首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The presence of a mitogenic activity in limb blastemas of axolotls was detected in crude extracts of blastemas at the mid-bud stage. The mitogenicity of the extracts was estimated from the mitotic index of blastema cells grown for 6 days in the presence of limb blastema extracts, with colchicine present for the last 2 days. All the extracts tested (whole blastema, blastemal mesenchyme, epidermal cap) significantly enhanced proliferation of blastema cells. The highest stimulation factors we observed were 7 × with 7 g protein/ml whole blastema extracts, 5.2 × with 14 g/ml blastemal mesenchyme extracts, and 11 x with 3.5 g/ml epidermal cap extracts. Hence the epidermal cap extracts appeared to be the most mitogenic. Extracts from the blastemal mesenchyme, although less mitogenic than the epidermal cap extracts, were more potent than nerve extracts [Albert P, Boilly B (1986) Biol Cell 58:251–262]. These results are discussed with regard to the production of growth factors during limb regeneration.  相似文献   

2.
The growth of regenerating limbs of amphibians depends upon proliferation of the blastema cells that accumulate beneath the epidermal cap. The epidermal cap is known to be mitogenic for the blastema cells. We have extracted a mitogenic activity from both the mesenchymal and epidermal (epidermal cap) components of cone stage blastemas which is retained on heparin-Sepharose and elutes with 1.15 M NaCl. This fraction stimulates neurite outgrowth of PC12 cells and [3H]thymidine incorporation into CCL 39 cells and is potentiated by heparin. The 2 M fraction was inactive. The heparin-Sepharose-purified growth factor cross-reacts with bovine acidic FGF polyclonal antibodies and shows a Mr of 16,000 on Western blots. Blastema membranes contain specific high affinity binding sites (Kd = 25 pM; capacity = 30 fmole/mg protein) and low affinity binding sites (Kd = 18 nM; capacity = 30 pmole/mg protein) for aFGF as revealed by Scatchard analysis. 125I-aFGF which is bound specifically by both the epidermal cap and mesenchyme of blastema frozen sections is displaced by an excess of unlabeled factor and inhibited by heparin. Heparinase treatment and 2 M NaCl washing which decreased the binding was fourfold more efficient for epidermal cap than for mesenchyme suggesting the presence of high affinity receptors in the latter tissue. The presence of aFGF (or a closely related molecule) in blastemas is consistent with our earlier results that showed stimulation of proliferation of cultured blastema cells by acidic or basic FGF or heparin alone. These results suggest the possibility that aFGF is stored in the epidermal cap during limb regeneration and that it stimulates the proliferation of the underlaying mesenchyme.  相似文献   

3.
Forty-eight and 96 hr 3H-thymidine continuous labeling was analyzed on denervated mid-bud limb blastemas of Pleurodeles waltlii M. In innervated blastemas, 92 to 95% of mesenchymal cells are cycling; denervation provokes an early exiting from the cycle in G0-1(+ 15% of non-cycling cells for a 6-day denervation, + 20% for an 8 day denervation) and an elongation of the G1 phase. For epidermis only 25% (48 hr labeling) to 53% (96 hr labeling) of cells are cycling in innervated blastemas; denervation strongly decreases this percentage (+ 40% of non-cycling cells for a 6-day denervation, + 60% for an 8-day denervation). As for mesenchyme, denervation also lengthens the G1 phase of epidermal cells. So our results contradict the conclusion of other authors claiming a G2 blockage. They account for the fall in proliferation indices and the arrest of regeneration after denervation. Finally, they show that the cell cycle of regeneration cells is controlled by the neurotrophic factor.  相似文献   

