首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myosin binding-induced activation of the thin filament was examined in isolated cardiac myocytes and single slow and fast skeletal muscle fibers. The number of cross-bridge attachments was increased by stepwise lowering of the [MgATP] in the Ca(2+)-free solution bathing the preparations. The extent of thin filament activation was determined by monitoring steadystate isometric tension at each MgATP concentration. As pMgATP (where pMgATP is -log [MgATP]) was increased from 3.0 to 8.0, isometric tension increased to a peak value in the pMgATP range of 5.0-5.4. The steepness of the tension-pMgATP relationship, between the region of the curve where tension was zero and the peak tension, is hypothesized to be due to myosin-induced cooperative activation of the thin filament. Results showed that the steepness of the tension-pMgATP relationship was markedly greater in cardiac as compared with either slow or fast skeletal muscle fibers. The steeper slope in cardiac myocytes provides evidence of greater myosin binding-induced cooperative activation of the thin filament in cardiac as compared with skeletal muscle, at least under these experimental conditions of nominal free Ca2+. Cooperative activation is also evident in the tension-pCa relation, and is dependent upon thin filament molecular interactions, which require the presence of troponin C. Thus, it was determined whether myosin-based cooperative activation of the thin filament also requires troponin C. Partial extraction of troponin C reduced the steepness of the tension-pMgATP relationship, with the effect being significantly greater in cardiac than in skeletal muscle. After partial extraction of troponin C, muscle type differences in the steepness of the tension-pMgATP relationship were no longer apparent, and reconstitution with purified troponin C restored the muscle lineage differences. These results suggest that, in the absence of Ca2+, myosin-mediated activation of the thin filament is greater in cardiac than in skeletal muscle, and this apparent cooperativity requires the presence of troponin C on thin filament regulatory strands.  相似文献   

2.
We have investigated the functions of troponin T (CeTnT-1) in Caenorhabditis elegans embryonic body wall muscle. TnT tethers troponin I (TnI) and troponin C (TnC) to the thin filament via tropomyosin (Tm), and TnT/Tm regulates the activation and inhibition of myosin-actin interaction in response to changes in intracellular [Ca2+]. Loss of CeTnT-1 function causes aberrant muscle trembling and tearing of muscle cells from their exoskeletal attachment sites (Myers, C.D., P.-Y. Goh, T. StC. Allen, E.A. Bucher, and T. Bogaert. 1996. J. Cell Biol. 132:1061–1077). We hypothesized that muscle tearing is a consequence of excessive force generation resulting from defective tethering of Tn complex proteins. Biochemical studies suggest that such defective tethering would result in either (a) Ca2+-independent activation, due to lack of Tn complex binding and consequent lack of inhibition, or (b) delayed reestablishment of TnI/TnC binding to the thin filament after Ca2+ activation and consequent abnormal duration of force. Analyses of animals doubly mutant for CeTnT-1 and for genes required for Ca2+ signaling support that CeTnT-1 phenotypes are dependent on Ca2+ signaling, thus supporting the second model and providing new in vivo evidence that full inhibition of thin filaments in low [Ca2+] does not require TnT.  相似文献   

3.
Recently, our understanding of the structural basis of troponin-tropomyosin’s Ca2+-triggered regulation of striated muscle contraction has advanced greatly, particularly via cryo-electron microscopy data. Compelling atomic models of troponin-tropomyosin-actin were published for both apo- and Ca2+-saturated states of the cardiac thin filament. Subsequent electron microscopy and computational analyses have supported and further elaborated the findings. Per cryo-electron microscopy, each troponin is highly extended and contacts both tropomyosin strands, which lie on opposite sides of the actin filament. In the apo-state characteristic of relaxed muscle, troponin and tropomyosin hinder strong myosin-actin binding in several different ways, apparently barricading the actin more substantially than does tropomyosin alone. The troponin core domain, the C-terminal third of TnI, and tropomyosin under the influence of a 64-residue helix of TnT located at the overlap of adjacent tropomyosins are all in positions that would hinder strong myosin binding to actin. In the Ca2+-saturated state, the TnI C-terminus dissociates from actin and binds in part to TnC; the core domain pivots significantly; the N-lobe of TnC binds specifically to actin and tropomyosin; and tropomyosin rotates partially away from myosin’s binding site on actin. At the overlap domain, Ca2+ causes much less tropomyosin movement, so a more inhibitory orientation persists. In the myosin-saturated state of the thin filament, there is a large additional shift in tropomyosin, with molecular interactions now identified between tropomyosin and both actin and myosin. A new era has arrived for investigation of the thin filament and for functional understandings that increasingly accommodate the recent structural results.  相似文献   

