首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Forced expression of K10, a keratin normally expressed in postmitotic, terminally differentiating epidermal keratinocytes, inhibits the progression of the cell cycle in cultured cells (Paramio, J. M., Casanova, M. Ll., Segrelles, C., Mittnacht, S., Lane, E. B., and Jorcano, J. L. (1999) Mol. Cell. Biol. 19, 3086-3094). This process requires a functional retinoblastoma (pRb) gene product and is mediated by K10-induced inhibition of Akt and PKCzeta, two signaling intermediates belonging to the phosphoinositide (PI) 3-kinase signal transduction pathway (Paramio, J. M., Segrelles, C., Ruiz, S., and Jorcano, J. L. (2001) Mol. Cell. Biol. 21, 7449-7459). Extending earlier in vitro studies to the in vivo situation, this work analyzes the alterations found in transgenic mice that ectopically express K10 in the proliferative basal cells of the epidermis. Increased expression of K10 led to a hypoplastic and hyperkeratotic epidermis due to a dramatic decrease in skin keratinocyte proliferation in association with the inhibition of Akt and PKCzeta activities. The inhibition of cell proliferation and Akt and PKCzeta activities was also observed although to a minor extent in low hK10-expressing mice. These animals displayed no overt epidermal phenotype nor overexpression of K10. In these non-phenotypic mice, ectopic K10 expression also resulted in decreased skin tumorigenesis. Collectively, these data demonstrate that keratin K10 in vivo functions include the control of epithelial proliferation in skin epidermis.  相似文献   

2.
The members of the large keratin family of cytoskeletal proteins are expressed in a carefully regulated tissue- and differentiation-specific manner. Although these proteins are thought to be involved in imparting mechanical integrity to epithelial cells, the functional significance of their complex differential expression is still unclear. Here we provide new data suggesting that the expression of particular keratins may influence cell proliferation. Specifically, we demonstrate that the ectopic expression of K10 inhibits the proliferation of human keratinocytes in culture, while K16 expression appears to promote the proliferation of these cells. Other keratins, such as K13 or K14, do not significantly alter this parameter. K10-induced inhibition is reversed by the coexpression of K16 but not that of K14. These results are coherent with the observed expression pattern of these proteins in the epidermis: basal, proliferative keratinocytes express K14; when they terminally differentiate, keratinocytes switch off K14 and start K10 expression, whereas in response to hyperproliferative stimuli, K16 replaces K10. The characteristics of this process indicate that K10 and K16 act on the retinoblastoma (Rb) pathway, as (i) K10-induced inhibition is hampered by cotransfection with viral oncoproteins which interfere with pRb but not with p53; (ii) K10-mediated cell growth arrest is rescued by the coexpression of specific cyclins, cyclin-dependent kinases (CDKs), or cyclin-CDK complexes; (iii) K10-induced inhibition does not take place in Rb-deficient cells but is restored in these cells by cotransfection with pRb or p107 but not p130; (iv) K16 efficiently rescues the cell growth arrest induced by pRb in HaCaT cells but not that induced by p107 or p130; and (v) pRb phosphorylation and cyclin D1 expression are reduced in K10-transfected cells and increased in K16-transfected cells. Finally, using K10 deletion mutants, we map this inhibitory function to the nonhelical terminal domains of K10, hypervariable regions in which keratin-specific functions are thought to reside, and demonstrate that the presence of one of these domains is sufficient to promote cell growth arrest.  相似文献   

3.
14-3-3 is a ubiquitous protein family that interacts with several signal transduction kinases. We show that 14-3-3 proteins associate with keratin intermediate filament polypeptides 8 and 18 (K8/18) that are expressed in simple-type epithelia. The association is stoichiometrically significant (> or = one 14-3-3 molecule/keratin tetramer), occurs preferentially with K18, and is phosphorylation- and cell cycle-dependent in that it occurs during S/G2/M phases of the cell cycle when keratins become hyperphosphorylated. Binding of phospho- K8/18 to 14-3-3 can be reconstituted in vitro using recombinant 14-3-3 or using total cellular cytosol. Phosphatase treatment results in dissociation of 14-3-3, and dephosphorylation of phospho-K8/18 prevents reconstitution of the binding. Three cellular keratin subpopulations were analyzed that showed parallel gradients of keratin phosphorylation and 14-3-3 binding. Incubation of 14-3-3 with keratins during or after in vitro filament assembly results in sequestering of additional soluble keratin, only in cases when the keratins were hyperphosphorylated. Our results demonstrate a stoichiometrically significant cell cycle- and phosphorylation-regulated binding of 14-3-3 proteins to K18 and in vitro evidence of a simple epithelial keratin sequestering role for 14-3-3 proteins.  相似文献   

