首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
After exposure of cells of the methylotrophic yeast Hansenula polymorpha HF246 leu1-1 to N-nitro-N-nitrosoguanidine, a collection of 227 mutants unable to grow on methanol at elevated temperature (45 degrees C) was obtained. Ninety four ts mutants (35% of the total number of mutants), which were unable to grow on methanol only at 45 degrees C but could grow at optimal temperature (37 degrees C), were isolated. Complementation analysis of mutants using 12 deletion mutants for genes of peroxisome biogenesis (PEX) (available in this yeast species by the beginning of our work) allowed to assign 51 mutants (including 16 ts) to the separate group of mutants unable to complement deletion mutants with defects in eight PEX genes. These mutants were classified into three groups: group 1 contained 10 pex10 mutants (4 ts mutants among them); group 2 included 19 mutants that failed to complement other pex testers: 1 pex1; 2 pex4 (1 ts); 6 pex5 (5 ts); 3 pex8; 6 (3ts)- pex19; group 3 contained 22 "multiple" mutants. In mutants of group 3, hybrids with several testers do not grow on methanol. All mutants (51) carried recessive mutations, except for mutant 108, in which the mutation was dominant only at 30 degrees C, which suggests that it is ts-dominant. Recombination analysis of mutants belonging to group 2 revealed that only five mutants (two pex5 and three pex8) carried mutations for the corresponding PEX genes. The remaining 14 mutants yielded methanol-utilizing segregants in an arbitrarily chosen sample of hybrids with the pex tester, which indicates mutation location in other genes. In 19 mutants, random analysis of ascospores from hybrids obtained upon crossing mutants of group 3 with a strain lacking peroxisomal disorders (ade11) revealed a single mutation causing the appearance of a multiple phenotype. A more detailed study of two mutants from this group allowed the localization of this mutation in the only PEX gene (PEX or PEX2). The revealed disorder of complementation interactions between nonallelic genes is under debate.  相似文献   

2.
Catabolism of fatty acids stored in oil bodies is essential for seed germination and seedling development in Arabidopsis. This fatty acid breakdown occurs in peroxisomes, organelles that sequester oxidative reactions. Import of peroxisomal enzymes is facilitated by peroxins including PEX5, a receptor that delivers cargo proteins from the cytosol to the peroxisomal matrix. After cargo delivery, a complex of the PEX1 and PEX6 ATPases and the PEX26 tail‐anchored membrane protein removes ubiquitinated PEX5 from the peroxisomal membrane. We identified Arabidopsis pex6 and pex26 mutants by screening for inefficient seedling β‐oxidation phenotypes. The mutants displayed distinct defects in growth, response to a peroxisomally metabolized auxin precursor, and peroxisomal protein import. The low PEX5 levels in these mutants were increased by treatment with a proteasome inhibitor or by combining pex26 with peroxisome‐associated ubiquitination machinery mutants, suggesting that ubiquitinated PEX5 is degraded by the proteasome when the function of PEX6 or PEX26 is reduced. Combining pex26 with mutations that increase PEX5 levels either worsened or improved pex26 physiological and molecular defects, depending on the introduced lesion. Moreover, elevating PEX5 levels via a 35S:PEX5 transgene exacerbated pex26 defects and ameliorated the defects of only a subset of pex6 alleles, implying that decreased PEX5 is not the sole molecular deficiency in these mutants. We found peroxisomes clustered around persisting oil bodies in pex6 and pex26 seedlings, suggesting a role for peroxisomal retrotranslocation machinery in oil body utilization. The disparate phenotypes of these pex alleles may reflect unanticipated functions of the peroxisomal ATPase complex.  相似文献   