4.
The striated muscle thin filament comprises actin, tropomyosin, and troponin. The Tn complex consists of three subunits, troponin C (TnC), troponin I (TnI), and troponin T (TnT). TnT may serve as a bridge between the Ca2+ sensor (TnC) and the actin filament. In the short helix preceding the IT-arm region, H1(T2), there are known dilated cardiomyopathy-linked mutations (among them R205L). Thus we hypothesized that there is an element in this short helix that plays an important role in regulating the muscle contraction, especially in Ca2+ activation. We mutated Arg-205 and several other amino acid residues within and near the H1(T2) helix. Utilizing an alanine replacement method to compare the effects of the mutations, the biochemical and mechanical impact on the actomyosin interaction was assessed by solution ATPase activity assay, an in vitro motility assay, and Ca2+ binding measurements. Ca2+ activation was markedly impaired by a point mutation of the highly conserved basic residue R205A, residing in the short helix H1(T2) of cTnT, whereas the mutations to nearby residues exhibited little effect on function. Interestingly, rigor activation was unchanged between the wild type and R205A TnT. In addition to the reduction in Ca2+ sensitivity observed in Ca2+ binding to the thin filament, myosin S1-ADP binding to the thin filament was significantly affected by the same mutation, which was also supported by a series of S1 concentration-dependent ATPase assays. These suggest that the R205A mutation alters function through reduction in the nature of cooperative binding of S1.  相似文献   

5.
Cardiac thin filaments contain many troponin C (TnC) molecules, each with one regulatory Ca2+ binding site. A statistical mechanical model for the effects of these sites is presented and investigated. The ternary troponin complex was reconstituted with either TnC or the TnC mutant CBMII, in which the regulatory site in cardiac TnC (site II) is inactivated. Regardless of whether Ca2+ was present, CBMII-troponin was inhibitory in a thin filament-myosin subfragment 1 MgATPase assay. The competitive binding of [3H]troponin and [14C]CBMII-troponin to actin.tropomyosin was measured. In the presence of Mg2+ and low free Ca2+ they had equal affinities for the thin filament. When Ca274+ was added, however, troponin's affinity for the thin filament was 2.2-fold larger for the mutant than for the wild type troponin. This quantitatively describes the effect of regulatory site Ca2+ on troponin's affinity for actin.tropomyosin; the decrease in troponin-thin filament binding energy is small. Application of the theoretical model to the competitive binding data indicated that troponin molecules bind to interdependent rather than independent sites on the thin filament. Ca2+ binding to the regulatory site of TnC has a long-range rather than a merely local effect. However, these indirect TnC-TnC interactions are weak, indicating that the cooperativity of muscle activation by Ca2+ requires other sources of cooperativity.  相似文献   

6.
The following arguments are presented for the observation that curves relating free Ca2+ and force development of thin filament regulated myofilaments of skinned muscle fibers have Hill coefficient (n) greater than 4, which is the number of Ca2+ binding sites on troponin: Activation of the myofilaments is a process relaxing to a nonequilibrium steady state or stationary state. Systems operating at nonequilibrium stationary states are known to display Hill coefficients greater than the number of interacting sites and similar results have been obtained for Ca2+ activation of myofilament isometric force. The size of the basic subunit of thin filament regulated muscle may be the entire thin filament rather than seven actins, one tropomyosin, and one troponin. In this case the number of interacting sites may be on the order of hundreds. Hysteresis in the Ca2+ activation of isometric force might result from multiple stationary states and also might give rise to Hill coefficients greater than 4.  相似文献   