4.
Cell interactions and regeneration control   总被引:1,自引:0,他引:1  
This paper is a review of the main findings of our laboratory on the control of regeneration by cell interactions. These include results related to the role of both cell contact and local soluble factors in regeneration of the legs of insects and newts and of the parapodia and segments of nereis. The pattern of these structures is considered to be defined by positional information distributed as longitudinal and transverse positional value sequences carried by epidermal (insect) or mesenchymal (newt) cells. By associating tissues to create transverse and longitudinal discontinuities in these sequences, single or multiple regenerating structures were obtained. These structures are formed by the intercalation of cells characterized by intermediate positional values which fill the gap between the tissues in contact. Positional information may also be changed during regeneration by the nerve cord in nereis and retinoids in the newts. We describe additional cases where morphogenesis occurs without any overt discontinuity in positional information, such as from a locally injured or non-injured insect trochanter, or after deflection of nerves in nereis and newt. Regeneration following an amputation may be considered as a special case of intercalary regeneration, the first stage being the juxtaposition of normally non-contiguous cells resulting in a longitudinal or/and a transverse gap. We also report studies on local factors produced by nerves and the blastema during newt limb regeneration. The nerve factor is necessary for the division of blastemal cells. After denervation, mesenchyme differentiates in an abnormal way. The mitogenic signal from the nerves is mediated by the PKC pathway. Its production is enhanced by regeneration of cut nerve fibers. The blastema also produces growth factors. We show that the epidermal cap and mesenchyme contain acidic FGF-like factor, and that the proliferating mesenchyme stimulates nerve fibers to regrow into the blastema.  相似文献   

5.
Summary Fixation and staining procedures were developed for the electron microscopic demonstration of glycosaminoglycans (GAGs) in human epidermis. En bloc staining with cuprolinic blue (CB), ruthenium red (RR) and tannic acid (TA) in the primary fixative were applied for the localization of the GAGs. Removal of the epidermal basal lamina and underlying dermis was a prerequisite for stain penetration. In CB-fixed specimens 50 nm long, rod-like granules were found attached to keratinocyte cell surfaces, while the RR- and TA-fixed specimens containd round granules ( 10 and 30 nm, respectively). The stainability of the CB-positive granules in the presence of 0.3 mol/l MgCl2 indicated that they contained sulphated GAGs. Prefixation digestions of epidermal sheets with chondroitinase ABC, Streptomyces hyaluronidase, and heparitinase showed that the RR-positive granules also contained sulphated GAGs, mostly heparan sulphate. The granules visualized with TA on keratinocytes were susceptible to heparitinase treatment, but the abundance of TA-staining suggested that TA also stained structures other than heparan sulphate. The EM data was in accordance with the 35SO4 labelling experiments showing that heparan sulphate was the major sulphated GAG synthesized in epidermis, whereas chondroitin/ dermatan sulphates comprised about one fifth of the total activity incorporated. The distribution of the CB-, RR- and TA-positive granules on cell surfaces were similar. The morphology of the proteoglycan granules was probably determined by the extent of the GAG-chain collapse following binding to each of the dyes.  相似文献   

6.
It was found that both normal human myometrium and uterine leiomyoma contain several glycosaminoglycans. In contrast to many normal and tumour tissues the amount of hyaluronic acid is very low and the proportional amount of sulphated glycosaminoglycans is distinctly higher. It is of interest that heparan sulphate is the major glycosaminoglycan component both in normal myometrium, and in leiomyoma. The amount of hyaluronic acid in myometrium and in the leiomyoma is very low. No significant change in hyaluronate content was observed during the tumour growth. In contrast to that the amount of some sulphated glycosaminoglycans (heparan sulphate, keratan sulphate, chondroitin sulphates and heparin) distinctly increased. It is suggested that some of the GAGs participate in the creation of a storage depot for biologically active molecules (growth factors, enzymes) which are thereby stabilized and protected. Hydrolytic degradation of some GAGs may result in the release of some cytokines which may promote the tumour growth and stimulate collagen biosynthesis by tumour cells.  相似文献   

7.
Fixation and staining procedures were developed for the electron microscopic demonstration of glycosaminoglycans (GAGs) in human epidermis. En bloc staining with cuprolinic blue (CB), ruthenium red (RR) and tannic acid (TA) in the primary fixative were applied for the localization of the GAGs. Removal of the epidermal basal lamina and underlying dermis was a prerequisite for stain penetration. In CB-fixed specimens 50 nm long, rod-like granules were found attached to keratinocyte cell surfaces, while the RR- and TA-fixed specimens contained round granules (luminal diameter 10 and 30 nm, respectively). The stainability of the CB-positive granules in the presence of 0.3 mol/l MgCl2 indicated that they contained sulphated GAGs. Prefixation digestions of epidermal sheets with chondroitinase ABC. Streptomyces hyaluronidase, and heparitinase showed that the RR-positive granules also contained sulphated GAGs, mostly heparan sulphate. The granules visualized with TA on keratinocytes were susceptible to heparitinase treatment, but the abundance of TA-staining suggested that TA also stained structures other than heparan sulphate. The EM data was in accordance with the 35SO4 labelling experiments showing that heparan sulphate was the major sulphated GAG synthesized in epidermis, whereas chondroitin/dermatan sulphates comprised about one fifth of the total activity incorporated. The distributions of the CB-, RR- and TA-positive granules on cell surfaces were similar. The morphology of the proteoglycan granules was probably determined by the extent of the GAG-chain collapse following binding to each of the dyes.  相似文献   