4.
5.
Ceramide is generated in response to numerous stress-inducing stimuli and has been implicated in the regulation of diverse cellular responses, including cell death, differentiation, and insulin sensitivity. Recent evidence indicates that ceramide may regulate these responses by inhibiting the stimulus-mediated activation of protein kinase B (PKB), a key determinant of cell fate and insulin action. Here we show that inhibition of this kinase involves atypical PKCzeta, which physically interacts with PKB in unstimulated cells. Insulin reduces the PKB-PKCzeta interaction and stimulates PKB. However, dissociation of the kinase complex and the attendant hormonal activation of PKB were prevented by ceramide. Under these circumstances, ceramide activated PKCzeta, leading to phosphorylation of the PKB-PH domain on Thr(34). This phosphorylation inhibited phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) binding to PKB, thereby preventing activation of the kinase by insulin. In contrast, a PKB-PH domain with a T34A mutation retained the ability to bind PIP(3) even in the presence of a ceramide-activated PKCzeta and, as such, expression of PKB T34A mutant in L6 cells was resistant to inhibition by ceramide treatment. Inhibitors of PKCzeta and a kinase-dead PKCzeta both antagonized the inhibitory effect of ceramide on PKB. Since PKB confers a prosurvival signal and regulates numerous pathways in response to insulin, suppressing its activation by a PKCzeta-dependent process may be one mechanism by which ceramide promotes cell death and induces insulin resistance.  相似文献   

6.
Keratins undergo highly dynamic events in the epithelial cells that express them. These dynamic changes have been associated with important cell processes. We have studied the possible role of keratin phosphorylation-dephosphorylation processes in the control of these dynamic events. Drugs that affect the protein phosphorylation metabolism (activators or inhibitors of protein kinases or protein phosphatases) have been used in two different dynamic experimental systems. First, the behaviour of keratins after the formation of cell heterokaryons, and second, the assembly of a newly synthesised keratin after transfection into the pre-existing keratin cytoskeleton. The main difference between these two systems stems on the alteration of the amount of keratin polypeptides present in the cells, since in heterokaryons this amount was unaltered whilst in transfection experiments there is an increase due to the presence of the transfected protein. We observed in both systems that the inhibition of protein kinases led to a delayed dynamic behaviour of the keratin polypeptides. On the contrary, the inhibition of protein phosphatases by okadaic acid or the activation of protein kinases by phorbol esters promoted a substantial increase in the kinetics of these processes. Biochemical studies demonstrate that this behavioural changes can be correlated with changes in the phosphorylation state of the keratin polypeptides. As a whole, present results indicate that the highly dynamic properties of the keratin polypeptides can be modulated by phosphorylation.  相似文献   

7.
Neuregulin-1, a growth factor that potentiates myogenesis induces glucose transport through translocation of glucose transporters, in an additive manner to insulin, in muscle cells. In this study, we examined the signaling pathway required for a recombinant active neuregulin-1 isoform (rhHeregulin-beta(1), 177-244, HRG) to stimulate glucose uptake in L6E9 myotubes. The stimulatory effect of HRG required binding to ErbB3 in L6E9 myotubes. PI3K activity is required for HRG action in both muscle cells and tissue. In L6E9 myotubes, HRG stimulated PKBalpha, PKBgamma, and PKCzeta activities. TPCK, an inhibitor of PDK1, abolished both HRG- and insulin-induced glucose transport. To assess whether PKB was necessary for the effects of HRG on glucose uptake, cells were infected with adenoviruses encoding dominant negative mutants of PKBalpha. Dominant negative PKB reduced PKB activity and insulin-stimulated glucose transport but not HRG-induced glucose transport. In contrast, transduction of L6E9 myotubes with adenoviruses encoding a dominant negative kinase-inactive PKCzeta abolished both HRG- and insulin-stimulated glucose uptake. In soleus muscle, HRG induced PKCzeta, but not PKB phosphorylation. HRG also stimulated the activity of p70S6K, p38MAPK, and p42/p44MAPK and inhibition of p42/p44MAPK partially repressed HRG action on glucose uptake. HRG did not affect AMPKalpha(1) or AMPKalpha(2) activities. In all, HRG stimulated glucose transport in muscle cells by activation of a pathway that requires PI3K, PDK1, and PKCzeta, but not PKB, and that shows cross-talk with the MAPK pathway. The PI3K, PDK1, and PKCzeta pathway can be considered as an alternative mechanism, independent of insulin, to induce glucose uptake.  相似文献   

