首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Colorectal cancer (CRC) is a leading cause of cancer death worldwide. Epidemiological risk factors for CRC included alcohol intake, which is mainly metabolized to acetaldehyde by alcohol dehydrogenase and further oxidized to acetate by aldehyde dehydrogenase; consequently, the role of genes in the alcohol metabolism pathways is of particular interest. The aim of this study is to analyze the association between SNPs in ADH1B and ALDH2 genes and CRC risk, and also the main effect of alcohol consumption on CRC risk in the study population.

Methodology/Principal Findings

SNPs from ADH1B and ALDH2 genes, included in alcohol metabolism pathway, were genotyped in 1694 CRC cases and 1851 matched controls from the Molecular Epidemiology of Colorectal Cancer study. Information on clinicopathological characteristics, lifestyle and dietary habits were also obtained. Logistic regression and association analysis were conducted. A positive association between alcohol consumption and CRC risk was observed in male participants from the Molecular Epidemiology of Colorectal Cancer study (MECC) study (OR = 1.47; 95%CI = 1.18-1.81). Moreover, the SNPs rs1229984 in ADH1B gene was found to be associated with CRC risk: under the recessive model, the OR was 1.75 for A/A genotype (95%CI = 1.21-2.52; p-value = 0.0025). A path analysis based on structural equation modeling showed a direct effect of ADH1B gene polymorphisms on colorectal carcinogenesis and also an indirect effect mediated through alcohol consumption.

Conclusions/Significance

Genetic polymorphisms in the alcohol metabolism pathways have a potential role in colorectal carcinogenesis, probably due to the differences in the ethanol metabolism and acetaldehyde oxidation of these enzyme variants.  相似文献   

2.
The effects of homo- and heterologous alcohol dehydrogenase (ADH) administration into albino rats were investigated. It was found that homologous ADH increases and heterologous ADH decreases the craving for ethanol. The latter effect was accompanied by the appearance of anti-ADH-3 antibodies and by a decrease in ADH-3 activity in the liver. Craving for alcohol decreased after both active and passive immunization against ADH.  相似文献   

3.
Three Russian populations of Siberia were examined for allele and genotype frequency distributions of two alcohol dehydrogenase genes, ADH1B (exon 3 polymorphism A/G detectable with MslI) and ADH7 (intron 5 polymorphism G/C detectable with StyI). No interpopulation or sex difference in allele frequencies was revealed. Allele ADH1B*G (+ MslI, A2) was rare (3.6–7.5%); the frequency of the mutant ADH7 allele (–StyI, B2) was 46.02% in the total sample (N = 339). The genotype frequencies obeyed the Hardy–Weinberg equilibrium and the alleles were in linkage equilibrium in each population. Frequency of ADH7 allele B2 increased beyond 40 years of age in the total sample (by 11%, P = 0.001) and in the Tomsk population (by 9%, P= 0.017). The ADH1B and ADH7 polymorphisms had no effect on the antioxidant activity (AOA), which was inferred from the ability of serum to reduce the yield of thiobarbituric acid-reactive species in the Fe2+–lecithin system. In the Tomsk population, carriers of AHD1B allele A2 showed a significant increase in very low density lipoproteins (by 9.95%, P = 0.045) and a near significant increase in systolic pressure (by 6.8%, P = 0.068) and serum triglycerides (by 6.16%, P = 0.058).  相似文献   

4.
Summary A partial alcohol dehydrogenase, ADH I, deficient mutant, GRF 18-2 of S. cerevisiae has been isolated. The mutant is resistant to allyl alcohol and the spec. activity of ADH I is 15-fold reduced in the mutant. In a batch fermentation the mutant overproduces glycerol. The production is enhanced 6–7 fold compared with the wildtype strain and it amounts to about 40 per cent of the ethanol produced. The yield of ethanol and glycerol is 56 and 24 per cent respectively. Another mutant possibly defect in the gene for ADH II has a reduced capacity to oxidize ethanol.  相似文献   

5.