7.
Striated muscle thin filaments contain many troponin molecules, which contact each other indirectly via tropomyosin and actin. Such allosteric interactions between troponin molecules may be responsible for cooperative Ca2+ binding to the regulatory sites of the cardiac thin filament (Tobacman, L. S., and Sawyer, D. S. (1990) J. Biol. Chem. 265, 931-939). To test whether thin filament-bound troponin molecules interact, we studied the competitive binding of troponin and troponin T-troponin I (an inhibitory complex lacking the Ca2+ binding subunit troponin C) to actin-tropomyosin. The relative affinities of these two forms of troponin for the thin filament depended upon their relative concentrations. Under conditions where total binding was saturated, each form binds with greater apparent affinity to sites that have similar neighbors. A theoretical model for competitive binding of two ligands to interacting sites on a linear lattice was developed and fit to the data. Surprisingly, energetically unfavorable interactions occurred between adjacent troponin and troponin T-troponin I molecules not only in the presence of Ca2+, but also in the presence of [ethylenebis(oxyethylenenitrilo)]tetraacetic acid and/or myosin subfragment 1. Removal of Ca2+ strengthened the affinity of troponin for the thin filament less than 50%. These results suggest that, even in the absence of myosin, long range allosteric interactions occur between troponin molecules. The detailed involvement of tropomyosin and actin in these interactions remains to be established.  相似文献   

8.
Muscle contraction is regulated by troponin-tropomyosin, which blocks and unblocks myosin binding sites on actin. To elucidate this regulatory mechanism, the three-dimensional organization of troponin and tropomyosin on the thin filament must be determined. Although tropomyosin is well defined in electron microscopy helical reconstructions of thin filaments, troponin density is mostly lost. Here, we determined troponin organization on native relaxed cardiac muscle thin filaments by applying single particle reconstruction procedures to negatively stained specimens. Multiple reference models led to the same final structure, indicating absence of model bias in the procedure. The new reconstructions clearly showed F-actin, tropomyosin, and troponin densities. At the 25 Å resolution achieved, troponin was considerably better defined than in previous reconstructions. The troponin density closely resembled the shape of troponin crystallographic structures, facilitating detailed interpretation of the electron microscopy density map. The orientation of troponin-T and the troponin core domain established troponin polarity. Density attributable to the troponin-I mobile regulatory domain was positioned where it could hold tropomyosin in its blocking position on actin, thus suggesting the underlying structural basis of thin filament regulation. Our previous understanding of thin filament regulation had been limited to known movements of tropomyosin that sterically block and unblock myosin binding sites on actin. We now show how troponin, the Ca2+ sensor, may control these movements, ultimately determining whether muscle contracts or relaxes.  相似文献   

9.
Muscle contraction is regulated by troponin-tropomyosin, which blocks and unblocks myosin binding sites on actin. To elucidate this regulatory mechanism, the three-dimensional organization of troponin and tropomyosin on the thin filament must be determined. Although tropomyosin is well defined in electron microscopy helical reconstructions of thin filaments, troponin density is mostly lost. Here, we determined troponin organization on native relaxed cardiac muscle thin filaments by applying single particle reconstruction procedures to negatively stained specimens. Multiple reference models led to the same final structure, indicating absence of model bias in the procedure. The new reconstructions clearly showed F-actin, tropomyosin, and troponin densities. At the 25 Å resolution achieved, troponin was considerably better defined than in previous reconstructions. The troponin density closely resembled the shape of troponin crystallographic structures, facilitating detailed interpretation of the electron microscopy density map. The orientation of troponin-T and the troponin core domain established troponin polarity. Density attributable to the troponin-I mobile regulatory domain was positioned where it could hold tropomyosin in its blocking position on actin, thus suggesting the underlying structural basis of thin filament regulation. Our previous understanding of thin filament regulation had been limited to known movements of tropomyosin that sterically block and unblock myosin binding sites on actin. We now show how troponin, the Ca2+ sensor, may control these movements, ultimately determining whether muscle contracts or relaxes.  相似文献   

10.
Troponin: regulatory function and disorders   总被引:1,自引:0,他引:1  
Study of the molecular biology of the calcium regulation of muscle contraction was initiated by Professor Ebashi’s discovery of a protein factor that sensitized actomyosin to calcium ions. This protein factor was separated into two proteins: tropomyosin and a novel protein named troponin. Troponin is a Ca2+-receptive protein for the Ca2+-regulation of muscle contraction and, in association with tropomyosin, sensitizes actomyosin to Ca2+. Troponin forms an ordered regulatory complex with tropomyosin in the thin filament. Several regulatory properties of troponin, which is composed of three different components, troponins C, I, and T, are discussed in this article. Genetic studies have revealed that many mutations of genes for troponin components, especially troponins T and I, are involved in the three types of inherited cardiomyopathy. Results of functional analyses indicate that changes in the Ca2+-sensitivity caused by troponin mutations are the critical functional consequences leading to these disorders. Recent results of this pathophysiological aspect of troponin are also discussed.  相似文献   