3.
Peroxisomal matrix proteins carry peroxisomal targeting signals (PTSs), PTS1 or PTS2, and are imported into the organelle with the assistance of peroxin (PEX) proteins. From a microscopy-based screen to identify Arabidopsis (Arabidopsis thaliana) mutants defective in matrix protein degradation, we isolated unique mutations in PEX2 and PEX10, which encode ubiquitin-protein ligases anchored in the peroxisomal membrane. In yeast (Saccharomyces cerevisiae), PEX2, PEX10, and a third ligase, PEX12, ubiquitinate a peroxisome matrix protein receptor, PEX5, allowing the PEX1 and PEX6 ATP-hydrolyzing enzymes to retrotranslocate PEX5 out of the membrane after cargo delivery. We found that the pex2-1 and pex10-2 Arabidopsis mutants exhibited defects in peroxisomal physiology and matrix protein import. Moreover, the pex2-1 pex10-2 double mutant exhibited severely impaired growth and synergistic physiological defects, suggesting that PEX2 and PEX10 function cooperatively in the wild type. The pex2-1 lesion restored the unusually low PEX5 levels in the pex6-1 mutant, implicating PEX2 in PEX5 degradation when retrotranslocation is impaired. PEX5 overexpression altered pex10-2 but not pex2-1 defects, suggesting that PEX10 facilitates PEX5 retrotranslocation from the peroxisomal membrane. Although the pex2-1 pex10-2 double mutant displayed severe import defects of both PTS1 and PTS2 proteins into peroxisomes, both pex2-1 and pex10-2 single mutants exhibited clear import defects of PTS1 proteins but apparently normal PTS2 import. A similar PTS1-specific pattern was observed in the pex4-1 ubiquitin-conjugating enzyme mutant. Our results indicate that Arabidopsis PEX2 and PEX10 cooperate to support import of matrix proteins into plant peroxisomes and suggest that some PTS2 import can still occur when PEX5 retrotranslocation is slowed.Peroxisomes are dynamic organelles housing critical oxidative metabolic reactions while sequestering harmful reactive oxygen species from the rest of the cell. In Arabidopsis (Arabidopsis thaliana), these single membrane-bound organelles are the sole site of β-oxidation and are essential for normal development (for review, see Hu et al., 2012). Triacylglycerols stored in seeds are cleaved by lipases during germination, and the released fatty acids are β-oxidized in peroxisomes to provide energy for early seedling development (for review, see Graham, 2008). Similarly, an auxin precursor, indole-3-butyric acid (IBA), is β-oxidized to active indole-3-acetic acid (IAA) in peroxisomes (Zolman et al., 2000, 2007, 2008; Strader et al., 2010; Strader and Bartel, 2011; Strader et al., 2011). IBA application enhances rooting in many plants (Woodward and Bartel, 2005a), and IAA produced from endogenous IBA promotes hypocotyl elongation, cotyledon expansion, root hair elongation, and lateral root proliferation in Arabidopsis seedlings (Zolman et al., 2001; Strader et al., 2010, 2011; De Rybel et al., 2012).The enzymes needed for β-oxidation and other peroxisomal processes are imported into the peroxisome matrix from their site of synthesis in the cytosol using proteins known as peroxin (PEX) proteins. PEX5 and PEX7 are receptors that recognize peroxisomal targeting signals (PTSs) on proteins destined for the peroxisome matrix. PEX5 recognizes a three-amino acid C-terminal PTS1 (Keller et al., 1987), and PEX7 recognizes a nine-amino acid PTS2 located near the N terminus of the protein (Osumi et al., 1991; Swinkels et al., 1991). In plants, DEG15, a peroxisomal protease, cleaves the N-terminal PTS2 region after the protein enters the peroxisome (Helm et al., 2007; Schuhmann et al., 2008). Cargo-bound PEX5 and PEX7 associate with PEX13 and PEX14 on the peroxisomal membrane (for review, see Azevedo and Schliebs, 2006; Williams and Distel, 2006) and release their cargo into the peroxisome (Fig. 1A). In yeast (Saccharomyces cerevisiae), membrane-associated PEX5 is ubiquitinated, recognized by a complex of ATP-hydrolyzing enzymes comprised of PEX1 and PEX6, and retrotranslocated out of the peroxisome to be used in additional rounds of import (for review, see Fujiki et al., 2012; Grimm et al., 2012).Open in a separate windowFigure 1.Recombination mapping of pfl36 and pfl81 reveals mutations in PEX2 and PEX10. A, PEX proteins (numbered) implicated in matrix protein import serve as receptors (PEX5 and PEX7) recognizing PTS1 or PTS2 cargo proteins, dock receptors at the peroxisomal membrane (PEX13 and PEX14), or assist in PEX5 retrotranslocation (for review, see Hu et al., 2012). In yeast, the RING-finger proteins PEX2, PEX10, and PEX12 participate as heterooligomers in different modes of PEX5 ubiquitination (Ub; for review, see Platta et al., 2013). B, GFP-ICL fluorescence is detected in both 5- and 7-d-old pex10-2 (pfl81) seedlings carrying ICLp:GFP-ICL, whereas GFP-ICL is easily detected in 5- but not 7-d-old wild-type (Wt) ICLp:GFP-ICL seedlings. Hypocotyls of light-grown seedlings were imaged for GFP fluorescence using confocal microscopy. Bar = 20 µm. C, pfl36 was mapped to the bottom of chromosome 1 near the PEX2 gene using the phenotypes of prolonged GFP-ICL fluorescence accompanied by PMDH processing defects. The number of recombinants over the number of chromosomes scored is indicated for each marker assayed. D, A gene diagram of PEX2 depicting exons as rectangles and introns as lines. A missense mutation in the fourth exon of PEX2 in pfl36 (pex2-1) changes Arg161 to Lys. Three other pex2 alleles are indicated: pex2-2, ted3 (Hu et al., 2002), and the transfer DNA insertion allele Salk_033081 that confers embryo lethality (Hu et al., 2002). E, The locations of the lesions in viable pex2 alleles are indicated on a diagram depicting the PEX2 protein domains, which include two predicted transmembrane domains (TMDs) and a C-terminal RING domain. F, pfl81 was mapped using the IBA resistance phenotype to an interval on the lower arm of chromosome 2 that contained the PEX10 gene. The number of recombinants over the number of chromosomes scored