共查询到20条相似文献,搜索用时 15 毫秒
2.
The rod Outer Segment (OS) disc, an organelle devoid of mitochondria, is specialized in phototransduction, a process requiring a continual chemical energy supply. We have shown that OS discs express functional mitochondrial electron transport chains, F oF 1‐ATP synthase and the tricarboxylic acid cycle enzymes, all mitochondrial features. Here, we focus on oxygen consumption and adenosine triphosphate (ATP) synthesis by OS discs analysing electron transport chain I‐III‐IV and II‐II‐IV pathways, supported by reduced nicotinamide adenine dinucleotide and succinate, respectively. Interestingly, respiratory capacity of discs was measurable also in the presence of 3‐hydroxy‐butyrrate, a typical metabolic substrate for the brain. Data were supported by a two‐dimensional electrophoresis analyses conducted as our previous one, but focused to those mitochondrial proteins that are involved in oxidative phosphorylation. Carbonic anhydrase was also found active in OS discs. Moreover, colocalization of Rhodopsin with respiratory complex I and ATP synthase seems a further step in the characterization of some proteins typical of the mitochondrial inner membranes that are expressed in the rod discs. The existence of oxygen utilization in the outer retina, likely supplying ATP for phototransduction, may shed light on some retinal pathologies related to oxidative stress of the outer retina. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
3.
The development methodologies for the assessment of the protein content of biological samples have been in the ‘eye of the storm’ in proteomics for almost two decades. The work of Zerefos et al. is a continuation of this trend, focusing on analysis of urinary proteins using a combination of separation methodologies. In this work, the authors employ a previously analyzed control urine sample. Three different methodologies are presented, involving the combination of classical separation approaches, such as SDS-PAGE, preparative electrophoresis and liquid chromatography and standard mass spectrometer instrumentation. Several hundred proteins were reported following the application of a typical proteomics workflow and the use of a data meta-analysis platform to enhance the credibility of the final output. This is also established through cross-method (within this study) as well as cross-study (comparison of this with other main studies in the field) data comparisons. Emphasis is placed on the presentation of experimental identifiers as well as information provided at the peptide level. 相似文献
6.
A major challenge facing current mass spectrometry (MS)-based proteomics research is the large concentration range displayed in biological systems, which far exceeds the dynamic range of commonly available mass spectrometers. One approach to overcome this limitation is to improve online reversed-phase liquid chromatography (RP-LC) separation methodologies. LC mobile-phase modifiers are used to improve peak shape and increase sample load tolerance. Trifluoroacetic acid (TFA) is a commonly used mobile-phase modifier, as it produces peptide separations that are far superior to other additives. However, TFA leads to signal suppression when incorporated with electrospray ionization (ESI), and thus, other modifiers, such as formic acid (FA), are used for LC-MS applications. FA exhibits significantly less signal suppression, but is not as effective of a modifier as TFA. An alternative mobile-phase modifier is the combination of FA and ammonium formate (AF), which has been shown to improve peptide separations. The ESI-MS compatibility of this modifier has not been investigated, particularly for proteomic applications. This work compares the separation metrics of mobile phases modified with FA and FA/AF and explores the use of FA/AF for the LC-MS analysis of tryptic digests. Standard tryptic-digest peptides were used for comparative analysis of peak capacity and sample load tolerance. The compatibility of FA/AF in proteomic applications was examined with the analysis of soluble proteins from canine prostate carcinoma tissue. Overall, the use of FA/AF improved online RP-LC separations and led to significant increases in peptide identifications with improved protein sequence coverage. 相似文献
7.
Macromolecular protein complexes carry out many of the essential functions of cells, and many genetic diseases arise from disrupting the functions of such complexes. Currently, there is great interest in defining the complete set of human protein complexes, but recent published maps lack comprehensive coverage. Here, through the synthesis of over 9,000 published mass spectrometry experiments, we present hu.MAP, the most comprehensive and accurate human protein complex map to date, containing > 4,600 total complexes, > 7,700 proteins, and > 56,000 unique interactions, including thousands of confident protein interactions not identified by the original publications. hu.MAP accurately recapitulates known complexes withheld from the learning procedure, which was optimized with the aid of a new quantitative metric ( k‐cliques) for comparing sets of sets. The vast majority of complexes in our map are significantly enriched with literature annotations, and the map overall shows improved coverage of many disease‐associated proteins, as we describe in detail for ciliopathies. Using hu.MAP, we predicted and experimentally validated candidate ciliopathy disease genes in vivo in a model vertebrate, discovering CCDC138, WDR90, and KIAA1328 to be new cilia basal body/centriolar satellite proteins, and identifying ANKRD55 as a novel member of the intraflagellar transport machinery. By offering significant improvements to the accuracy and coverage of human protein complexes, hu.MAP ( http://proteincomplexes.org ) serves as a valuable resource for better understanding the core cellular functions of human proteins and helping to determine mechanistic foundations of human disease. 相似文献
8.