8.
Abstract— The uronic acid containing glycosaminoglycans (GAGs) were isolated from the brains of 1-year-old and 4-year-old kwashiorkor children and characterised by constituent analyses. A marked reduction is the total GAG concentration of brain was noticed in both cases of kwashiorkor. In the 1-year-old kwashiorkor brain, hyaluronic acid is the most predominant GAG (73.5 per cent) whereas heparan sulphate, chondroitin sulphates and low sulphated chondroitin sulphate constituted less than 10 per cent. In the 4-year-old kwashiorkor brain, the proportion of hyaluronic acid was 27.5 per cent, low sulphated chondroitin sulphate 31.2 per cent, chondroitin sulphates 28.3 per cent and heparan sulphate 10 per cent. This marked reduction in the concentration as well as qualitative changes in GAG in protein-calorie malnutrition as compared to the normal is discussed in relation to brain function.  相似文献   

9.
The platelet-derived growth factor (PDGF) family comprises disulfide-bonded dimeric isoforms and plays a key role in the proliferation and migration of mesenchymal cells. Traditionally, it consists of homo- and heterodimers of A and B polypeptide chains that occur as long (AL and BL) or short (AS and BS) isoforms. Short isoforms lack the basic C-terminal extension that mediates binding to heparin. In the present study, we show that certain PDGF isoforms bind in a specific manner to glycosaminoglycans (GAGs). Experiments performed with wild-type and mutant Chinese hamster ovary cells deficient in the synthesis of GAGs revealed that PDGF long isoforms bind to heparan sulfate and chondroitin sulfate, while PDGF short isoforms only bind to heparan sulfate. This was confirmed by digestion of cell surface GAGs with heparitinase and chondroitinase ABC and by incubation with sodium chloride to prevent GAG sulfation. Furthermore, exogenous GAGs inhibited the binding of long isoforms to the cell membrane more efficiently than that of short isoforms. Additionally, we performed surface plasmon resonance experiments to study the inhibition of PDGF isoforms binding to low molecular weight heparin by GAGs. These experiments showed that PDGF-AAL and PDGF-BBS isoforms bound to GAGs with the highest affinity. In conclusion, PDGF activity at the cell surface may depend on the expression of various cellular GAG species.  相似文献   

10.
The effect of glycosaminoglycans (GAGs) on the proliferation of smooth muscle cells (SMC) and fibroblasts was assessed by culturing cells with or without GAGs. Porcine heparan sulphate (HS) inhibited proliferation in a dose dependent manner. At 167 mug/ml of HS this reached 88% and 72% inhibition of SMC and fibroblast growth, respectively. Pig and beef mucosal heparins also blocked proliferation, but to a lesser extent. In contrast, beef lung heparin, chondroitin sulphate, and dermatan sulphate failed to block growth factor induced proliferation. Continuous presence of HS was not required, suggesting that the inhibitory effects resulted from a direct effect on the cell rather than an interaction of the GAG with growth factors. The mechanism by which GAGs inhibit proliferation will be addressed in future studies.  相似文献   