is indicated for each marker assayed. G, pfl81 (pex10-2) carries a PEX10 splicing mutation in the last nucleotide of intron 8. Four other reported pex10 mutants are indicated on the gene diagram: the pex10-1 transfer DNA insertion allele (Schumann et al., 2003; Sparkes et al., 2003) and three Targeting Induced Local Lesions In Genomes (TILLING) alleles: pex10-G93E, pex10-P126S, and pex10-W313* (Prestele et al., 2010). H, The locations of the lesions in the two viable pex10 alleles are indicated on a diagram depicting the PEX10 protein domains, which include two predicted TMDs and a C-terminal RING domain.Yeast PEX5 ubiquitination involves the peroxisomal membrane ubiquitin-protein ligases PEX2, PEX10, and PEX12 (for review, see Platta et al., 2013). The PEX12 ubiquitin-protein ligase monoubiquitinates PEX5 with the assistance of the ubiquitin-conjugating enzyme PEX4 (Platta et al., 2009), allowing PEX5 to be recycled back to the cytosol (Fig. 1A). When PEX4 is absent, yeast ubiquitin-conjugating enzyme4 (Ubc4) works with PEX2 to polyubiquitinate PEX5, marking PEX5 for proteasomal degradation (for review, see Thoms and Erdmann, 2006; Platta et al., 2007, 2013). In yeast, the Really Interesting New Gene (RING) domain of PEX10 binds both PEX2 and PEX12 RING domains to form a trimer (El Magraoui et al., 2012). PEX10 enhances in vitro ubiquitination activity of both PEX2-Ubc4 and PEX12-PEX4 (El Magraoui et al., 2012). Similarly, mammalian PEX12 enhances the in vitro ubiquitination activity of PEX10 (Okumoto et al., 2014). These findings suggest that these RING-finger proteins might act in heteromeric pairs to polyubiquitinate or monoubiquitinate PEX5 (Fig. 1A).Arabidopsis PEX2, PEX10, and PEX12 each display zinc-dependent monoubiquitination activity in vitro (Kaur et al., 2013), but the comparative functions of the Arabidopsis RING-finger PEX proteins in PEX5 ubiquitination, recycling, and degradation have not been reported. This deficiency may, in part, reflect the fact that null alleles of the RING-finger PEX genes confer embryo lethality (Hu et al., 2002; Schumann et al., 2003; Sparkes et al., 2003; Fan et al., 2005; Prestele et al., 2010). RNA interference (RNAi) lines targeting PEX2, PEX10, or PEX12 inefficiently import matrix proteins, display the Suc dependence phenotype that typically accompanies fatty acid β-oxidation defects, and are resistant to 2,4-dichlorophenoxybutyric acid (Fan et al., 2005; Nito et al., 2007), a synthetic analog of IBA (Hayashi et al., 1998). Mutation of any one RING-finger PEX gene results in disassociation or reduced levels of the PEX2-PEX10-PEX12 complex in yeast (Hazra et al., 2002; Agne et al., 2003) and mammals (Okumoto et al., 2014). It is not known whether the defects of the Arabidopsis null and RNAi lines result directly from the loss of catalytic activity of the corresponding RING-finger protein or indirectly from destabilization of the complex and consequent loss of activity of one or both of the associated RING-finger PEX proteins.Only one mutant defective in a RING-finger PEX gene has emerged from forward genetic screens for peroxisome defects in Arabidopsis. A partial loss-of-function pex12 missense allele, aberrant peroxisome morphology4 (apm4), was isolated from a GFP-PTS1 mislocalization screen (Mano et al., 2006). In addition to partially cytosolic GFP-PTS1, apm4 displays a PTS2 processing defect, Suc dependence, and 2,4-dichlorophenoxybutyric acid resistance (Mano et al., 2006), suggesting that PEX12 facilitates peroxisome protein import.In addition to roles in matrix protein import suggested by analysis of RNAi lines (Nito et al., 2007), PEX2 and PEX10 may have plant-specific roles. A pex2 missense allele, ted3, was identified as a dominant suppressor of the photomorphogenic defects of the de-etiolated1 mutant and carries a mutation near the PEX2 RING-finger domain (Fig. 1, D and E; Supplemental Fig. S1; Hu et al., 2002). Moreover, PEX10 RNAi lines display pleiotropic phenotypes not commonly found in Arabidopsis pex mutants, including variegated leaves, reduced fertility (Nito et al., 2007), organ fusions, reduced cuticular wax deposition, and changes in endoplasmic reticulum structure (Kamigaki et al., 2009). Three pex10 alleles generated by TILLING have been reported (Fig. 1G; Supplemental Fig. S2): pex10-W313* truncates the RING-finger domain and is embryo lethal, pex10-G93E germinates but displays seedling lethality, and pex10-P126S displays reduced growth in both normal air and high CO2 conditions (Prestele et al., 2010). Although GFP-PTS1 is localized in peroxisomes in the pex10-P126S mutant, Suc dependence and IBA resistance were not reported (Prestele et al., 2010).The consequences of overexpressing a mutant version of PEX10 carrying missense mutations in the RING-finger domain (ΔZn) in wild-type Arabidopsis also hint at plant-specific roles for PEX10. PEX10-ΔZn expression confers pleiotropic phenotypes, including smaller cells, serrated leaves, inefficient photorespiration, abnormal peroxisome size and shape, and reduced peroxisome-chloroplast association (Prestele et al., 2010). However, PEX10-ΔZn plants respond like the wild type to IBA and do not require Suc, suggesting that peroxisome metabolism is not dramatically impaired (Schumann et al., 2007; Prestele et al., 2010). In contrast, expressing PEX2-ΔZn in the wild type impairs GFP-PTS1 import without conferring morphological defects, and expressing PEX12-ΔZn confers no abnormal phenotypes (Prestele et al., 2010).Here, we describe the identification and characterization of two unique mutants carrying lesions in Arabidopsis RING-finger PEX genes. We isolated pex2-1 and pex10-2 in a forward genetic screen for genes promoting peroxisomal matrix protein degradation and used these mutants to explore the roles of the corresponding proteins in peroxisome function. We found that PEX2 and PEX10 have independent but related functions that together support PEX5 recycling and matrix protein import into plant peroxisomes.  相似文献   