8.
Keratin polypeptide 8 (K8) associates noncovalently with its partners K18 and/or K19 to form the intermediate filament cytoskeleton of hepatocytes and other simple-type epithelial cells. Human K8, K18, and K19 variants predispose to liver disease, whereas site-specific keratin phosphorylation confers hepatoprotection. Because stress-induced protein phosphorylation regulates sumoylation, we hypothesized that keratins are sumoylated in an injury-dependent manner and that keratin sumoylation is an important regulatory modification. We demonstrate that K8/K18/K19, epidermal keratins, and vimentin are sumoylated in vitro. Upon transfection, K8, K18, and K19 are modified by poly-SUMO-2/3 chains on Lys-285/Lys-364 (K8), Lys-207/Lys-372 (K18), and Lys-208 (K19). Sumoylation affects filament organization and stimulus-induced keratin solubility and is partially inhibited upon mutation of one of three known K8 phosphorylation sites. Extensive sumoylation occurs in cells transfected with individual K8, K18, or K19 but is limited upon heterodimerization (K8/K18 or K8/K19) in the absence of stress. In contrast, keratin sumoylation is significantly augmented in cells and tissues during apoptosis, oxidative stress, and phosphatase inhibition. Poly-SUMO-2/3 conjugates are present in chronically injured but not normal, human, and mouse livers along with polyubiquitinated and large insoluble keratin-containing complexes. Notably, common human K8 liver disease-associated variants trigger keratin hypersumoylation with consequent diminished solubility. In contrast, modest sumoylation of wild type K8 promotes solubility. Hence, conformational changes induced by keratin natural mutations and extensive tissue injury result in K8/K18/K19 hypersumoylation, which retains keratins in an insoluble compartment, thereby limiting their cytoprotective function.  相似文献   

9.
Protein kinase B (PKB), also known as Akt or RAC-PK, is a serine/threonine kinase that can be activated by growth factors via phosphatidylinositol 3-kinase. In this article we show that PKCzeta but not PKCalpha and PKCdelta can co-immunoprecipitate PKB from CHO cell lysates. Association of PKB with PKCzeta was also found in COS-1 cells transiently expressing PKB and PKCzeta, and moreover we found that this association is mediated by the AH domain of PKB. Stimulation of COS-1 cells with platelet-derived growth factor (PDGF) resulted in a decrease in the PKB-PKCzeta interaction. The use of kinase-inactive mutants of both kinases revealed that dissociation of the complex depends upon PKB activity. Analysis of the activities of the interacting kinases showed that PDGF-induced activation of PKCzeta was not affected by co-expression of PKB. However, both PDGF- and p110-CAAX-induced activation of PKB were significantly abolished in cells co-expressing PKCzeta. In contrast, co-expression of a kinase-dead PKCzeta mutant showed an increased induction of PKB activity upon PDGF treatment. Downstream signaling of PKB, such as the inhibition of glycogen synthase kinase-3, was also reduced by co-expression of PKCzeta. A clear inhibitory effect of PKCzeta was found on the constitutively active double PKB mutant (T308D/S473D). In summary, our results demonstrate that PKB interacts with PKCzeta in vivo and that PKCzeta acts as a negative regulator of PKB.  相似文献   

10.
Rabbit tracheal epithelial (RbTE) cells in primary culture undergo at confluence a multistep program of squamous differentiation. This study examines the expression of keratins in RbTE cells in relation to this differentiation process. During the exponential growth phase RbTE cells are undifferentiated and express three major keratins, K5, K14, and K19, and two minor keratins, K6 and K16. Squamous differentiation is accompanied by increased expression of keratins K6, K16, and K19, and in particular of keratin K13, which reacts specifically with the monoclonal antibody AE8. These changes in keratin synthesis coincide with the commitment to terminal differentiation. Retinoic acid, an inhibitor of the expression of the squamous differentiated phenotype, inhibits the increase in the expression of K6, K16, and K13 and reduces the expression of K5 and K14; however, retinoic acid treatment results in increased levels of keratin K19 and K18. Retinoic acid inhibits the expression of K16 and K13 at concentrations as low as 10(-9)-10(-10) M. At least some of these changes in keratins appear to be related to alterations in the cellular levels of the respective mRNAs. Our results indicate that specific changes in keratin expression, in particular keratin K13, correlate with the onset of squamous differentiation in RbTE cells. Induction of the expression of keratin K13 may function as a marker of squamous differentiation in tracheobronchial epithelial cells.  相似文献   