11.
Striated muscle contraction is a highly cooperative process initiated by Ca2+ binding to the troponin complex, which leads to tropomyosin movement and myosin cross-bridge (XB) formation along thin filaments. Experimental and computational studies suggest skeletal muscle fiber activation is greatly augmented by cooperative interactions between neighboring thin filament regulatory units (RU-RU cooperativity; 1 RU = 7 actin monomers+1 troponin complex+1 tropomyosin molecule). XB binding can also amplify thin filament activation through interactions with RUs (XB-RU cooperativity). Because these interactions occur with a temporal order, they can be considered kinetic forms of cooperativity. Our previous spatially-explicit models illustrated that mechanical forms of cooperativity also exist, arising from XB-induced XB binding (XB-XB cooperativity). These mechanical and kinetic forms of cooperativity are likely coordinated during muscle contraction, but the relative contribution from each of these mechanisms is difficult to separate experimentally. To investigate these contributions we built a multi-filament model of the half sarcomere, allowing RU activation kinetics to vary with the state of neighboring RUs or XBs. Simulations suggest Ca2+ binding to troponin activates a thin filament distance spanning 9 to 11 actins and coupled RU-RU interactions dominate the cooperative force response in skeletal muscle, consistent with measurements from rabbit psoas fibers. XB binding was critical for stabilizing thin filament activation, particularly at submaximal Ca2+ levels, even though XB-RU cooperativity amplified force less than RU-RU cooperativity. Similar to previous studies, XB-XB cooperativity scaled inversely with lattice stiffness, leading to slower rates of force development as stiffness decreased. Including RU-RU and XB-RU cooperativity in this model resulted in the novel prediction that the force-[Ca2+] relationship can vary due to filament and XB compliance. Simulations also suggest kinetic forms of cooperativity occur rapidly and dominate early to get activation, while mechanical forms of cooperativity act more slowly, augmenting XB binding as force continues to develop.  相似文献   

12.
Nebulin is a giant filamentous F-actin-binding protein (∼800 kDa) that binds along the thin filament of the skeletal muscle sarcomere. Nebulin is one of the least well understood major muscle proteins. Although nebulin is usually viewed as a structural protein, here we investigated whether nebulin plays a role in muscle contraction by using skinned muscle fiber bundles from a nebulin knock-out (NEB KO) mouse model. We measured force-pCa (−log[Ca2+]) and force-ATPase relations, as well as the rate of tension re-development (ktr) in tibialis cranialis muscle fibers. To rule out any alterations in troponin (Tn) isoform expression and/or status of Tn phosphorylation, we studied fiber bundles that had been reconstituted with bacterially expressed fast skeletal muscle recombinant Tn. We also performed a detailed analysis of myosin heavy chain, myosin light chain, and myosin light chain 2 phosphorylation, which showed no significant differences between wild type and NEB KO. Our mechanical studies revealed that NEB KO fibers had increased tension cost (5.9 versus 4.4 pmol millinewtons−1 mm−1 s−1) and reductions in ktr (4.7 versus 7.3 s−1), calcium sensitivity (pCa50 5.74 versus 5.90), and cooperativity of activation (nH 3.64 versus 4.38). Our findings indicate the following: 1) in skeletal muscle nebulin increases thin filament activation, and 2) through altering cross-bridge cycling kinetics, nebulin increases force and efficiency of contraction. These novel properties of nebulin add a new level of understanding of skeletal muscle function and provide a mechanism for the severe muscle weakness in patients with nebulin-based nemaline myopathy.  相似文献   

