首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple and effective procedure for the construction of linear restriction fragment maps was developed. Using a two-enzyme digestion, two-dimensional (2-D) electrophoresis procedure, all the restriction fragments in a 50- to 100-kb DNA can be individually resolved and displayed on a 2-D plane. This 2-D gel pattern, with appropriate markers, provides a fixed set of x, y coordinates for each fragment obtained from the single and double digestion as well as the relationship between the two steps. A matrix is constructed from the 2-D pattern. The vertical column shows all the singly digested individual fragments and their sizes obtained from each restriction enzyme treatment, and the dividing horizontal row shows all the doubly digested DNA fragments and their sizes after treatment with two enzymes. The order of arrangement is always from the smallest to the largest fragments. Using this matrix, two linear DNA restriction maps for these two enzymes can be simultaneously constructed in a self-reconfirming manner. As examples for this procedure, we describe the construction of two linear restriction fragment maps, a combination of EcoRI and BamHI digestion as well as a combination of EcoRI and HindIII digestion of lambda-phage DNA.  相似文献   

2.
R S Jack  H Eggert 《The EMBO journal》1990,9(8):2603-2609
Sequence specific DNA binding proteins in eukaryotic cells must efficiently locate their binding sites in chromosomes. Restriction enzymes provide a simple model system with which to investigate the factors which influence this process. We have used P element mediated transformation to introduce a DNA fragment containing a set of characterized restriction sites into the Drosophila germline. Embryonic nuclei prepared from these transgenic animals were treated with restriction enzymes to probe the accessibility of the target restriction sites. The results show that the insert is within an accessible region of the chromosome and that restriction sites within the inserted sequence can be cut. However, the rate of cutting is biphasic. At each restriction site, a fraction of the chromosomes is cut rapidly after which the remainder is refractory. Similar levels of incomplete cutting are obtained when the same P element construct is examined at a different chromosomal location, when different sequence elements are introduced into the P element vector or when the experiment is carried out on nuclei from different embryonic stages. These results are discussed in terms of how sequence specific DNA binding proteins may locate their genomic targets in vivo.  相似文献   

3.
The method of DNA restriction fragment analysis using gene probes for the proopiomelanocortin (POMC) gene was employed to detect possible molecular variation in the POMC gene in schizophrenia and bipolar illness. No gross structural abnormalities in restriction fragments were observed with the set of restriction enzymes used. Two allelic restriction sites were observed giving rise to fragment length polymorphisms. One of these is a new polymorphism, not previously reported, which will be of value as a linkage marker. The associations between the two DNA polymorphisms that are closely linked to the POMC gene and both schizophrenia and bipolar disorder were investigated. No association was found, thus adding weight to the evidence that there are no alterations in the POMC gene in schizophrenia and bipolar illness.  相似文献   

4.
Type I DNA restriction enzymes are large, molecular machines possessing DNA methyltransferase, ATPase, DNA translocase and endonuclease activities. The ATPase, DNA translocase and endonuclease activities are specified by the restriction (R) subunit of the enzyme. We demonstrate that the R subunit of the Eco KI type I restriction enzyme comprises several different functional domains. An N-terminal domain contains an amino acid motif identical with that forming the catalytic site in simple restriction endonucleases, and changes within this motif lead to a loss of nuclease activity and abolish the restriction reaction. The central part of the R subunit contains amino acid sequences characteristic of DNA helicases. We demonstrate, using limited proteolysis of this subunit, that the helicase motifs are contained in two domains. Secondary structure prediction of these domains suggests a structure that is the same as the catalytic domains of DNA helicases of known structure. The C-terminal region of the R subunit can be removed by elastase treatment leaving a large fragment, stable in the presence of ATP, which can no longer bind to the other subunits of Eco KI suggesting that this domain is required for protein assembly. Considering these results and previous models of the methyltransferase part of these enzymes, a structural and operational model of a type I DNA restriction enzyme is presented.  相似文献   

5.
A molecular method is presented for differentiating the morphologically cryptic leafminers Liriomyza langei Frick and L. huidobrensis (Blanchard). This method requires polymerase chain reaction (PCR) amplification of a 1031-bp region of mitochondrial cytochrome oxidase DNA followed by restriction fragment analysis using the restriction enzymes SpeI and EcoRV. Spel cuts the mitochondrial fragment of L. langei into two fragments, but does not cut the L. huidobrensis fragment. EcoRV cuts the L. huidobrensis fragment into two fragments, but does not cut the L. langei fragment. This PCR-restriction fragment-length polymorphism (RFLP) method is faster and less costly than DNA sequencing,which is currently the only other way to differentiate these two species. We apply the method to samples from recently introduced leafminer populations in Sri Lanka, Canada, and South Africa and find that the invasive leafminer in all three locations is L. huidobrensis.  相似文献   