4.
Most eukaryotic cells require peroxisomes, organelles housing fatty acid β-oxidation and other critical metabolic reactions. Peroxisomal matrix proteins carry peroxisome-targeting signals that are recognized by one of two receptors, PEX5 or PEX7, in the cytosol. After delivering the matrix proteins to the organelle, these receptors are removed from the peroxisomal membrane or matrix. Receptor retrotranslocation not only facilitates further rounds of matrix protein import but also prevents deleterious PEX5 retention in the membrane. Three peroxisome-associated ubiquitin-protein ligases in the Really Interesting New Gene (RING) family, PEX2, PEX10, and PEX12, facilitate PEX5 retrotranslocation. However, the detailed mechanism of receptor retrotranslocation remains unclear in plants. We identified an Arabidopsis (Arabidopsis thaliana) pex12 Glu-to-Lys missense allele that conferred severe peroxisomal defects, including impaired β-oxidation, inefficient matrix protein import, and decreased growth. We compared this pex12-1 mutant to other peroxisome-associated ubiquitination-related mutants and found that RING peroxin mutants displayed elevated PEX5 and PEX7 levels, supporting the involvement of RING peroxins in receptor ubiquitination in Arabidopsis. Also, we observed that disruption of any Arabidopsis RING peroxin led to decreased PEX10 levels, as seen in yeast and mammals. Peroxisomal defects were exacerbated in RING peroxin double mutants, suggesting distinct roles of individual RING peroxins. Finally, reducing function of the peroxisome-associated ubiquitin-conjugating enzyme PEX4 restored PEX10 levels and partially ameliorated the other molecular and physiological defects of the pex12-1 mutant. Future biochemical analyses will be needed to determine whether destabilization of the RING peroxin complex observed in pex12-1 stems from PEX4-dependent ubiquitination on the pex12-1 ectopic Lys residue.Oilseed plants obtain energy for germination and early development by utilizing stored fatty acids (Graham, 2008). This β-oxidation of fatty acids to acetyl-CoA occurs in peroxisomes, organelles that also house other important metabolic reactions, including the glyoxylate cycle, several steps in photorespiration, and phytohormone production (Hu et al., 2012). For example, indole-3-butyric acid (IBA) is β-oxidized into the active auxin indole-3-acetic acid (IAA) in peroxisomes (Zolman et al., 2000, 2007, 2008; Strader et al., 2010; Strader and Bartel, 2011). Many peroxisomal metabolic pathways generate reactive oxygen species (Inestrosa et al., 1979; Hu et al., 2012), and peroxisomes also house antioxidative enzymes, like catalase and ascorbate peroxidase, to detoxify hydrogen peroxide (Wang et al., 1999; Mhamdi et al., 2012).Peroxisomes can divide by fission or be synthesized de novo from the endoplasmic reticulum (ER). Preperoxisomes with peroxisomal membrane proteins bud from the ER and fuse, allowing matrix proteins to be imported to form mature peroxisomes (van der Zand et al., 2012; Mayerhofer, 2016). Peroxin (PEX) proteins facilitate peroxisome biogenesis and matrix protein import. Most peroxins are involved in importing proteins destined for the peroxisome matrix, which are imported after recognition of a type 1 or type 2 peroxisome-targeting signal (PTS). The PTS1 is a tripeptide located at the C terminus of most peroxisome-bound proteins (Gould et al., 1989; Chowdhary et al., 2012). The less common PTS2 is a nonapeptide usually located near the N terminus (Swinkels et al., 1991; Reumann, 2004). PTS1 proteins are recognized by PEX5 (van der Leij et al., 1993; Zolman et al., 2000), PTS2 proteins are recognized by PEX7 (Marzioch et al., 1994; Braverman et al., 1997; Woodward and Bartel, 2005), and PEX7 binds to PEX5 to allow matrix protein delivery in plants and mammals (Otera et al., 1998; Hayashi et al., 2005; Woodward and Bartel, 2005). The cargo-receptor complex docks with the membrane peroxins PEX13 and PEX14 (Urquhart et al., 2000; Otera et al., 2002; Woodward et al., 2014), and PEX5 assists cargo translocation into the peroxisomal matrix (Meinecke et al., 2010) before dissociating from its cargo (Freitas et al., 2011).After cargo delivery, PEX5 is recycled to enable further rounds of cargo recruitment (Thoms and Erdmann, 2006). This process requires a set of peroxins that is implicated in ubiquitinating PEX5 so that it can be retrotranslocated back to the cytosol. PEX5 ubiquitination is best understood in yeast. In Saccharomyces cerevisiae, Pex5 is monoubiquitinated through the action of the peroxisome-tethered ubiquitin-conjugating enzyme Pex4 and the peroxisomal ubiquitin-protein ligase Pex12 (Platta et al., 2009) and returned to the cytosol with the assistance of a peroxisome-tethered ATPase complex containing Pex1 and Pex6 (Grimm et al., 2012). S. cerevisiae Pex5 also can be polyubiquitinated and targeted for proteasomal degradation (Kiel et al., 2005). The cytosolic ubiquitin-conjugating enzyme Ubc4 cooperates with the peroxisomal ubiquitin-protein ligase Pex2 to polyubiquitinate Pex5 (Platta et al., 2009). Pex10 has ubiquitin-protein ligase activity (Williams et al., 2008; Platta et al., 2009; El Magraoui et al., 2012), but whether Pex10 directly ubiquitinates Pex5 is controversial. Pex10 promotes Ubc4-dependent Pex5 polyubiquitination when Pex4 is absent (Williams et al., 2008); however, Pex10 is not essential for Pex5 mono- or polyubiquitination (Platta et al., 2009), but rather enhances both Pex4/Pex12- and Ubc4/Pex2-mediated ubiquitination (El Magraoui et al., 2012). Recycling of the PTS2 receptor PEX7 is less understood, although the Pex5 recycling pathways are implicated in shuttling and degrading Pex7 in Pichia pastoris (Hagstrom et al., 2014).Although PEX5 ubiquitination has not been directly demonstrated in plants, the implicated peroxins are conserved in Arabidopsis, and several have been connected to PEX5 retrotranslocation. The PEX4 ubiquitin-conjugating enzyme binds to PEX22, which is predicted to be a peroxisomal membrane protein based on ability to restore peroxisome function to yeast mutants (Zolman et al., 2005). The pex4-1 mutant displays increased membrane-associated PEX5 (Ratzel et al., 2011; Kao and Bartel, 2015), suggesting that ubiquitin supplied by PEX4 promotes PEX5 retrotranslocation. PEX1 and PEX6 are members of the ATPases associated with diverse cellular activities (AAA) family and are tethered to peroxisomes by the peroxisomal membrane protein PEX26 (Goto et al., 2011; Li et al., 2014). The pex6-1 mutant displays PTS1 import defects and decreased PEX5 levels (Zolman and Bartel, 2004), suggesting that impaired PEX5 recycling can lead to increased PEX5 degradation. Indeed, pex4-1 restores PEX5 levels in the pex6-1 mutant (Ratzel et al., 2011), suggesting that Arabidopsis PEX4 also is involved in PEX5 ubiquitination and degradation when retrotranslocation is impeded.In addition to allowing for further rounds of PTS1 cargo import, several lines of evidence suggest that in the absence of efficient retrotranslocation, PEX5 retention in the peroxisomal membrane impairs peroxisome function. Slightly reducing levels of the PEX13 docking peroxin ameliorates the physiological defects of pex4-1 without restoring matrix protein import (Ratzel et al., 2011), presumably because decreasing PEX5 docking reduces its accumulation in the peroxisomal membrane. In addition, overexpressing PEX5 exacerbates rather than ameliorates the peroxisomal defects of pex4-1 (Kao and Bartel, 2015), suggesting that pex4-1 defects are linked to excessive PEX5 lingering in the peroxisome membrane rather than a lack of PEX5 available for import.The three Really Interesting New Gene (RING) peroxins (PEX2, PEX10, and PEX12) from Arabidopsis each possesses in vitro ubiquitin-protein ligase activity (Kaur et al., 2013). Null mutations in the RING peroxin genes confer embryo lethality in Arabidopsis (Hu et al., 2002; Schumann et al., 2003; Sparkes et al., 2003; Fan et al., 2005; Prestele et al., 2010), necessitating other approaches to study the in vivo functions of these peroxins. Expressing RING peroxins with mutations in the C-terminal zinc-binding RING domains (ΔZn) confers matrix protein import defects for PEX2-ΔZn and photorespiration defects for PEX10-ΔZn but no apparent defects for PEX12-ΔZn (Prestele et al., 2010). Targeting individual RING peroxins using RNAi confers β-oxidation deficiencies and impairs PTS1 cargo import (Fan et al., 2005; Nito et al., 2007). A screen for delayed matrix protein degradation (Burkhart et al., 2013) uncovered a missense pex2-1 mutant and a splicing pex10-2 mutant that both display PTS1 import defects (Burkhart et al., 2014), suggesting roles in regulating the PTS1 receptor, PEX5. A missense pex12 mutant (aberrant peroxisome morphology 4, apm4) has defects in β-oxidation and PTS1 import and increased membrane-associated PEX5 (Mano et al., 2006). These findings highlight the essential roles of the RING peroxins in Arabidopsis development and peroxisomal functions, but the RING peroxin interactions and the individual roles of the RING peroxins in PEX5 retrotranslocation remain incompletely understood.In this study, we describe a missense pex12-1 mutant recovered from a forward genetic screen for β-oxidation deficient mutants. The pex12-1 mutant displayed severe peroxisomal defects, including reduced growth, β-oxidation deficiencies, matrix protein import defects, and inefficient processing of PTS2 proteins. Comparing single and double mutants with impaired RING peroxins revealed that each RING peroxin contributes to complex stability and influences PEX5 accumulation. Furthermore, decreasing PEX4 function ameliorated pex12-1 defects, suggesting that the Glu-to-Lys substitution in pex12-1 lures ubiquitination, perhaps by pex12-1 itself, leading to PEX4-dependent degradation of the mutant protein.  相似文献   