Background

The effect of alcohol consumption on liver function is difficult to determine because of reporting bias and potential residual confounding. Our aim was to determine this effect using genetic variants to proxy for the unbiased effect of alcohol.

Methods

We used variants in ADH1B and ADH1C genes as instrumental variables (IV) to estimate the causal effect of long-term alcohol consumption on alanine aminotransferase (ALT), γ-glutamyl-transferase (γ-GT), alkaline phosphatase (ALP), bilirubin and prothrombin action. Analyses were undertaken on 58,313 Danes (mean age 56).

Results

In both confounder adjusted multivariable and genetic-IV analyses greater alcohol consumption, amongst those who drank any alcohol, was associated with higher ALT [mean difference per doubling of alcohol consumption: 3.4% (95% CI: 3.1, 3.7) from multivariable analyses and 3.7% (−4.5, 11.9) from genetic-IV analyses] and γ-GT [8.2% (7.8, 8.5) and 6.8% (−2.8, 16.5)]. The point estimates from the two methods were very similar and statistically the results from the two methods were consistent with each other for effects with ALT and γ-GT (both pdiff>0.3). Results from the multivariable analyses suggested a weak inverse association of alcohol with ALP [−1.5% (−1.7, −1.3)], which differed from the strong positive effect found in genetic-IV analyses [11.6% (6.8, 16.4)] (pdiff<0.0001). In both multivariable and genetic-IV analyses associations with bilirubin and protrombin action were weak and close to the null.

Conclusions

Our results suggest that greater consumption of alcohol is related to poorer liver function as indicated by higher ALT, γ-GT and ALP, but not to clotting or bilirubin.  相似文献   

6.
ALTHOUGH the presence of alcohol dehydrogenase (ADH) in cerebral tissue has been established1, a physiological role for such a brain ethanol-oxidizing system has been unclear. The brain may be more biochemically adaptive than was once thought2; thus, it seemed possible that brain ADH may be substrate-induced. We now report that significant elevations of brain ADH activity occur in alcohol-imbibing rats; no changes from control values were found in liver ADH, liver aldehyde dehydrogenase (AldDH), or brain AldDH activities.  相似文献   

7.
8.
Genome-wide association studies (GWAS) have revealed many single nucleotide polymorphisms (SNPs) associated with complex traits. Although these studies frequently fail to identify statistically significant associations, the top association signals from GWAS may be enriched for true associations. We therefore investigated the association of alcohol dependence with 43 SNPs selected from association signals in the first two published GWAS of alcoholism. Our analysis of 808 alcohol-dependent cases and 1,248 controls provided evidence of association of alcohol dependence with SNP rs1614972 in the ADH1C gene (unadjusted p = 0.0017). Because the GWAS study that originally reported association of alcohol dependence with this SNP [1] included only men, we also performed analyses in sex-specific strata. The results suggest that this SNP has a similar effect in both sexes (men: OR (95%CI) = 0.80 (0.66, 0.95); women: OR (95%CI) = 0.83 (0.66, 1.03)). We also observed marginal evidence of association of the rs1614972 minor allele with lower alcohol consumption in the non-alcoholic controls (p = 0.081), and independently in the alcohol-dependent cases (p = 0.046). Despite a number of potential differences between the samples investigated by the prior GWAS and the current study, data presented here provide additional support for the association of SNP rs1614972 in ADH1C with alcohol dependence and extend this finding by demonstrating association with consumption levels in both non-alcoholic and alcohol-dependent populations. Further studies should investigate the association of other polymorphisms in this gene with alcohol dependence and related alcohol-use phenotypes.  相似文献   

9.
Alcohol dehydrogenase (ADH) activity was determined by a highly sensitive method. The enzyme activity in the blood serum was similar in alcohol and water preferring rats, while ADH activity in the liver of alcohol preferring rats was higher than in water preferring rats. In rats, chronically intoxicated with ethanol, ADH activity in the liver decreased, while in the serum it was twice higher than the normal level. It is suggested that high level of blood ADH is not connected with the rate of enzyme synthesis in the liver.  相似文献   