11.
Roles for Fgf signaling during zebrafish fin regeneration   总被引:7,自引:0,他引:7  
  相似文献   

12.
We have previously reported that heparin is capable of stimulating in vitro and in vivo megakaryocytopoiesis in mice and has a thrombopoietic effect when given in chronic immune thrombocytopenic purpura and that heparin and several other glycosaminoglycans (GAGs) promote the growth of human megakaryoblastic cell lines in the presence of serum. We show here that GAGs, including heparan sulfate (HS), chondroitin sulfate (CS), dermantan sulfate (DS), and hyaluronic acid (HA), also stimulate in vitro growth of murine megakaryocyte progenitors and augment the diameter of individual megakaryocytes in the presence of serum. However, in a serum-free agar system, the GAGs alone had no effect on megakaryocyte colony formation, suggesting that GAGs cooperate with some serum factor(s) to exert their activity. We also show that heparin significantly potentiates the megakaryocytopoietic activity of C-Mpl ligand and interleukin (IL)-6 but not IL3, GM-CSF, SCF, and Epo. In addition, the GAGs significantly neutralize the inhibitory action of platelet factor 4 (PF4) and transforming growth factor β1 (TGFβ1) on megakaryocyte colony growth. These results demonstrate a stimulating activity of GAGs on megakaryocytopoiesis by modifying the activity of several growth-regulating factors. © 1996 Wiley-Liss, Inc.  相似文献   

13.
Summary Polyacrylamide gel electrophoresis was used to investigate the role of nerves in controlling patterns of RNA synthesis in regenerating limbs of the adult newt,Triturus viridescens. Denervation has the same effect on nerve-dependent and independent stages of regeneration, reducing by approximately 40–50% the synthesis of ribosomal and transfer RNA. Although a differential qualitative response of messenger RNA synthesis to denervation between nerve-dependent and independent stages has not been ruled out, the results would indicate that the effect of the nerve on RNA metabolism in individual blastema cells is the same over the whole process of regeneration. Since the one constant effect of denervation on regeneration is to inhibit regenerate growth in volume, the emancipation of blastemal morphogenetic activity from nerve requirements is more likely to be a function of attaining a critical mass of blastema cells, rather than a change in the metabolic response of blastema cells to the nerve.Research supported by a Biomedical Sciences Grant from the School of Life Sciences, University of Illinois, to D.L.S.  相似文献   

14.
VEGF165 binding to endothelial cells is potentiated by glycosaminoglycans (GAGs). Here, we have investigated the impact of VEGF165 N-glycosylation on GAG binding. Although glycosylated VEGF165 bound to heparin with only slightly higher affinity than non-glycosylated VEGF165, the natural ligand heparan sulfate induced a conformational change only in the glycosylated protein. Unfolding studies of the VEGF proteins indicated a stabilising effect of heparin on the growth factor structure.  相似文献   

15.
Interactions of fibronectin and glycosaminoglycans and the involvement of heparan sulphate and hyaluronate in fibronectin-collagen interactions have been studied by affinity chromatography. Partially periodate-oxidized glycosaminoglycans were coupled to adipic acid dihydrazide-substituted agarose. The elution of fibronectin was performed by using increasing concentrations of NaCl. Of the copolymeric glycosaminoglycans, heparin and self-associating heparan sulphates display the highest affinity towards fibronectin while hyaluronic acid and chondroitin 6-sulphate do not bind fibronectin. Competitive release experiments suggest the existence of common binding sites for copolymeric glycosaminoglycans on the fibronectin backbone. Heparan sulphate favours the formation of collagen-fibronectin complexes at low molarity, while hyaluronate is ineffective at low concentrations and prevents the formation of complexes when present at concentrations > 1 mg ml?1. It is suggested that heparan sulphate promotes the formation of complexes which bind with fibronectin thus producing steric changes that increase the affinity for collagen, while hyaluronate prevents the binding of fibronectin to collagen by a steric exclusion mechanism.  相似文献   

16.
In one series of experiments (in vitro), distal portions of cone-stage newt forelimb blastemata were cultured, transfilter to a pair of dorsal root ganglia, both with and without apical epidermis. At the termination of the culture period, the epidermis of the epidermis-intact explants was removed leaving the mesenchymal portion of the blastema for a comparative analysis of cellular activities influenced by the apical epidermal cap (AEC). Blastema explants, in which the AEC had been removed prior to explantation (epidermis free), exhibited decreased DNA synthetic activity and a significantly lower overall mitotic index than the mesenchymal portions of their epidermisintact counterparts. Moreover, cartilage nodules were precociously formed in the epidermis-free explants. In a second series of experiments (in vivo), the distal portion of a cone-stage blastema was removed and the wound epithelium was permitted to reestablish itself over the proximal blastema tissue. The mitotic index of the originally proximal (now distal) mesenchyme, increased as a function of time after reestablishment of the AEC and cartilage differentiation was suppressed, when compared with proximal AEC-free blastema controls. We propose that the developmental pathway (i.e., division or differentiation) followed by blastema cells is influenced by the AEC; the intact AEC provides the “division signal” for cycling cells, which differentiate in its absence. A mechanism for the normal proximodistal progression of cartilage differentiation, in terms of the AEC influence, is discussed.  相似文献   