5.

Objective

To expand the spectrum of genetic causes of autosomal recessive cerebellar ataxia (ARCA).

Case report

Two brothers are described who developed progressive cerebellar ataxia at 3 1/2 and 18 years, respectively. After ruling out known common genetic causes of ARCA, analysis of blood peroxisomal markers strongly suggested a peroxisomal biogenesis disorder. Sequencing of candidate PEX genes revealed a homozygous c.865_866insA mutation in the PEX2 gene leading to a frameshift 17 codons upstream of the stop codon. PEX gene mutations usually result in a severe neurological phenotype (Zellweger spectrum disorders).

Conclusions

Genetic screening of PEX2 and other PEX genes involved in peroxisomal biogenesis is warranted in children and adults with ARCA.  相似文献   

6.
Peroxisomes are single-membrane bound organelles that are essential for normal development in plants and animals. In mammals and yeast, the peroxin (PEX) proteins PEX3 and PEX19 facilitate the early steps of peroxisome membrane protein (PMP) insertion and pre-peroxisome budding from the endoplasmic reticulum. The PEX3 membrane protein acts as a docking site for PEX19, a cytosolic chaperone for PMPs that delivers PMPs to the endoplasmic reticulum or peroxisomal membrane. PEX19 is farnesylated in yeast and mammals, and we used immunoblotting with prenylation mutants to show that PEX19 also is fully farnesylated in wild-type Arabidopsis thaliana plants. We examined insertional alleles disrupting either of the two Arabidopsis PEX19 isoforms, PEX19A or PEX19B, and detected similar levels of PEX19 protein in the pex19a-1 mutant and wild type; however, PEX19 protein was nearly undetectable in the pex19b-1 mutant. Despite the reduction in PEX19 levels in pex19b-1, both pex19a-1 and pex19b-1 single mutants lacked notable peroxisomal β-oxidation defects and displayed normal levels and localization of peroxisomal matrix and membrane proteins. The pex19a-1 pex19b-1 double mutant was embryo lethal, indicating a redundantly encoded critical role for PEX19 during embryogenesis. Expressing YFP-tagged versions of either PEX19 isoform rescued this lethality, confirming that PEX19A and PEX19B act redundantly in Arabidopsis. We observed that pex19b-1 enhanced peroxisome-related defects of a subset of peroxin-defective mutants, supporting a role for PEX19 in peroxisome function. Together, our data indicate that Arabidopsis PEX19 promotes peroxisome function and is essential for viability.  相似文献   