10.
Hepatic alcohol dehydrogenase (ADH) activity is higher in female than in male rats. Although sex steroids, thyroid, and growth hormone (GH) have been shown to regulate hepatic ADH, the mechanism(s) for sexual dimorphic expression is unclear. We tested the possibility that the GH secretory pattern determined differential expression of ADH. Gonadectomized and hypophysectomized male and female rats were examined. Hepatic ADH activity was 2.1-fold greater in females. Because protein and mRNA content were also 1.7- and 2.4-fold greater, results indicated that activity differences were due to pretranslational mechanisms. Estradiol increased ADH selectively in males, and testosterone selectively decreased activity and mRNA levels in females. Effect of sex steroids on ADH was lost after hypophysectomy; infusion of GH in males increased ADH to basal female levels, supporting a role of the pituitary-liver axis. However, GH and L-thyroxine (T4) replacements alone in hypophysectomized rats did not restore dimorphic differences for either ADH activity or mRNA levels. On the other hand, T4 in combination with intermittent administration of GH reduced ADH activity and mRNA to basal male values, whereas T4 plus GH infusion replicated female levels. These results indicate that the intermittent male pattern of GH secretion combined with T4 is the principal determinant of low ADH activity in male liver.  相似文献   

11.
Lee SL  Wang MF  Lee AI  Yin SJ 《FEBS letters》2003,544(1-3):143-147
Human class III alcohol dehydrogenase (ADH3), also known as glutathione-dependent formaldehyde dehydrogenase, exhibited non-hyperbolic kinetics with ethanol at a near physiological pH 7.5. The S(0.5) and k(cat) were determined to be 3.4+/-0.3 M and 33+/-3 min(-1), and the Hill coefficient (h) 2.21+/-0.09, indicating positive cooperativity. Strikingly, the S(0.5) for ethanol was found to be 5.4 x 10(6)-fold higher than the K(m) for S-(hydroxymethyl)glutathione, a classic substrate for the enzyme, whereas the k(cat) for the former was 41% lower than that for the latter. Isotope effects on enzyme activity suggest that hydride transfer may be rate-limiting in the oxidation of ethanol. Kinetic simulations using the experimentally determined Hill constant suggest that gastric ADH3 may highly effectively contribute to the first-pass metabolism at 0.5-3 M ethanol, an attainable range in the gastric lumen during alcohol consumption. The positive cooperativity mainly accounts for this metabolic role of ADH3.  相似文献   

12.
Endogenous S-nitrosothiols, including S-nitrosoglutathione (GSNO), mediate nitric oxide (NO)-based signaling, inflammatory responses, and smooth muscle function. Reduced GSNO levels have been implicated in several respiratory diseases, and inhibition of GSNO reductase, (GSNOR) the primary enzyme that metabolizes GSNO, represents a novel approach to treating inflammatory lung diseases. Recently, an association between decreased GSNOR expression and human lung cancer risk was proposed in part based on immunohistochemical staining using a polyclonal GSNOR antibody. GSNOR is an isozyme of the alcohol dehydrogenase (ADH) family, and we demonstrate that the antibody used in those studies cross reacts substantially with other ADH proteins and may not be an appropriate reagent. We evaluated human lung cancer tissue arrays using monoclonal antibodies highly specific for human GSNOR with minimal cross reactivity to other ADH proteins. We verified the presence of GSNOR in ≥85% of specimens examined, and extensive analysis of these samples demonstrated no difference in GSNOR protein expression between cancerous and normal lung tissues. Additionally, GSNOR and other ADH mRNA levels were evaluated quantitatively in lung cancer cDNA arrays by qPCR. Consistent with our immunohistochemical findings, GSNOR mRNA levels were not changed in lung cancer tissues, however the expression levels of other ADH genes were decreased. ADH IB mRNA levels were reduced (>10-fold) in 65% of the lung cancer cDNA specimens. We conclude that the previously reported results showed an incorrect association of GSNOR and human lung cancer risk, and a decrease in ADH IB, rather than GSNOR, correlates with human lung cancer.  相似文献   