11.
Cyclic AMP stimulates taurocholate (TC) uptake and sodium taurocholate co-transporting polypeptide (Ntcp) translocation in hepatocytes via the phosphoinositide-3 kinase (PI3K) signaling pathway. The aim of the present study was to determine whether protein kinase (PK) Czeta, one of the downstream mediators of the PI3K signaling pathway, is involved in cAMP-mediated stimulation of TC uptake. Studies were conducted in isolated rat hepatocytes and in HuH-7 cells stably transfected with rat liver Ntcp (HuH-Ntcp cells). Studies in hepatocytes showed that cAMP activates PKCzeta in a PI3K-dependent manner without inducing translocation of PKCzeta to the plasma membrane. Inhibition of cAMP-induced PKCzeta activity by myristoylated PKC (zeta/lambda) pseudosubstrate, a specific inhibitor of PKCzeta, and G? 6850, a PKC inhibitor, resulted in inhibition of cAMP-induced increases in TC uptake and Ntcp translocation. Studies in HuH-Ntcp cells showed that inhibition of cAMP-induced PKCzeta activation by dominant-negative (DN) PKCzeta resulted in inhibition of cAMP-induced increases in TC uptake and Ntcp translocation. DN PKCzeta also inhibited wild-type PKCzeta-induced increases in PKCzeta activity, TC uptake, and Ntcp translocation. Myristoylated PKC (zeta/lambda) pseudosubstrate and DN PKCzeta also inhibited cAMP-induced activation of PKB in hepatocytes and HuH-Ntcp cells, respectively. Neither DN PKB nor constitutively active PKB affected cAMP-induced activation of PKCzeta, and wild-type PKCzeta did not activate PKB. Taken together, these results suggest that cAMP-induced activation of PKB is dependent on cAMP-induced stimulation of PKCzeta. It is proposed that cAMP-induced Ntcp translocation involves the activation of the PI3K/PKCzeta signaling pathway followed by the activation of the PI3K/PKB signaling pathway.  相似文献   

12.
13.
Insulin and AMP-activated protein kinase (AMPK) signal pathways are involved in the regulation of glucose uptake. The integration of signals between these two pathways to maintain glucose homeostasis remains elusive. In this work, stimulation of insulin and berberine conferred a glucose uptake or surface glucose transporter 4 (GLUT4) translocation that was less than simple summation of their effects in insulin-sensitive muscle cells. Using specific inhibitors to key kinases of both pathways and PKCzeta small interference RNA, protein kinase C zeta (PKCzeta) was found to regulate insulin-stimulated protein kinase B (PKB) activation and inhibit AMPK activity on dorsal cell surface. In the presence of berberine, PKCzeta controlled AMPK activation and AMPK blocked PKB activity in perinuclear region. The inhibition effect of PKCzeta on AMPK activation or the arrestment of PKB activity by AMPK still existed in basal condition. These results suggest that there is antagonistic regulation between insulin and AMPK signal pathways, which is mediated by the switch roles of PKCzeta.  相似文献   

14.
Keratins, constituent proteins of intermediate filaments of epithelial cells, are phosphoproteins containing phosphoserine and phosphothreonine. We examined the in vitro phosphorylation of keratin filaments by cAMP-dependent protein kinase, protein kinase C and Ca2+/calmodulin-dependent protein kinase II. When rat liver keratin filaments reconstituted by type I keratin 18 (molecular mass 47 kDa; acidic type) and type II keratin 8 (molecular mass 55 kDa; basic type) in a 1:1 ratio were used as substrates, all the protein kinases phosphorylated both of the constituent proteins to a significant rate and extent, and disassembly of the keratin filament structure occurred. Kinetic analysis suggested that all these protein kinases preferentially phosphorylate keratin 8, compared to keratin 18. The amino acid residues of keratins 8 and 18 phosphorylated by cAMP-dependent protein kinase or protein kinase C were almost exclusively serine, while those phosphorylated by Ca2+/calmodulin-dependent protein kinase II were serine and threonine. Peptide mapping analysis indicated that these protein kinases phosphorylate keratins 8 and 18 in a different manner. These observations gave the way for in vivo studies of the role of phosphorylation in the reorganization of keratin filaments.  相似文献   

