the specification of simpler conditional and marginal models. This in turn leads to a significant reduction in the computational burden in hierarchical spatial random effect modeling, where posterior summaries are computed using Markov chain Monte Carlo (MCMC). We compare our approach with existing MCAR models in the literature via simulation, using average mean square error (AMSE) and a convenient hierarchical model selection criterion, the deviance information criterion (DIC; Spiegelhalter et al., 2002, Journal of the Royal Statistical Society, Series B64, 583-639). Finally, we offer a real-data application of our proposed GMCAR approach that models lung and esophagus cancer death rates during 1991-1998 in Minnesota counties.  相似文献   

11.
In longitudinal studies, measurements of the same individuals are taken repeatedly through time. Often, the primary goal is to characterize the change in response over time and the factors that influence change. Factors can affect not only the location but also more generally the shape of the distribution of the response over time. To make inference about the shape of a population distribution, the widely popular mixed-effects regression, for example, would be inadequate, if the distribution is not approximately Gaussian. We propose a novel linear model for quantile regression (QR) that includes random effects in order to account for the dependence between serial observations on the same subject. The notion of QR is synonymous with robust analysis of the conditional distribution of the response variable. We present a likelihood-based approach to the estimation of the regression quantiles that uses the asymmetric Laplace density. In a simulation study, the proposed method had an advantage in terms of mean squared error of the QR estimator, when compared with the approach that considers penalized fixed effects. Following our strategy, a nearly optimal degree of shrinkage of the individual effects is automatically selected by the data and their likelihood. Also, our model appears to be a robust alternative to the mean regression with random effects when the location parameter of the conditional distribution of the response is of interest. We apply our model to a real data set which consists of self-reported amount of labor pain measurements taken on women repeatedly over time, whose distribution is characterized by skewness, and the significance of the parameters is evaluated by the likelihood ratio statistic.  相似文献   

12.
Dropouts are common in longitudinal study. If the dropout probability depends on the missing observations at or after dropout, this type of dropout is called informative (or nonignorable) dropout (ID). Failure to accommodate such dropout mechanism into the model will bias the parameter estimates. We propose a conditional autoregressive model for longitudinal binary data with an ID model such that the probabilities of positive outcomes as well as the drop‐out indicator in each occasion are logit linear in some covariates and outcomes. This model adopting a marginal model for outcomes and a conditional model for dropouts is called a selection model. To allow for the heterogeneity and clustering effects, the outcome model is extended to incorporate mixture and random effects. Lastly, the model is further extended to a novel model that models the outcome and dropout jointly such that their dependency is formulated through an odds ratio function. Parameters are estimated by a Bayesian approach implemented using the user‐friendly Bayesian software WinBUGS. A methadone clinic dataset is analyzed to illustrate the proposed models. Result shows that the treatment time effect is still significant but weaker after allowing for an ID process in the data. Finally the effect of drop‐out on parameter estimates is evaluated through simulation studies.  相似文献   

13.
Inference for Dirichlet process hierarchical models is typicallyperformed using Markov chain Monte Carlo methods, which canbe roughly categorized into marginal and conditional methods.The former integrate out analytically the infinite-dimensionalcomponent of the hierarchical model and sample from the marginaldistribution of the remaining variables using the Gibbs sampler.Conditional methods impute the Dirichlet process and updateit as a component of the Gibbs sampler. Since this requiresimputation of an infinite-dimensional process, implementationof the conditional method has relied on finite approximations.In this paper, we show how to avoid such approximations by designingtwo novel Markov chain Monte Carlo algorithms which sample fromthe exact posterior distribution of quantities of interest.The approximations are avoided by the new technique of retrospectivesampling. We also show how the algorithms can obtain samplesfrom functionals of the Dirichlet process. The marginal andthe conditional methods are compared and a careful simulationstudy is included, which involves a non-conjugate model, differentdatasets and prior specifications.  相似文献   

14.
Roy J 《Biometrics》2003,59(4):829-836
In longitudinal studies with dropout, pattern-mixture models form an attractive modeling framework to account for nonignorable missing data. However, pattern-mixture models assume that the components of the mixture distribution are entirely determined by the dropout times. That is, two subjects with the same dropout time have the same distribution for their response with probability one. As that is unlikely to be the case, this assumption made lead to classification error. In addition, if there are certain dropout patterns with very few subjects, which often occurs when the number of observation times is relatively large, pattern-specific parameters may be weakly identified or require identifying restrictions. We propose an alternative approach, which is a latent-class model. The dropout time is assumed to be related to the unobserved (latent) class membership, where the number of classes is less than the number of observed patterns; a regression model for the response is specified conditional on the latent variable. This is a type of shared-parameter model, where the shared "parameter" is discrete. Parameter estimates are obtained using the method of maximum likelihood. Averaging the estimates of the conditional parameters over the distribution of the latent variable yields estimates of the marginal regression parameters. The methodology is illustrated using longitudinal data on depression from a study of HIV in women.  相似文献   