6.
T Matsuoka  H Kato  K Hashimoto  Y Kurosawa 《Gene》1991,107(1):27-35
Long-range physical mapping with rare-cutting restriction enzymes (rare cutters) is an important step for structural analysis of complex genomes. Combination of two types of DNA clones bearing the rare-cutter sites, linking clones and jumping clones (Fig. 1a), facilitates the physical mapping [Poustka et al., Nature 325 (1987) 353-355]. A step followed by the physical mapping is the cloning of the large (rare-cutter-generated) restriction fragment of interest. For facilitating this step, we devised a method to directly clone a long restriction fragment without constructing the whole genomic DNA library using the jumping clone as starting material. The short DNA segments of a jumping clone, which are derived from the 5' and 3' terminal regions of the large restriction fragment, are inserted into the yeast artificial chromosome plasmid (pYAC) vector, and then converted into single strands with T7 gene 6-encoded 5'----3' exonuclease. The total genomic DNA digested with the restriction enzyme is also treated with the exonuclease to convert the terminal regions of the restriction fragments into single strands. In the resulting products, only the fragment corresponding to the jumping clone can form hybrids with the just-mentioned, single-stranded DNAs, which are connected to the pYAC, and only this fragment is cloned in yeast. We describe the protocol of this method with Escherichia coli DNA as a model experiment. Judging from the cloning efficiency, this method could be applied to cloning single-copy regions of the human genome, provided a jumping clone is available. The instability of inserts in the pYAC vector is also discussed.  相似文献   

7.
The computer program COMAP is described that enables one to evaluate the relationship among adenovirus 6 strains by comigration analysis with regard to the genome. The required data were obtained by restriction analysis with several enzymes. The program is also important for identifying further adenovirus strains by DNA restriction analysis and to compare new restriction fragment patterns with stored data of known adenovirus strains. We believe that in this manner the DNA restriction analysis will become a valuable diagnostic procedure.  相似文献   

8.
The purpose of this study was to develop molecular identification method for medical mushrooms and their preparations based on the nucleotide sequences of nuclear large subunit (LSU) rDNA. Four specimens were collected of each of the three representative medicinal mushrooms used in Korea: Ganoderma lucidum, Coriolus versicolor, and Fomes fomentarius. Fungal material used in these experiments included two different mycelial cultures and two different fruiting bodies from wild or cultivated mushrooms. The genomic DNA of mushrooms were extracted and 3 nuclear LSU rDNA fragments were amplified: set 1 for the 1.1-kb DNA fragment in the upstream region, set 2 for the 1.2-kb fragment in the middle, and set 3 for the 1.3-kb fragment downstream. The amplified gene products of nuclear large subunit rDNA from 3 different mushrooms were cloned into E. coli vector and subjected to nucleotide sequence determination. The sequence thus determined revealed that the gene sequences of the same medicinal mushroom species were more than 99.48% homologous, and the consensus sequences of 3 different medicinal mushrooms were more than 97.80% homologous. Restriction analysis revealed no useful restriction sites for 6-bp recognition enzymes for distinguishing the 3 sequences from one another, but some distinctive restriction patterns were recognized by the 4-bp recognition enzymes AccII and HhaI. This analysis was also confirmed by PCR-RFLP experiments on medicinal mushrooms.  相似文献   

9.
A method has been developed to simplify the identification of yeast strains. We used the restriction fragment patterns of PCR-amplified 18S rRNA-coding DNA with the neighbouring ITS1 region for differentiation and identification of 169 yeast strains representing 128 species associated mainly with food, wine, beer, and soft drinks. The amplicons were digested with four different four-base-cutting restriction enzymes. To construct a database of restriction fragment patterns, the gels have been scanned and analyzed using the Molecular Analyst Fingerprint 2.0 software. The use of four enzymes proved to be sufficient for strain identification.  相似文献   

10.
We have developed a semi-synthetic approach for preparing long stretches of DNA (>100 bp) containing internal chemical modifications and/or non-Watson-Crick structural motifs which relies on splint-free, cell-free DNA ligations and recycling of side-products by non-PCR thermal cycling. A double-stranded DNA PCR fragment containing a polylinker in its middle is digested with two restriction enzymes and a small insert ( approximately 20 bp) containing the modification or non-Watson-Crick motif of interest is introduced into the middle. Incorrect products are recycled to starting materials by digestion with appropriate restriction enzymes, while the correct product is resistant to digestion since it does not contain these restriction sites. This semi-synthetic approach offers several advantages over DNA splint-mediated ligations, including fewer steps, substantially higher yields ( approximately 60% overall yield) and ease of use. This method has numerous potential applications, including the introduction of modifications such as fluorophores and cross-linking agents into DNA, controlling the shape of DNA on a large scale and the study of non-sequence-specific nucleic acid-protein interactions.  相似文献   