7.
Peroxisome biogenesis disorders are a heterogeneous group of human neurodegenerative diseases caused by peroxisomal metabolic dysfunction. At the molecular level, these disorders arise from mutations in PEX genes that encode proteins required for the import of proteins into the peroxisomal lumen. The Zellweger syndrome spectrum of diseases is a major sub-set of these disorders and represents a clinical continuum from Zellweger syndrome (the most severe) through neonatal adrenoleukodystrophy to infantile Refsum disease. The PEX1 gene, which encodes a cytoplasmic AAA ATPase, is the responsible gene in more than half of the Zellweger syndrome spectrum patients, and mutations in PEX1 can account for the full spectrum of phenotypes seen in these patients. In these studies, we have undertaken mutation analysis of PEX1 in skin fibroblast cell lines from Australasian Zellweger syndrome spectrum patients. A previously reported common PEX1 mutation that gives rise to a G843D substitution and correlates with the less severe disease phenotypes has been found to be present at high frequency in our patient cohort. We also report a novel PEX1 mutation that occurs at high frequency in Zellweger syndrome spectrum patients. This mutation produces a frameshift in exon 13, a change that leads to the premature truncation of the PEX1 protein. A Zellweger syndrome patient who was homozygous for this mutation and who survived for less than two months from birth had undetectable levels of PEX1 mRNA. This new common mutation therefore correlates with a severe disease phenotype. We have adopted procedures for the detection of this mutation for successful prenatal diagnosis. Electronic Publication  相似文献   

8.
Peroxisomes are organelles that catabolize fatty acids and compartmentalize other oxidative metabolic processes in eukaryotes. Using a forward-genetic screen designed to recover severe peroxisome-defective mutants, we isolated a viable allele of the peroxisome biogenesis gene PEX13 with striking peroxisomal defects. The pex13-4 mutant requires an exogenous source of fixed carbon for pre-photosynthetic development and is resistant to the protoauxin indole-3-butyric acid. Delivery of peroxisome-targeted matrix proteins depends on the PEX5 receptor docking with PEX13 at the peroxisomal membrane, and we found severely reduced import of matrix proteins and less organelle-associated PEX5 in pex13-4 seedlings. Moreover, pex13-4 physiological and molecular defects were partially ameliorated when PEX5 was overexpressed, suggesting that PEX5 docking is partially compromised in this mutant and can be improved by increasing PEX5 levels. Because previously described Arabidopsis pex13 alleles either are lethal or confer only subtle defects, the pex13-4 mutant provides valuable insight into plant peroxisome receptor docking and matrix protein import.  相似文献   

9.
Summary Complementation experiments with temperature sensitive (ts) and suppressor sensitive (sus) mutants of bacteriophage X174 unambiguously revealed five cistrons on the basis of a clear bipartition of burst sizes.A new group of sus mutants (emeralds) was found, defective in a function essential for growth in Shigella sonnei V64.The complementation between ts and sus mutants was in general asymmetric in that the yield of ts particles was lower than that of the sus particles. The mutants of one cistron (defective in RF-replication) showed a completely asymmetric complementation behaviour both of ts and sus mutants. The ts mutants of this group, which show to be early, appear to be defective in two functions.The possibility is discussed that in each cell only one phage genome is replicated. This would explain both kinds of asymmetric complementation and the low burst sizes that were obtained when mutants of particular genes were complemented.  相似文献   

10.
We studied the chronological lifespan of glucose‐grown Saccharomyces cerevisiae in relation to the function of intact peroxisomes. We analyzed four different peroxisome‐deficient (pex) phenotypes. These included Δpex3 cells that lack peroxisomal membranes and in which all peroxisomal proteins are mislocalized together with Δpex6 in which all matrix proteins are mislocalized to the cytosol, whereas membrane proteins are still correctly sorted to peroxisomal ghosts. In addition, we analyzed two mutants in which the peroxisomal location of the β‐oxidation machinery is in part disturbed. We analyzed Δpex7 cells that contain virtually normal peroxisomes, except that all matrix proteins that contain a peroxisomal targeting signal type 2 (PTS2, also including thiolase), are mislocalized to the cytosol. In Δpex5 cells, peroxisomes only contain matrix proteins with a PTS2 in conjunction with all proteins containing a peroxisomal targeting signal type 1 (PTS1, including all β‐oxidation enzymes except thiolase) are mislocalized to the cytosol. We show that intact peroxisomes are an important factor in yeast chronological aging because all pex mutants showed a reduced chronological lifespan. The strongest reduction was observed in Δpex5 cells. Our data indicate that this is related to the complete inactivation of the peroxisomal β‐oxidation pathway in these cells due to the mislocalization of thiolase. Our studies suggest that during chronological aging, peroxisomal β‐oxidation contributes to energy generation by the oxidation of fatty acids that are released by degradation of storage materials and recycled cellular components during carbon starvation conditions.  相似文献   