15.
Summary In this article, we propose a positive stable shared frailty Cox model for clustered failure time data where the frailty distribution varies with cluster‐level covariates. The proposed model accounts for covariate‐dependent intracluster correlation and permits both conditional and marginal inferences. We obtain marginal inference directly from a marginal model, then use a stratified Cox‐type pseudo‐partial likelihood approach to estimate the regression coefficient for the frailty parameter. The proposed estimators are consistent and asymptotically normal and a consistent estimator of the covariance matrix is provided. Simulation studies show that the proposed estimation procedure is appropriate for practical use with a realistic number of clusters. Finally, we present an application of the proposed method to kidney transplantation data from the Scientific Registry of Transplant Recipients.  相似文献   

16.
Tan M  Qu Y  Rao JS 《Biometrics》1999,55(1):258-263
The marginal regression model offers a useful alternative to conditional approaches to analyzing binary data (Liang, Zeger, and Qaqish, 1992, Journal of the Royal Statistical Society, Series B 54, 3-40). Instead of modelling the binary data directly as do Liang and Zeger (1986, Biometrika 73, 13-22), the parametric marginal regression model developed by Qu et al. (1992, Biometrics 48, 1095-1102) assumes that there is an underlying multivariate normal vector that gives rise to the observed correlated binary outcomes. Although this parametric approach provides a flexible way to model different within-cluster correlation structures and does not restrict the parameter space, it is of interest to know how robust the parameter estimates are with respect to choices of the latent distribution. We first extend the latent modelling to include multivariate t-distributed latent vectors and assess the robustness in this class of distributions. Then we show through a simulation that the parameter estimates are robust with respect to the latent distribution even if latent distribution is skewed. In addtion to this empirical evidence for robustness, we show through the iterative algorithm that the robustness of the regression coefficents with respect to misspecifications of covariance structure in Liang and Zeger's model in fact indicates robustness with respect to underlying distributional assumptions of the latent vector in the latent variable model.  相似文献   

17.
When two binary responses are measured for each study subject across time, it may be of interest to model how the bivariate associations and marginal univariate risks involving the two responses change across time. To achieve such a goal, marginal models with bivariate log odds ratio and univariate logit components are extended to include random effects for all components. Specifically, separate normal random effects are specified on the log odds ratio scale for bivariate responses and on the logit scale for univariate responses. Assuming conditional independence given the random effects facilitates the modeling of bivariate associations across time with missing at random incomplete data. We fit the model to a dataset for which such structures are feasible: a longitudinal randomized trial of a cardiovascular educational program where the responses of interest are change in hypertension and hypercholestemia status. The proposed model is compared to a naive bivariate model that assumes independence between time points and univariate mixed effects logit models.  相似文献   

18.
We consider an extension of linear mixed models by assuming a multivariate skew t distribution for the random effects and a multivariate t distribution for the error terms. The proposed model provides flexibility in capturing the effects of skewness and heavy tails simultaneously among continuous longitudinal data. We present an efficient alternating expectation‐conditional maximization (AECM) algorithm for the computation of maximum likelihood estimates of parameters on the basis of two convenient hierarchical formulations. The techniques for the prediction of random effects and intermittent missing values under this model are also investigated. Our methodologies are illustrated through an application to schizophrenia data.  相似文献   

19.
Ibrahim JG  Chen MH  Lipsitz SR 《Biometrics》1999,55(2):591-596
We propose a method for estimating parameters for general parametric regression models with an arbitrary number of missing covariates. We allow any pattern of missing data and assume that the missing data mechanism is ignorable throughout. When the missing covariates are categorical, a useful technique for obtaining parameter estimates is the EM algorithm by the method of weights proposed in Ibrahim (1990, Journal of the American Statistical Association 85, 765-769). We extend this method to continuous or mixed categorical and continuous covariates, and for arbitrary parametric regression models, by adapting a Monte Carlo version of the EM algorithm as discussed by Wei and Tanner (1990, Journal of the American Statistical Association 85, 699-704). In addition, we discuss the Gibbs sampler for sampling from the conditional distribution of the missing covariates given the observed data and show that the appropriate complete conditionals are log-concave. The log-concavity property of the conditional distributions will facilitate a straightforward implementation of the Gibbs sampler via the adaptive rejection algorithm of Gilks and Wild (1992, Applied Statistics 41, 337-348). We assume the model for the response given the covariates is an arbitrary parametric regression model, such as a generalized linear model, a parametric survival model, or a nonlinear model. We model the marginal distribution of the covariates as a product of one-dimensional conditional distributions. This allows us a great deal of flexibility in modeling the distribution of the covariates and reduces the number of nuisance parameters that are introduced in the E-step. We present examples involving both simulated and real data.  相似文献   

20.
Klein JP  Pelz C  Zhang MJ 《Biometrics》1999,55(2):497-506
A normal distribution regression model with a frailty-like factor to account for statistical dependence between the observed survival times is introduced. This model, as opposed to standard hazard-based frailty models, has survival times that, conditional on the shared random effect, have an accelerated failure time representation. The dependence properties of this model are discussed and maximum likelihood estimation of the model's parameters is considered. A number of examples are considered to illustrate the approach. The estimated degree of dependence is comparable to other models, but the present approach has the advantage that the interpretation of the random effect is simpler than in the frailty model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号