15.
Elevated ceramide concentrations in adipocytes and skeletal muscle impair PKB (protein kinase B; also known as Akt)-directed insulin signalling to key hormonal end points. An important feature of this inhibition involves the ceramide-induced activation of atypical PKCzeta (protein kinase C-zeta), which associates with and negatively regulates PKB. In the present study, we demonstrate that this inhibition is critically dependent on the targeting and subsequent retention of PKCzeta-PKB within CEM (caveolin-enriched microdomains), which is facilitated by kinase interactions with caveolin. Ceramide also recruits PTEN (phosphatase and tensin homologue detected on chromosome 10), a 3'-phosphoinositide phosphatase, thereby creating a repressive membrane microenvironment from which PKB cannot signal. Disrupting the structural integrity of caveolae by cholesterol depletion prevented caveolar targeting of PKCzeta and PKB and suppressed kinase-caveolin association, but, importantly, also ameliorated ceramide-induced inhibition of PKB. Consistent with this, adipocytes from caveolin-1-/- mice, which lack functional caveolae, exhibit greater resistance to ceramide compared with caveolin-1+/+ adipocytes. We conclude that the recruitment and retention of PKB within CEM contribute significantly to ceramide-induced inhibition of PKB-directed signalling.  相似文献   

16.
The pupoid fetus (pf) and repeated epilation (Er) mutations of mice result in a failure of epidermal differentiation in homozygotes. Expression of the epidermal keratins has been followed in pf/pf and Er/Er mice by two-dimensional gel electrophoresis, and by immunohistochemistry and Western blotting using polyclonal antibodies that are monospecific for individual keratin polypeptides. Our results show that expression of the differentiation-specific keratins (K1 and K10) is delayed in both the pf/pf and Er/Er mutants and that, when these keratins do appear later in development, they are localized in the deeper layers of the thickened mutant epidermis. Conversely, K6 and K16, two keratins found in low abundance in normal epidermis, are abundant in mutant epidermis. In newborn mutant epidermis, K6 and K16 are found to be most abundant in the outermost epidermal cells, a distribution opposite to that of K1 and K10. These findings suggest that the expression of these hyperplastic keratins in mutant mice may occur to the exclusion of the differentiation-specific keratins both during development and in newborn animals. Differentiation, and an apparently normal pattern of keratin expression, occur when whole pf/pf or Er/Er skin is grafted to normal mice. These results suggest that the pf and Er genes may be expressed systemically and that transfer of the mutant skin to a "normal" environment results in the recovery of a normal phenotype.  相似文献   

17.
With more than 50 genes in human, keratins make up a large gene family, but the evolutionary pressure leading to their diversity remains largely unclear. Nevertheless, this diversity offers a means to examine the evolutionary relationships among organisms that express keratins. Here, we report the analysis of keratins expressed in two cyprinid fishes, goldfish and carp, by two-dimensional polyacrylamide gel electrophoresis, complementary keratin blot binding assay, and immunoblotting. We further explore the expression of keratins by immunofluorescence microscopy. Comparison is made with the keratin expression and catalogs of zebrafish and rainbow trout. The keratins among these fishes exhibit a similar range of molecular weights and isoelectric points, with a similar overall pattern on two-dimensional gels. In addition, immunofluorescence microscopy studies of goldfish and carp tissues have revealed the expression of keratins in both epithelial and mesenchymally derived tissues, as reported previously for zebrafish and trout. We conclude that keratin expression is qualitatively similar among these fishes, with goldfish and carp patterns being more similar to each other than to zebrafish, and the cyprinid fishes being more similar to each other than to the salmonid trout. Because of the detected similarity of keratin expression among the cyprinid fishes, we propose that, for certain experiments, they are interchangeable. Although the zebrafish distinguishes itself as being a developmental and genetic/genomic model organism, we have found that the goldfish, in particular, is a more suitable model for both biochemical and histological studies of the cytoskeleton, especially since goldfish cytoskeletal preparations seem to be more resistant to degradation than those from carp or zebrafish. This work was supported by grants to J.M. from the Stiftung Rheinland Pfalz für Innovation (836-386261/138) and the Deutsche Forschungsgemeinschaft (Ma 843/5-1) and a grant to D.G. from the National Science Foundation (INT-0078261).  相似文献   