11.
Peroxisomes compartmentalize certain metabolic reactions critical to plant and animal development. The import of proteins from the cytosol into the organelle matrix depends on more than a dozen peroxin (PEX) proteins, with PEX5 and PEX7 serving as receptors that shuttle proteins bearing one of two peroxisome-targeting signals (PTSs) into the organelle. PEX5 is the PTS1 receptor; PEX7 is the PTS2 receptor. In plants and mammals, PEX7 depends on PEX5 binding to deliver PTS2 cargo into the peroxisome. In this study, we characterized a pex7 missense mutation, pex7-2, that disrupts both PEX7 cargo binding and PEX7-PEX5 interactions in yeast, as well as PEX7 protein accumulation in plants. We examined localization of peroxisomally targeted green fluorescent protein derivatives in light-grown pex7 mutants and observed not only the expected defects in PTS2 protein import but also defects in PTS1 import. These PTS1 import defects were accompanied by reduced PEX5 accumulation in light-grown pex7 seedlings. Our data suggest that PEX5 and PTS1 import depend on the PTS2 receptor PEX7 in Arabidopsis and that the environment may influence this dependence. These data advance our understanding of the biogenesis of these essential organelles and provide a possible rationale for the retention of the PTS2 pathway in some organisms.  相似文献   

12.
Peroxins (PEX) are proteins required for peroxisome biogenesis. Mutations in PEX genes cause lethal diseases in humans, metabolic defects in yeasts, and developmental disfunctions in plants and filamentous fungi. Here we describe the first large-scale screening for suppressors of a pex mutation. In Podospora anserina, pex2 mutants exhibit a metabolic defect [inability to grow on medium containing oleic acid (OA medium) as sole carbon source] and a developmental defect (inability to differentiate asci in homozygous crosses). Sixty-three mutations able to restore growth of pex2 mutants on OA medium have been analyzed. They fall in six loci (suo1 to suo6) and act as dominant, allele-nonspecific suppressors. Most suo mutations have pleiotropic effects in a pex2(+) background: formation of unripe ascospores (all loci except suo5 and suo6), impaired growth on OA medium (all loci except suo4 and suo6), or sexual defects (suo4). Using immunofluorescence and GFP staining, we show that peroxisome biogenesis is partially restored along with a low level of ascus differentiation in pex2 mutant strains carrying either the suo5 or the suo6 mutations. The data are discussed with respect to beta-oxidation of fatty acids, peroxisome biogenesis, and cell differentiation.  相似文献   

13.
《Autophagy》2013,9(5):835-845
Turnover of damaged, dysfunctional, or excess organelles is critical to cellular homeostasis. We screened mutants disturbed in peroxisomal protein import, and found that a deficiency in the exportomer subunits Pex1, Pex6, and Pex15 results in enhanced turnover of peroxisomal membrane structures compared with other mutants. Strikingly, almost all peroxisomal membranes were associated with phagophore assembly sites in pex1Δ atg1Δ cells. Degradation depended on Atg11 and the pexophagy receptor Atg36, which mediates degradation of superfluous peroxisomes. Mutants of PEX1, PEX6, and PEX15 accumulate ubiquitinated receptors at the peroxisomal membrane. This accumulation has been suggested to trigger pexophagy in mammalian cells. We show by genetic analysis that preventing this accumulation does not abolish pexophagy in Saccharomyces cerevisiae. We find Atg36 is modified in pex1Δ cells even when Atg11 binding is prevented, suggesting Atg36 modification is an early event in the degradation of dysfunctional peroxisomal structures in pex1Δ cells via pexophagy.  相似文献   

14.
Summary Complementation for the maintenance of lysogeny was studied by superinfecting cIts lysogens at 34° C, and then heating to 43° C. With certain exceptions,ts mutants with defects in the left half of the repressor complementedts mutants with defects in the right half to produce a less heat-labile repressor (Fig. 3). AllcIamber mutants failed to complementcIts mutants. ThecI mutantc50 complements allts mutants. Mutations in Pre (cy) or genescII andcIII do not significantly affect the expression ofcI by a superinfecting genome in an immune lysogen. Mutants with very heat-labile repressors failed to complement cy42 for the establishment of lysogeny at elevated temperatures, while those with less heatsensitive repressors apparently did complementcy.According to a suggested model, the left side of thecI product is concerned primarily with subunit aggregation, while operator binding is the function of the right side of the oligomer.  相似文献   

15.
Summary The binding of genecI product to DNA was studied at temperatures from 0°C to 46° C. Binding activity of the products ofcIts mutants was higher at 22° C than at 0° C, 26° C or 30° C. BothcI+ andcIts products lost DNA-binding activity at 46° C, but after subsequent cooling to 22° C, they regained 50–100% of their activity.  相似文献   

16.
We have developed two novel schemes for the direct selection of peroxisome-biogenesis-defective (pex) mutants of the methylotrophic yeast Pichia pastoris. Both schemes take advantage of our observation that methanol-induced pex mutants contain little or no alcohol oxidase (AOX) activity. AOX is a peroxisomal matrix enzyme that catalyzes the first step in the methanol-utilization pathway. One scheme utilizes allyl alcohol, a compound that is not toxic to cells but is oxidized by AOX to acrolein, a compound that is toxic. Exposure of mutagenized populations of AOX-induced cells to allyl alcohol selectively kills AOX-containing cells. However, pex mutants without AOX are able to grow. The second scheme utilizes a P. pastoris strain that is defective in formaldehyde dehydrogenase (FLD), a methanol pathway enzyme required to metabolize formaldehyde, the product of AOX. AOX-induced cells of fld1 strains are sensitive to methanol because of the accumulation of formaldehyde. However, fld1 pex mutants, with little active AOX, do not efficiently oxidize methanol to formaldehyde and therefore are not sensitive to methanol. Using these selections, new pex mutant alleles in previously identified PEX genes have been isolated along with mutants in three previously unidentified PEX groups.  相似文献   