13.
The kinetic and steady-state properties of macroscopic mslo Ca-activated K+ currents were studied in excised patches from Xenopus oocytes. In response to voltage steps, the timecourse of both activation and deactivation, but for a brief delay in activation, could be approximated by a single exponential function over a wide range of voltages and internal Ca2+ concentrations ([Ca]i). Activation rates increased with voltage and with [Ca]i, and approached saturation at high [Ca]i. Deactivation rates generally decreased with [Ca]i and voltage, and approached saturation at high [Ca]i. Plots of the macroscopic conductance as a function of voltage (G-V) and the time constant of activation and deactivation shifted leftward along the voltage axis with increasing [Ca]i. G-V relations could be approximated by a Boltzmann function with an equivalent gating charge which ranged between 1.1 and 1.8 e as [Ca]i varied between 0.84 and 1,000 μM. Hill analysis indicates that at least three Ca2+ binding sites can contribute to channel activation. Three lines of evidence indicate that there is at least one voltage-dependent unimolecular conformational change associated with mslo gating that is separate from Ca2+ binding. (a) The position of the mslo G-V relation does not vary logarithmically with [Ca]i. (b) The macroscopic rate constant of activation approaches saturation at high [Ca]i but remains voltage dependent. (c) With strong depolarizations mslo currents can be nearly maximally activated without binding Ca2+. These results can be understood in terms of a channel which must undergo a central voltage-dependent rate limiting conformational change in order to move from closed to open, with rapid Ca2+ binding to both open and closed states modulating this central step.  相似文献   

14.
The troponin complex on the thin filament plays a crucial role in the regulation of muscle contraction. However, the precise location of troponin relative to actin and tropomyosin remains uncertain. We have developed a method of reconstructing thin filaments using single particle analysis that does not impose the helical symmetry of actin and is independent of a starting model. We present a single particle three-dimensional reconstruction of the thin filament. Atomic models of the F-actin filament were fitted into the electron density maps and troponin and tropomyosin located. The structure provides evidence that the globular head region of troponin labels the two strands of actin with a 27.5-Å axial stagger. The density attributed to troponin appears tapered with the widest point toward the barbed end. This leads us to interpret the polarity of the troponin complex in the thin filament as reversed with respect to the widely accepted model.Regulation of actin filament function is a fundamental biological process with implications ranging from cell migration to muscle contraction. Skeletal and cardiac muscle thin filaments consist of actin and the regulatory proteins troponin and tropomyosin. Contraction is initiated by release of Ca2+ into the sarcomere and the consequent binding of Ca2+ to regulatory sites on troponin. Troponin is believed to undergo a conformational change leading to an azimuthal movement of tropomyosin, which allows myosin heads to interact with actin, hydrolyze ATP, and generate force. The molecular basis by which troponin acts to regulate muscle contraction is only partly understood. It is essential that the structure of troponin in the thin filament at high and low Ca2+ is determined to properly understand the mechanism of regulation.The basic structure of the thin filament was described by Ebashi in 1972 (1). In this structure each tropomyosin molecule covers seven actin monomers, and there is a 27.5-Å stagger between troponin molecules. The 7-Å tropomyosin structure (2), the atomic model of F-actin (3), and the troponin “core domain” (4) have recently been used to generate atomic models of the thin filament in low and high Ca2+ states (5). While the position of troponin in these models was constrained by known distance measurements between filament components, the exact arrangement of the complex on the filament has not been determined a priori. Although recently published crystal structures of partial troponin complexes (4, 6) have provided valuable insights into the arrangement of the globular head or core domain, the complex in its entirety has not been crystallized.Troponin is believed to consist of a globular core domain with an extended tail (7). The globular core contains the Ca2+-binding subunit (TnC),2 the inhibitory subunit (TnI), and the C-terminal part (residues 156–262) of the tropomyosin-binding subunit (TnT). The extended tail consists of the N-terminal part of TnT (residues 1–155). A structural rearrangement associated with Ca2+ dissociation from the troponin core has been observed (4) such that the helix connecting the two domains of TnC collapses, releasing the TnI inhibitory segment. It is postulated that the TnI inhibitory segment then becomes able to bind actin, in so doing biasing tropomyosin (8). To understand properly how Ca2+ binding to TnC leads to movement of tropomyosin, it is necessary to determine a high resolution structure of troponin attached to the thin filament, allowing unambiguous docking of the available crystal structures and direct observation of any changes at a molecular level caused by Ca2+ binding.Direct visualization of the thin filament is possible using electron microscopy. Tropomyosin strands have been resolved in the low and high Ca2+ states confirming the movement of tropomyosin and the steric blocking model (9, 10). Until recently the actin helical repeat has been imposed in the majority of reconstructions of the thin filament causing artifacts. Helical averaging using the actin repeat spreads troponin density over every actin monomer, which prevents the detailed position and shape of the troponin complex from being found (11). It is possible to avoid this effect by applying a single particle approach. Individual filament images are divided into segments and each segment treated as a particle. Three-dimensional reconstruction may then be carried out by single particle techniques of alignment, classification (12, 13), Euler angle assignment (1416) and exact filter back-projection (17, 18).Two forms of single particle analysis have emerged: helical single particle analysis (19), where the determined helical symmetry is applied to the final reconstruction, and non-helical single particle analysis, which treats the complex as a truly asymmetric particle. Helical single particle analysis has been used to successfully reconstruct a myosin containing invertebrate thick filament to a resolution of 25 Å (20), and non-helical single particle analysis has been applied to the vertebrate skeletal muscle thick filament allowing azimuthal perturbations of the myosin heads to be observed (21).Model-based single particle image processing methods have recently been applied to the structural analysis of the vertebrate (5, 22, 23) and the insect thin filament (24). We have deliberately avoided starting with a model and any potential model bias by using a reference-free alignment procedure. The adaptation of conventional procedures and their application to the structural study of the muscle thin filament has been documented (25).  相似文献   