18.
Characterization of PDK2 activity against protein kinase B gamma   总被引:3,自引:0,他引:3  
Hodgkinson CP  Sale EM  Sale GJ 《Biochemistry》2002,41(32):10351-10359
Protein kinase B (PKB), also known as Akt, is a serine/threonine protein kinase controlled by insulin, various growth factors, and phosphatidylinositol 3-kinase. Full activation of the PKB enzyme requires phosphorylation of a threonine in the activation loop and a serine in the C-terminal tail. PDK1 has clearly been shown to phosphorylate the threonine, but the mechanism leading to phosphorylation of the serine, the PDK2 site, is unclear. A yeast two-hybrid screen using full-length human PKBgamma identified protein kinase C (PKC) zeta, an atypical PKC, as an interactor with PKBgamma, an association requiring the pleckstrin homology domain of PKBgamma. Endogenous PKBgamma was shown to associate with endogenous PKCzeta both in cos-1 cells and in 3T3-L1 adipocytes, demonstrating a physiological interaction. Immunoprecipitates of PKCzeta, whether endogenous PKCzeta from insulin-stimulated 3T3-L1 adipocytes or overexpressed PKCzeta from cos-1 cells, phosphorylated S472 (the C-terminal serine phosphorylation site) of PKBgamma, in vitro. In vivo, overexpression of PKCzeta stimulated the phosphorylation of approximately 50% of the PKBgamma molecules, suggesting a physiologically meaningful effect. However, pure PKCzeta protein was incapable of phosphorylating S472 of PKBgamma. Antisense knockout studies and use of a PDK1 inhibitor showed that neither PKB autophosphorylation nor phosphorylation by PDK1 accounted for the S472 phosphorylation in PKCzeta immunoprecipitates. Staurosporine inhibited the PKCzeta activity but not the PDK2 activity in PKCzeta immunoprecipitates. Together these results indicate that an independent PDK2 activity exists that physically associates with PKCzeta and that PKCzeta, by binding PKBgamma, functions to deliver the PDK2 to a required location. PKCzeta thus functions as an adaptor, associating with a staurosporine-insensitive PDK2 enzyme that catalyzes the phosphorylation of S472 of PKBgamma. Because both PKCzeta and PKB have been proposed to be required for mediating a number of crucial insulin responses, formation of an active signaling complex containing PKCzeta, PKB, and PDK2 is an attractive mechanism for ensuring that all the critical sites on targets such as glycogen synthase kinase-3 are phosphorylated.  相似文献   

19.
To study the assembly of intermediate filaments in vivo we have transfected fibroblast cell lines with the cDNAs coding for keratins 8 and 18 under the control of the promoter of the SV40 early region and followed keratin expression by RNA hybridization, two-dimensional gel electrophoresis, and immunofluorescence analysis. When expressed individually, keratins 8 and 18 failed to polymerize into intermediate filaments but formed granular aggregates of variable size distributed throughout the cytoplasm as seen by staining with specific antibodies. The expression of one of these two keratins did not induce the synthesis of its partner or of any other keratin. Coexpression of the two keratins produced filamentous structures, frequently perinuclear, indicating that the two types of polypeptides were able to assemble into intermediate filaments but could not form the cytoskeleton characteristic of epithelial cells. These results demonstrate that assembly in heterocomplexes stabilizes keratins against cellular degradation, helping to explain why excess pools of simple keratins have never been detected.  相似文献   

20.
The pRb (retinoblastoma protein) tumour suppressor protein has a crucial role in regulating the G1- to S-phase transition, and its phosphorylation by cyclin-dependent kinases is an established and important mechanism in controlling pRb activity. In addition, the targeted acetylation of lysine (K) residues 873/874 in the carboxy-terminal region of pRb located within a cyclin-dependent kinase-docking site hinders pRb phosphorylation and thereby retains pRb in an active state of growth suppression. Here, we report that the acetylation of pRb K873/874 occurs in response to DNA damage and that acetylation regulates the interaction between the C-terminal E2F-1-specific domain of pRb and E2F-1. These results define a new role for pRb acetylation in the DNA damage signalling pathway, and suggest that the interaction between pRb and E2F-1 is controlled by DNA-damage-dependent acetylation of pRb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号