17.
The function of the peroxisomes was examined in the pathogenic basidiomycete Cryptococcus neoformans. Recent studies reveal the glyoxylate pathway is required for virulence of diverse microbial pathogens of plants and animals. One exception is C. neoformans, in which isocitrate lyase (encoded by ICL1) was previously shown not to be required for virulence, and here this was extended to exclude also a role for malate synthase (encoded by MLS1). The role of peroxisomes, in which the glyoxylate pathway enzymes are localized in many organisms, was examined by mutation of two genes (PEX1 and PEX6) encoding AAA (ATPases associated with various cellular activities)-type proteins required for peroxisome formation. The pex1 and pex6 deletion mutants were unable to localize the fluorescent DsRED-SKL protein to peroxisomal punctate structures, in contrast to wild-type cells. pex1 and pex6 single mutants and a pex1 pex6 double mutant exhibit identical phenotypes, including abolished growth on fatty acids but no growth difference on acetate. Because both icl1 and mls1 mutants are unable to grow on acetate as the sole carbon source, these findings demonstrate that the glyoxylate pathway can function efficiently outside the peroxisome in C. neoformans. The pex1 mutant exhibits wild-type virulence in a murine inhalation model and in an insect host, demonstrating that peroxisomes are not required for virulence under these conditions. An unusual phenotype of the pex1 and pex6 mutants was that they grew poorly with glucose as the carbon source, but nearly wild type with galactose, which suggested impaired hexokinase function and that C. neoformans peroxisomes might function analogously to the glycosomes of the trypanosomid parasites. Deletion of the hexokinase HXK2 gene reduced growth in the presence of glucose and suppressed the growth defect of the pex1 mutant on glucose. The hexokinase 2 protein of C. neoformans contains a predicted peroxisome targeting signal (type 2) motif; however, Hxk2 fused to fluorescent proteins was not localized to peroxisomes. Thus, we hypothesize that glucose or glycolytic metabolites are utilized in the peroxisome by an as yet unidentified enzyme or regulate a pathway required by the fungus in the absence of peroxisomes.  相似文献   

18.
Proteins are targeted to the peroxisome matrix via processes that are mechanistically distinct from those used by other organelles. Protein entry into peroxisomes requires peroxin (PEX) proteins, including early-acting receptor (e.g. PEX5) and docking peroxins (e.g. PEX13 and PEX14) and late-acting PEX5-recycling peroxins (e.g. PEX4 and PEX6). We examined genetic interactions among Arabidopsis peroxin mutants and found that the weak pex13-1 allele had deleterious effects when combined with pex5-1 and pex14-2, which are defective in early-acting peroxins, as shown by reduced matrix protein import and enhanced physiological defects. In contrast, combining pex13-1 with pex4-1 or pex6-1, which are defective in late-acting peroxins, unexpectedly ameliorated mutant growth defects. Matrix protein import remained impaired in pex4-1 pex13-1 and pex6-1 pex13-1, suggesting that the partial suppression of pex4-1 and pex6-1 physiological defects by a weak pex13 allele may result from restoring the balance between import and export of PEX5 or other proteins that are retrotranslocated from the peroxisome with the assistance of PEX4 and PEX6. Our results suggest that symptoms caused by pex mutants defective in late-acting peroxins may result not only from defects in matrix protein import but also from inefficient removal of PEX5 from the peroxisomal membrane following cargo delivery.  相似文献   

19.
Summary A recent study showed that in E. coli T44 () carrying the tif-1 mutation, elevated temperature and adenine can interfere with the translation process. The present study shows that the expression of tif phenotypes (thermoinduction and filamentation) is suppressed by factors which affect ribosomal function. Ethanol suppresses thermoinduction and, in some spc r mutants, both thermoinduction and filamentation are suppressed. An unknown factor(s) in yeast extract suppresses both thermoinduction and filamentation. In thermoresistant revertant (ts+), the expression of the ts+ phenotype is suppressed by yeast extract, ethanol, guanosine+cytidine and by the addition of a spc r mutation. This indicates that this phenotype could be due to suppressor mutations, and the interaction between factors affecting ribosomal function and the ts+ phenotype suggests that the suppression of tif in the ts+ strains could operate on the ribosomal level. In vitro studies show that in extracts from either spc r or ts+ strains, or in the presence of ethanol, translational restriction is relieved, suggesting that the suppression of tif phenotypes could involve the translation process.  相似文献   

20.
In a recent study, we performed a systematic genome analysis for the conservation of genes involved in peroxisome biogenesis (PEX genes) in various fungi. We have now performed a systematic study of the morphology of peroxisome remnants ('ghosts') in Hansenula polymorpha pex mutants (pex1-pex20) and the level of peroxins and matrix proteins in these strains. To this end, all available H. polymorpha pex strains were grown under identical cultivation conditions in glucose-limited chemostat cultures and analyzed in detail. The H. polymorpha pex mutants could be categorized into four distinct groups, namely pex mutants containing: (1) virtually normal peroxisomal structures (pex7, pex17, pex20); (2) small peroxisomal membrane structures with a distinct lumen (pex2, pex4, pex5, pex10, pex12, pex14); (3) multilayered membrane structures lacking apparent matrix protein content (pex1, pex6, pex8, pex13); and (4) no peroxisomal structures (pex3, pex19).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号