13.
The Allele and genotype didtributions of the two alcohol dehydrogenase genes ADH1B (polymorphism A/G in exon 3, detected with restrictase MslI) and ADH7 (polymorphism G/C in intron 5, detected with restrictase StyI) was studied in three Russian populations from the Siberian region. The absence of interpopulation and intersexual differences in the allele frequency was determined. The allele ADH1B*G (+MslI, A2) was found in low frequency (3.6-7.5%), the mutant allele ADH7 (-StyI, B2) frequency in total population (n = 339) was 46.02%. The genotype distributions of the ADH1B and ADH7 in these populations were agreed with the Hardy-Weinberg equilibrium and linkage equilibrium. Increased frequency of ADH7 B2 allele was revealed in elder group (after 40 years) in the total sample and in the Tomsk city inhabitants (n = 113) on 11% (P = 0.001) and 9% (P = 0.017) accordingly. ADH7 and ADH1B genes polymorpisms did not show association with antioxidant activity, which was determined from the blood plasma ability to reduce the yield of products interacting with thiobarbituric acid in the lecitin-Fe2+ ions model system. The statistically significant decrease of serum very low density lipoproteins (LPVLD) level (on 9.95%, P = 0.045) and close to statistically significant decrease systolic pressure (on 6.80%, P = 0.068) and serum triglycerides level (on 6.16 of %, P = 0.058) were revealed among the A2 allele ADH1B gene carriers in Tomsk population.  相似文献   

14.
Allyl alcohol, a suicide substrate for the alcohol dehydrogenase enzyme (EC.1.1.1.1), has been frequently used as a negative selection method for the isolation of alcohol dehydrogenase mutants in plants, animals and microorganisms. This approach led to the isolation of mutants that mapped to the ADH gene itself. We attempted to use allyl alcohol selection for the isolation of adh1 regulatory mutants in Arabidopsis. First we selected at plantlet level on ADH1–GUS transgenic plants. This enabled us to use GUS staining to discriminate between structural and regulatory mutants. Allyl alcohol selection of 50000 EMS-treated seeds did not yield any potential mutants. Secondly we selected EMS and -ray-treated seeds of a transgenic line transformed with an additional copy of the ADH1 gene including its own promoter. Fifteen allyl alcohol-resistant plants were selected from the mutagenized seed. Genetic analysis of three putative mutants (adr8, adr10, and adr15) indicated that the ADH1-null phenotype was due to monogenic trans-recessive mutations. But treatment with the demethylating agent 5-azacytidine and analysis of methylation levels of the ADH1 gene indicated that these mutant candidates have increased levels of methylation in the promoter and coding region of ADH1. These results suggest that the allyl alcohol resistance of adr8, adr10, and adr15 is due to silencing of ADH1 rather than to a mutation of a regulatory locus.  相似文献   

15.
Four D. melanogaster strains characterized by different alcohol dehydrogenase (ADH) activities were compared for their oviposition site preferences. The comparison was made between different temperatures (15 °C, 20 °C, 25 °C, 30 °C), day and night, replicates, and different concentrations in ethanol (00%, 5%, 10%, 15%) in the medium. All these factors influence behaviour. ADH activities seem to affect the oviposition site preferences as they directly affect ethanol tolerance and the ability to use alcohol as a source of metabolic energy.  相似文献   