Introduction: Advances in mass spectrometry-based proteomic technologies are enhancing studies of viral pathogenesis. Identification and quantification of host and viral proteins and modifications in cells and extracellular fluids during infection provides useful information about pathogenesis, and will be critical for directing clinical interventions and diagnostics. Areas covered: Herein we review and discuss a broad range of global proteomic studies conducted during viral infection, including those of cellular responses, protein modifications, virion packaging, and serum proteomics. We focus on viruses that impact human health and focus on experimental designs that reveal disease processes and surrogate markers. Expert commentary: Global proteomics is an important component of systems-level studies that aim to define how the interaction of humans and viruses leads to disease. Viral-community resource centers and strategies from other fields (e.g., cancer) will facilitate data sharing and platform-integration for systems-level analyses, and should provide recommended standards and assays for experimental designs and validation. 相似文献
9.
One proposed strategy to suppress the proliferation of imatinib-resistant cells in chronic myeloid leukemia (CML) is to inhibit key proteins downstream of Bcr-Abl. The PI3K/Akt pathway is activated by Bcr-Abl and is specifically required for the growth of CML cells. To identify targets of this pathway, we undertook a proteomic screen and identified several proteins that differentially bind 14-3-3, dependent on Bcr-Abl kinase activity. An siRNA screen of candidates selected by bioinformatics analysis reveals cold-shock domain protein A (CSDA), shown previously to regulate cell cycle progression in epithelial cells, to be a positive regulator of proliferation in a CML cell line. We show that Akt can phosphorylate the serine 134 residue of CSDA but, downstream of Bcr-Abl activity, this modification is mediated through the activation of MEK/p90 ribosomal S6 kinase (RSK) signaling. Inhibition of RSK, similarly to treatment with imatinib, blocked proliferation specifically in Bcr-Abl-positive leukemia cell lines, as well as cells from CML patients. Furthermore, these primary CML cells showed an increase in CSDA phosphorylation. Expression of a CSDA phospho-deficient mutant resulted in the decrease of Bcr-Abl-dependent transformation in Rat1 cells. Our results support a model whereby phosphorylation of CSDA downstream of Bcr-Abl enhances proliferation in CML cells to drive leukemogenesis. 相似文献
10.
Here we show that the cell-surface expression of the alpha subunit of H(+)-ATP synthase is markedly increased during adipocyte differentiation. Treatment of differentiated adipocytes with small molecule inhibitors of H(+)-ATP synthase or antibodies against alpha and beta subunits of H(+)-ATP synthase leads to a decrease in cytosolic lipid droplet accumulation. Apolipoprotein A-I, which has been shown to bind to the ectopic beta-chain of H(+)-ATP synthase and inhibit the activity of cell-surface H(+)-ATP synthase, also was found to inhibit cytosolic lipid accumulation. These results suggest that the cell-surface H(+)-ATP synthase has a previously unsuspected role in lipid metabolism in adipocytes. 相似文献
11.
The rotation of an asymmetric core of subunits in F 0F 1-ATP synthases has been proposed as a means of coupling the exergonic transport of protons through F 0 to the endergonic conformational changes in F 1 required for substrate binding and product release. Here we review earlier evidence both for and against subunit rotation and then discuss our most recent studies using reversible intersubunit disulfide cross-links to test for rotation. We conclude that the subunit of F 1 rotates relative to the surrounding catalytic subunits during catalytic turnover by both soluble F 1 and membrane-bound F 0F 1. Furthermore, the inhibition of this rotation by the modification of F 0 with DCCD suggests that rotation in F 1 is obligatorily coupled to rotation in F 0 as an integral part of the coupling mechanism. 相似文献
12.