11.
A cDNA library for porcine skeletal muscle was established in the vector pBR322. The library was screened with an oligonucleotide probe coding for a hexapeptide from glucosephosphate isomerase (Gpi). A positive clone with an insert of about 450 bp and restriction sites for PstI, BamHI and PvuII was isolated. A 362-bp PstI fragment was sequenced and shown to contain the codons for the hexapeptide as well as the remaining 29 amino acids of this Gpi peptide. The PstI fragment was used to probe pig genomic DNA. The restriction enzymes PvuII and SacI detected a set of polymorphisms with five bands, behaving as a set of insertion/deletion polymorphisms.  相似文献   

12.
Summary. A selection of cattle, human and sheep cDNA probes were screened against sheep genomic DNA, cut with 10 different restriction enzymes, to assess the usefulness of these probes for restriction fragment length polymorphism (RFLP) linkage studies in sheep. Two-thirds of the cattle cDNA probes showed moderate to strong homology with sheep DNA samples, compared with less than half of the human cDNA probes at the final washing stringency chosen for the experiments. The set of probes tested detected a useful frequency of RFLPs. Fifty-seven per cent of probes showing moderate to strong homology identified RFLPs with one or more restriction enzymes. Restriction enzymes that detected RFLPs most frequently in sheep were Taq I and Msp I. The results show that sheep and cattle cDNA probes, including candidate genes for production traits, identified a high frequency of RFLPs suitable for genetic mapping in sheep.  相似文献   

13.
The restriction enzyme cutting site distribution regularity and looping conditions were studied systematically. We obtained the restriction enzyme cutting site distributions of 13 commonly used restriction enzymes in 5 model organism genomes through two novel self-compiled software programs. All of the average distances between two adjacent restriction sites fell sharply with increasing statistic intervals, and most fragments were 0–499 bp. A shorter DNA fragment resulted in a lower looping rate, which was also directly proportional to the DNA concentration. When the length was more than 500 bp, the concentration did not affect the looping rate. Therefore, the best known fragment length was longer than 500 bp, and did not contain the restriction enzyme cutting sites which would be used for digestion. In order to make the looping efficiencies reach nearly 100%, 4–5 single cohesive end systems were recommended to digest the genome separately.  相似文献   

14.
The principal sources of genetic variation that can be assayed with restriction enzymes are base substitutions and insertions/deletions (indels). The likelihood of detecting indels as restriction fragment length polymorphisms (RFLPs) is determined by the size and frequency of the indels, and the ability to resolve small indels as RFLPs is limited by the distribution of restriction fragment sizes. In this study, we use aligned sequences from the indica and japonica subspecies of rice ( Oryza sativa L.) to quantify and compare the ability of restriction enzymes to detect indels. We look specifically at two abundant transposable element-derived indel sources: miniature inverted repeat transposable elements (MITEs) and long terminal repeat (LTR) retroelements. From this analysis we conclude that indels rather than base substitutions are the prevailing source of the polymorphism detected in rice. We show that, although MITE derived indels are more abundant than LTR-retroelement derived indels, LTR-retroelements have a greater capacity to generate visible restriction fragment length polymorphism because of their larger size. We find that the variation in the detectability of indels among restriction enzymes can be explained by differences in the frequency and dispersion of their restriction sites in the genome. The parameters that describe the fragment size distributions obtained with the restriction enzymes are highly correlated across the sequenced genomes of rice, Arabidopsis and human, with the exception of some extreme deviations in frequency for particular recognition sequences corresponding to variations in the levels and modes of DNA methylation in the three disparate organisms. Thus, we can predict the relative ability of a restriction enzyme to detect indels derived from a specific source based on the distribution of restriction fragment sizes, even when this is estimated for a distantly related genome.Electronic Supplementary Material Supplementary Material is available in the online version of this article at Communicated by M.-A. Grandbastien  相似文献   

15.
本文介绍了构建水稻二化螟和三化螟"双酶切限制性酶切位点关联DNA测序"(Double digest restrictionsite associated DNA sequencing,ddRADseq)文库的方法。利用安捷伦2100生物分析仪对4种单酶切及2种双酶切的酶切产物片段大小及分布范围进行分析,筛选出Mlu C I和Nla III两种限制性内切酶组合对螟虫基因组DNA进行酶切。酶切后的DNA片段两端连接上特定的P1、P2接头后,用Pippin Prep回收大小为285-435 bp的DNA片段。通过PCR扩增进行文库的富集并引入index序列。构建好的ddRADseq文库用琼脂糖凝胶电泳和生物分析仪进行质量检测。本方法所构建的文库DNA片段长度、分布和摩尔浓度能够达到Illumina平台测序的技术要求。本研究证实了利用Mlu C I和Nla III组合酶切构建水稻螟虫基因组ddRADseq文库的可行性,为在水稻螟虫中利用ddRADseq技术开展生物地理学、种群遗传学和系统发育重建等方面的研究奠定基础。  相似文献   