16.
One cell strain with stable tolerance to allyl alcohol (AAr) was selected from 6 × 108 suspension cultured Nicotiana plumbaginifolia Viviani cells. The selected strain contained one-half the alcohol dehydrogenase (ADH) activity of the wild type (NP) due to the loss of two of three bands of ADH activity seen on starch gels following electrophoresis of wild-type cell extracts. Anaerobic conditions, simulated by not shaking the suspension cultures, increased the ADH specific activity to more than 3-fold the initial level in both strains but did not change the number of activity bands or the relative levels of activity. The cell strain with decreased ADH activity lost viability more rapidly than the wild type under the anaerobic conditions. The AAr cells were 10 times more tolerant to ethanol than the NP cells and were also somewhat more tolerant to acetaldehyde and antimycin A. The substrate specificities of the ADH enzymes from both strains were very similar. Further selection of AAr cells with allyl alcohol produced strains with even lower ADH activity and selection under anaerobic conditions produced strains with increased ADH activity. Genetic studies indicate that the N. plumbaginifolia ADH activity bands arise from subunits produced by two nonallelic genes. This is the first example of the use of allyl alcohol to select for decreased ADH using cultured plant cells.  相似文献   

17.
BACKGROUND: Maternal alcohol consumption has been associated with an increased risk of nonsyndromic oral clefts in some studies. Study of gene-environment interaction may provide insight into the reasons for their discrepancies observed. We focused on a polymorphism of the ADH1C gene (third gene of the class I alcohol dehydrogenase family), involved in the metabolism of ethanol and other alcohols. METHODS: Data come from a French case-control study (1998-2001), which tested the association between maternal alcohol consumption during the first trimester of pregnancy and the risk of nonsyndromic oral clefts (240 cases, 236 controls). A case-parent study design looked at the association with an ADH1C polymorphism (Ile349Val site) and potential gene-environment interaction effects. A log-linear model was used to distinguish the direct effect of the child's genotype from the maternally mediated effects. RESULTS: An increased risk of nonsyndromic oral clefts was observed for women who reported drinking alcohol during the first trimester, compared with women who did not. The mutated ADH1C allele carried by the child seemed to have a protective effect against the risk of oral clefts (RRone copy, 0.71; 95% confidence interval [CI], 0.50-1.02; RRtwo copies, 0.63; 95% CI, 0.3-1.3). The maternal genotype played a less important role than the child's, and its action remains unclear. No significant evidence of interaction effects between the ADH1C genotype and maternal alcohol consumption was observed. CONCLUSIONS: Because the ADH1C gene is involved in the metabolic pathways of many alcohols, we propose several hypotheses about the causal pathway, including ethanol oxidation activity and, more probably, retinol oxidation.  相似文献   

18.

Introduction

Health benefits of low-to-moderate alcohol consumption may operate through an improved lipid profile. A Mendelian randomization (MR) approach was used to examine whether alcohol consumption causally affects lipid levels.

Methods

This analysis involved 10,893 European Americans (EA) from the Atherosclerosis Risk in Communities (ARIC) study. Common and rare variants in alcohol dehydrogenase and acetaldehyde dehydrogenase genes were evaluated for MR assumptions. Five variants, residing in the ADH1B, ADH1C, and ADH4 genes, were selected as genetic instruments and were combined into an unweighted genetic score. Triglycerides (TG), total cholesterol, high-density lipoprotein cholesterol (HDL-c) and its subfractions (HDL2-c and HDL3-c), low-density lipoprotein cholesterol (LDL-c), small dense LDL-c (sdLDL-c), apolipoprotein B (apoB), and lipoprotein (a) (Lp(a)) levels were analyzed.

Results

Alcohol consumption significantly increased HDL2-c and reduced TG, total cholesterol, LDL-c, sdLDL-c, and apoB levels. For each of these lipids a non-linear trend was observed. Compared to the first quartile of alcohol consumption, the third quartile had a 12.3% lower level of TG (p < 0.001), a 7.71 mg/dL lower level of total cholesterol (p = 0.007), a 10.3% higher level of HDL2-c (p = 0.007), a 6.87 mg/dL lower level of LDL-c (p = 0.012), a 7.4% lower level of sdLDL-c (p = 0.037), and a 3.5% lower level of apoB (p = 0.058, poverall = 0.022).