15.
Using a nonpolymerizable form of tropomyosin (NPTM) we have investigated the interactions between the T1 (residues 1-158) and T2 (residues 159-259) regions of troponin T and the other components of the thin filament at 50 mM KCl +/- Ca2+. Under these conditions the binding of NPTM to F-actin is fully restored by whole troponin (+/- Ca2+), and in each case, retains a residual degree of cooperativity as demonstrated by Scatchard and Hill plots. Fragment T2 alone had a small inductive effect on the interaction of NPTM with F-actin. In the presence of troponin I, this interaction is increased to a level which exceeds that observed with either component alone. The effects of T2 and troponin I are moderately (-Ca2+) and markedly (+Ca2+) reduced by troponin C. While fragment T1 alone did not promote induction, it accentuated the effects of T2 and troponin I. Since T1 does not interact with T2 or troponin I but does interact weakly with the NH2 terminus of tropomyosin and can be expected to bind weakly at the residual interaction site(s) at the COOH terminus of NPTM, the observed effects of T1 have been ascribed to the linking of neighboring NPTM molecules at their ends.  相似文献   

16.
Myosin cross-bridges play an important role in the regulation of thin-filament activation in cardiac muscle. To test the hypothesis that sarcomere length (SL) modulation of thin-filament activation by strong-binding cross-bridges underlies the Frank-Starling mechanism, we inhibited force and strong cross-bridge binding to intermediate levels with sodium vanadate (Vi). Force and stiffness varied proportionately with [Ca2+] and [Vi]. Increasing [Vi] (decreased force) reduced the pCa50 of force-[Ca2+] relations at 2.3 and 2.0 μm SL, with little effect on slope (nH). When maximum force was inhibited to ∼40%, the effects of SL on force were diminished at lower [Ca2+], whereas at higher [Ca2+] (pCa < 5.6) the relative influence of SL on force increased. In contrast, force inhibition to ∼20% significantly reduced the sensitivity of force-[Ca2+] relations to changes in both SL and myofilament lattice spacing. Strong cross-bridge binding cooperatively induced changes in cardiac troponin C structure, as measured by dichroism of 5′ iodoacetamido-tetramethylrhodamine-labeled cardiac troponin C. This apparent cooperativity was reduced at shorter SL. These data emphasize that SL and/or myofilament lattice spacing modulation of the cross-bridge component of cardiac thin-filament activation contributes to the Frank-Starling mechanism.  相似文献   

17.
Franklin Fuchs 《BBA》1977,462(2):314-322
A double isotope technique and EGTA buffers were used to measure the binding of Ca2+ to rabbit psoas muscle fibers extracted with detergent and glycerol. These experiments were designed to test the effect of rigor complex formation, determined by the degree of filament overlap, on the properties of the Ca2+-binding sites in the intact filament lattice. In the presence of 5 mM MgCl2 (no ATP), reduction of filament overlap was associated with a reduced binding of Ca2+ over the entire range of free Ca2+ concentrations (5 · 10?8 – 2 · 10?5 M). With maximum filament overlap (sarcomere length 2.1–2.2 μm) the maximum bound Ca2+ was equivalent to 4 mol Ca2+/mol troponin and there was significant positive interaction between binding sites, as shown by Scatchard and Hill plots. With no filament overlap (sarcomere length 3.8–4.4 μm) the maximum bound Ca2+ was equivalent to 3 μmol Ca2+/mol troponin and graphical analysis indicated a single class of non-interacting sites. The data provide evidence that when cross-bridge attachments between actin and myosin filaments are formed not only does an additional Ca2+ binding site appear, but cooperative properties are imposed upon the binding sites.  相似文献   