17.
Cellular proliferation of both epidermal and mesenchymal cells of denerved cone stage limb blastemas ( Pleurodeles waltlii Michah) was studied in vivo. The mitotic index and thymidine 3H incorporation (autoradiography following short term (1 hr) incubation and scintigraphy) show that denervation causes a significant decrease in the cellular proliferation (about 70% 4 days after denervation). Denervation affects first the mesenchymal cells, the proliferation of epidermal cells declines later. These results are discussed in term of cellular cycle.  相似文献   

18.
Glycosaminoglycans (GAGs) play a central role in embryonic development by regulating the movement and signaling of morphogens. We have previously demonstrated that GAGs are the co-receptors for Fgf10 signaling in the lacrimal gland epithelium, but their function in the Fgf10-producing periocular mesenchyme is still poorly understood. In this study, we have generated a mesenchymal ablation of UDP-glucose dehydrogenase (Ugdh), an essential biosynthetic enzyme for GAGs. Although Fgf10 RNA is expressed normally in the periocular mesenchyme, Ugdh mutation leads to excessive dispersion of Fgf10 protein, which fails to elicit an FGF signaling response or budding morphogenesis in the presumptive lacrimal gland epithelium. This is supported by genetic rescue experiments in which the Ugdh lacrimal gland defect is ameliorated by constitutive Ras activation in the epithelium but not in the mesenchyme. We further show that lacrimal gland development requires the mesenchymal expression of the heparan sulfate N-sulfation genes Ndst1 and Ndst2 but not the 6-O and 2-O-sulfation genes Hs6st1, Hs6st2 and Hs2st. Taken together, these results demonstrate that mesenchymal GAG controls lacrimal gland induction by restricting the diffusion of Fgf10.  相似文献   

19.
During organ differentiation, cell-extracellular matrix (ECM) interactions are required. The components of the ECM, such as glycosaminoglycans, fibronectin, laminin, and collagens, change in relation to cytokine and enzyme activity. Moreover, glycosaminoglycans (GAGs) are components of the ECM that play an important role in both cytokine regulation and cell activities. In this work we studied the accumulation of hyaluronic acid and chondroitin sulfate and heparan sulfate proteoglycans (PGs), beta-N-acetyl-D-glucosaminidase activity, the presence of transforming growth factor beta(2) (TGF beta(2)), and interleukin-1 (IL-1), and the localization of fibronectin, laminin, and collagen I and IV during the early stages of chick embryo lung development. We also determined the levels of hyaluronic acid, chondroitin sulfate, dermatan sulfate, and heparan sulfate GAGs and the activity of beta-N-acetyl-D-glucosaminidase with biochemical methods. Our data show that beta-N-acetyl-D-glucosaminidase activity increases in each cell, especially in the epithelial growth front at the emergence of each bronchial bud, where hyaluronic acid and IL-1 are located in the surrounding mesenchymal areas. Chondroitin sulfate and heparan sulfate PGs, fibronectin, laminin, and collagen I and IV are evident in the area near the basal membrane along the sides where the forming structures are stabilized. Biochemical data show that beta-N-acetyl-D-glucosaminidase activity increases in cells during lung development and is related to GAG decrease and to modifications of the nonsulfated/sulfated GAG ratio. These modifications could change cytokine activity and play an important role in bronchial branching development.  相似文献   

20.
The binding of the basement-membrane glycoprotein laminin to glycosaminoglycans (aggregating and non-aggregating subsets of heparan sulphates and dermatan sulphates, as well as heparin, chondroitin sulphates and hyaluronic acid) was studied by affinity chromatography. Partially periodate-oxidized chains of glycosaminoglycans were coupled to adipic acid dihydrazide-substituted agarose. Co-polymeric glycosaminoglycans reveal high affinity for laminin, whereas hyaluronic acid does not. Competitive-release experiments indicate that glycosaminoglycans share a common binding site on the laminin molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号