Conclusions

This study supports the causal role of regular low-to-moderate alcohol consumption in increasing HDL2-c, reducing TG, total cholesterol, and LDL-c, and provides evidence for the novel finding that low-to-moderate consumption of alcohol reduces apoB and sdLDL-c levels among EA. However, given the nonlinearity of the effect of alcohol consumption, even within the range of low-to-moderate drinking, increased consumption does not always result in a larger benefit.  相似文献   

19.
Two of the three class I alcohol dehydrogenase (ADH) genes (ADH2 and ADH3) encode known functional variants that act on alcohol with different efficiencies. Variants at both these genes have been implicated in alcoholism in some populations because allele frequencies differ between alcoholics and controls. Specifically, controls have higher frequencies of the variants with higher Vmax (ADH2*2 and ADH3*1). In samples both of alcoholics and of controls from three Taiwanese populations (Chinese, Ami, and Atayal) we found significant pairwise disequilibrium for all comparisons of the two functional polymorphisms and a third, presumably neutral, intronic polymorphism in ADH2. The class I ADH genes all lie within 80 kb on chromosome 4; thus, variants are not inherited independently, and haplotypes must be analyzed when evaluating the risk of alcoholism. In the Taiwanese Chinese we found that, only among those chromosomes containing the ADH3*1 variant (high Vmax), the proportions of chromosomes with ADH2*1 (low Vmax) and those with ADH2*2 (high Vmax) are significantly different between alcoholics and controls (P<10-5). The proportions of chromosomes with ADH3*1 and those with ADH3*2 are not significantly different between alcoholics and controls, on a constant ADH2 background (with ADH2*1, P=.83; with ADH2*2, P=.53). Thus, the observed differences in the frequency of the functional polymorphism at ADH3, between alcoholics and controls, can be accounted for by the disequilibrium with ADH2 in this population.  相似文献   

20.
Kharchenko  N. K. 《Neurophysiology》2000,32(5):312-320
We studied in rats the effects of peroral glycine introduction on the contents of catecholamines (CA) – noradrenaline (NA) and dopamine (DA) – in different brain structures (hypothalamus, midbrain, and neocortex), as well as the levels of adrenaline (A), NA, and DA in the blood and the activity of alcohol-metabolizing (AlM) enzymes – alcohol dehydrogenase (AlDH) and aldehyde dehydrogenase (AdhDH) – in the blood serum. The experimental group included animals with a disposition to alcohol consumption under conditions of free choice for drinking between an alcohol solution and water. The measurements were performed in animals in the state of acute alcohol intoxication (i.p. injection of 4 g/kg ethanol) or chronic alcohol addiction (formed due to a 3-month-long free access to ethanol solution). Introduction of 150 mg/kg glycine increased the NA and DA contents (the latter, to a lesser extent) in all examined brain structures; the NA level in the blood increased, while that of DA decreased. Under conditions of acute alcohol intoxication and chronic alcohol addiction, the ratio of the activities of AlM enzymes, AdhDH/AlDH, was significantly shifted toward values indicative of accumulation of acetaldehyde (AcAdh) in the tissues. This was accompanied by noticeable modifications of the CA contents in the brain structures and blood of the rats; in particular, the [DA]/[NA] ratio in the brain significantly increased. Introduction of glycine under conditions of acute alcohol intoxication provided normalization of the AdhDH/AlDH activity ratio. Obvious trends toward normalization of the CA levels in the brain structures were also observed in both acute and chronic experiments. In the latter case, the glycine treatment course resulted in a drop in the daily alcohol consumption by the animals. We conclude that glycine, which binds AcAdh and modifies the metabolism of CA transmitters, exerts a significant corrective influence on the pathogenetic mechanisms of alcohol addiction. Our experimental findings demonstrate that there are contact points between the acetaldehyde and catecholamine hypotheses of pathogenesis of alcoholism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号