18.
Contraction of striated muscles is regulated by tropomyosin strands that run continuously along actin-containing thin filaments. Tropomyosin blocks myosin-binding sites on actin in resting muscle and unblocks them during Ca2+-activation. This steric effect controls myosin-crossbridge cycling on actin that drives contraction. Troponin, bound to the thin filaments, couples Ca2+-concentration changes to the movement of tropomyosin. Ca2+-free troponin is thought to trap tropomyosin in the myosin-blocking position, while this constraint is released after Ca2+-binding. Although the location and movements of tropomyosin are well known, the structural organization of troponin on thin filaments is not. Its mechanism of action therefore remains uncertain. To determine the organization of troponin on the thin filament, we have constructed atomic models of low and high-Ca2+ states based on crystal structures of actin, tropomyosin and the "core domain" of troponin, and constrained by distances between filament components and by their location in electron microscopy (EM) reconstructions. Alternative models were also built where troponin was systematically repositioned or reoriented on actin. The accuracy of the different models was evaluated by determining how well they corresponded to EM images. While the initial low and high-Ca2+ models fitted the data precisely, the alternatives did not, suggesting that the starting models best represented the correct structures. Thin filament reconstructions were generated from the EM data using these starting models as references. In addition to showing the core domain of troponin, the reconstructions showed additional detail not present in the starting models. We attribute this to an extension of TnI linking the troponin core domain to actin at low (but not at high) Ca2+, thereby trapping tropomyosin in the OFF-state. The bulk of the core domain of troponin appears not to move significantly on actin, regardless of Ca2+ level. Our observations suggest a simple model for muscle regulation in which troponin affects the charge balance on actin and hence tropomyosin position.  相似文献   

19.
The steric model of muscle regulation holds that at low Ca(2+) concentration, tropomyosin strands, running along thin filaments, are constrained by troponin in an inhibitory position that blocks myosin-binding sites on actin. Ca(2+) activation, releasing this constraint, allows tropomyosin movement, initiating actin-myosin interaction and contraction. Although the different positions of tropomyosin on the thin filament are well documented, corresponding information on troponin has been lacking and it has therefore not been possible to test the model structurally. Here, we show that troponin can be detected on thin filaments and demonstrate how its changing association with actin can control tropomyosin position in response to Ca(2+). To accomplish this, thin filaments were reconstituted with an engineered short tropomyosin, creating a favorable troponin stoichiometry and symmetry for three-dimensional analysis. We demonstrate that in the absence of Ca(2+), troponin bound to both tropomyosin and actin can act as a latch to constrain tropomyosin in a position on actin that inhibits actomyosin ATPase. In addition, we find that on Ca(2+) activation the actin-troponin connection is broken, allowing tropomyosin to assume a second position, initiating actomyosin ATPase and thus permitting contraction to proceed.  相似文献   

20.
Muscle contraction is tightly regulated by Ca2+ binding to the thin filament protein troponin. The mechanism of this regulation was investigated by detailed mapping of the dynamic properties of cardiac troponin using amide hydrogen exchange-mass spectrometry. Results were obtained in the presence of either saturation or non-saturation of the regulatory Ca2+ binding site in the NH2 domain of subunit TnC. Troponin was found to be highly dynamic, with 60% of amides exchanging H for D within seconds of exposure to D2O. In contrast, portions of the TnT-TnI coiled-coil exhibited high protection from exchange, despite 6 h in D2O. The data indicate that the most stable portion of the trimeric troponin complex is the coiled-coil. Regulatory site Ca2+ binding altered dynamic properties (i.e. H/D exchange protection) locally, near the binding site and in the TnI switch helix that attaches to the Ca2+-saturated TnC NH2 domain. More notably, Ca2+ also altered the dynamic properties of other parts of troponin: the TnI inhibitory peptide region that binds to actin, the TnT-TnI coiled-coil, and the TnC COOH domain that contains the regulatory Ca2+ sites in many invertebrate as opposed to vertebrate troponins. Mapping of these affected regions onto the troponin highly extended structure suggests that cardiac troponin switches between alternative sets of intramolecular interactions, similar to previous intermediate resolution x-ray data of skeletal muscle troponin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号