16.
The limited number of naturally occurring rare-cutting restriction enzymes and the slow and tedious engineering of existing restriction enzymes for novel specificities have prompted the design of new strategies for the development of restriction enzymes with specificities for long DNA sequences. One possibility is using zinc finger nucleases (ZFNs)—synthetic restriction enzymes that are custom-designed to target and cleave long DNA sequences and which have been recently shown useful for DNA cloning. Here we report on the purification and biochemical analysis of ZFN-10, a custom-made ZFN. We show that Ni-affinity and gel-filtration purification methods are sufficient to produce a cloning-grade enzyme. We show that ZFN-10 can function as an accurate and reliable ZFN using the same reagents and protocols used for naturally occurring and commercially available recombinant restriction enzymes. We also show that ZFN-10 tolerates a set of target-site substitutions which can be predicted from the specificities of recognition helices incorporated into the structure of its DNA-binding domain. The relative simplicity of ZFN-10 design, expression, purification and analysis suggests that novel ZFNs can potentially be designed and applied for various recombinant DNA applications.  相似文献   

17.
Isolation of DNA fragment containing phoS gene of Escherichia coli K-12   总被引:1,自引:0,他引:1  
The DNA fragment containing the phoS gene, a regulatory gene for alkaline phosphatase, has been isolated from Escherichia coli K-12 chromosomal DNA by cutting off the DNA with Hind III restriction enzyme and by cloning the gene with plasmid vector pTP 4 which was constructed in this study. The isolated fragment was of about 12.3 kbp and seemed to contain the phoT, glmS, and bgl genes. The 12.3 kbp Hind III fragment was subjected to restriction enzymes EcoR I, BamH I, Sal I, and Pst I, and was found to possess two EcoR I, no BamH I, a Sal I, and four Pst I sites. Partial deletion using these restriction enzymes suggested that the about 6 kbp Hind III-Pst I fragment contained the phoS and phoT genes. Further analysis with other restriction enzymes revealed that the 6 kbp Hind III-Pst I fragment contained a BstE II, two Mlu I and four Hpa I sites. The deletion of these restriction sites using single-strand-specific nuclease S1 suggested that the BstE II and one of Mlu I sites were in the phoT gene, and the BstE II and two Mlu I sites were not in the phoS gene.  相似文献   

18.
We describe a compilation of 79 known genes of Bradyrhizobium japonicum 110, 63 of which were placed on a correlated physical and genetic map of the chromosome. Genomic DNA was restricted with enzymes PacI, PmeI, and SwaI, which yielded two, five, and nine fragments, respectively. Linkage of some of the fragments was established by performing Southern blot hybridization experiments. For probes we used isolated, labelled fragments that were produced either by PmeI or by SwaI. Genes were mapped on individual restriction fragments by performing gene-directed mutagenesis. The principle of this method was to introduce recognition sites for all three restriction enzymes mentioned above into or very near the desired gene loci. Pulsed-field gel electrophoresis of restricted mutant DNA then resulted in an altered fragment pattern compared with wild-type DNA. This allowed us to identify overlapping fragments and to determine the exact position of any selected gene locus. The technique was limited only by the accuracy of the fragment size estimates. After linkage of all of the restriction fragments we concluded that the B. japonicum genome consists of a single, circular chromosome that is approximately 8,700 kb long. Genes directly concerned with nodulation and symbiotic nitrogen fixation are clustered in a chromosomal section that is about 380 kb long.  相似文献   

19.
20.
Size and physical map of the chromosome of Haemophilus influenzae.   总被引:25,自引:15,他引:10       下载免费PDF全文
A variation of pulse-field electrophoresis, field-inversion gel electrophoresis, was used to determine the size and physical map of the chromosome of Haemophilus influenzae. The DNA of H. influenzae had a low G + C content (39%) and no restriction sites for the enzymes NotI or SfiI. However, a number of restriction enzymes (SmaI, ApaI, NaeI, and SacII) that recognized 6-base-pair sequences containing only G and C nucleotides were found to generate a reasonable number of DNA fragments that were separable in agarose gels by field-inversion gel electrophoresis. The sizes of the DNA fragments were calibrated with a lambda DNA ladder and lambda DNA restriction fragments. The sum of fragment sizes obtained with restriction digests yielded a value for the chromosome of 1,980 kilobase pairs. Hybridization of a labeled fragment with two or more fragments from a digest with a different restriction enzyme provided the information needed to construct a circular map of the H. influenzae chromosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号