The yeast Ski complex assists the exosome in the degradation of mRNA. The Ski complex consists of three components; Ski2, Ski3, and Ski8, believed to be present in a 1:1:1 stoichiometry. Measuring the mass of intact isolated endogenously expressed Ski complexes by native mass spectrometry we unambiguously demonstrate that the Ski complex has a hetero-tetrameric stoichiometry consisting of one copy of Ski2 and Ski3 and two copies of Ski8. To validate the stoichiometry of the Ski complex, we performed tandem mass spectrometry. In these experiments one Ski8 subunit was ejected concomitant with the formation of a Ski2/Ski3/Ski8 fragment, confirming the proposed stoichiometry. To probe the topology of the Ski complex we disrupted the complex and mass analyzed the thus formed subcomplexes, detecting Ski8-Ski8, Ski2-Ski3, Ski8-Ski2, and Ski8-Ski8-Ski2. Combining all data we construct an improved structural model of the Ski complex. 相似文献
13.
The specific role of the chloride anion (Cl ?) as a signalling effector or second messenger has been increasingly recognized in recent years. It could represent a key factor in the regulation of cellular homeostasis. Changes in intracellular Cl ? concentration affect diverse cellular functions such as gene and protein expression and activities, post‐translational modifications of proteins, cellular volume, cell cycle, cell proliferation and differentiation, membrane potential, reactive oxygen species levels, and intracellular/extracellular pH. Cl ? also modulates functions in different organelles, including endosomes, phagosomes, lysosomes, endoplasmic reticulum, and mitochondria. A better knowledge of Cl ? signalling could help in understanding the molecular and metabolic changes seen in pathologies with altered Cl ? transport or under physiological conditions. Here we review relevant evidence supporting the role of Cl ? as a signalling effector. 相似文献
15.
Gelsolin is an actin-binding protein (82 kDa) consisting of six repeated segments (S1-S6), each approximately 120 residues long. It interacts with phospholipids and we previously showed that phosphatidylinositol 4,5-bisphosphate promotes phosphorylation of gelsolin by the tyrosine kinase c-Src. We used a combination of different methods, such as thin-layer chromatography and anti-phosphotyrosine-agarose immunoprecipitation of phosphopeptides combined with matrix assisted laser desorption ionization-mass spectrometry (MALDI-MS) and post source decay (PSD) analysis, to identify the phosphorylation sites in gelsolin. The major phosphorylation site (Tyr438) was located in subdomain 4 (S4). Phosphorylation of gelsolin in the gelsolin-actin2 complex was inhibited by 90%. Gelsolin phosphorylation by c-Src in the presence of lysophosphatidic acid also revealed Tyr438 as the most prominent site. Additional minor sites were found using the anti-phosphotyrosine bead immunoprecipitation method followed by MALDI-MS and PSD analysis. These sites, representing approximately 5% of the total phosphate incorporation, were identified as Tyr59, Tyr382, Tyr576, and Tyr624. Based on these results we generated antibodies which specifically recognize Tyr438 phosphorylated gelsolin. 相似文献
17.
Metastasis is the leading cause for mortality in melanoma patients. Here, an unbiased mass spectrometry‐based quantitative proteomic method is utilized to assess differential protein expression in a matched pair of primary/metastatic melanoma cell lines (i.e., WM‐115/WM‐266‐4) derived from the same patient. It is found that TBC1D7 is overexpressed in metastatic over primary melanoma cells, and elevated expression of TBC1D7 promotes the invasion of these melanoma cells in vitro, partly through modulating the activities of secreted matrix metalloproteinases 2 and 9. Additionally, interrogation of publicly available data show that higher mRNA expression of TBC1D7 predicts poorer survival in melanoma patients. Together, the results suggest TBC1D7 as a driver for melanoma cell invasion, which is an important element in melanoma metastasis. The proteomic data generated from this study may also be useful for exploring the roles of other proteins in melanoma metastasis. 相似文献
18.
Age‐related cataractogenesis is associated with disulfide‐linked high molecular weight (HMW) crystallin aggregates. We recently found that the lens crystallin disulfidome was evolutionarily conserved in human and glutathione‐depleted mouse (LEGSKO) cataracts and that it could be mimicked by oxidation in vitro ( Mol. Cell Proteomics, 14, 3211‐23 (2015)). To obtain a comprehensive blueprint of the oxidized key regulatory and cytoskeletal proteins underlying cataractogenesis, we have now used the same approach to determine, in the same specimens, all the disulfide‐forming noncrystallin proteins identified by ICAT proteomics. Seventy‐four, 50, and 54 disulfide‐forming proteins were identified in the human and mouse cataracts and the in vitro oxidation model, respectively, of which 17 were common to all three groups. Enzymes with oxidized cysteine at critical sites include GAPDH (hGAPDH, Cys247), glutathione synthase (hGSS, Cys294), aldehyde dehydrogenase (hALDH1A1, Cys126 and Cys186), sorbitol dehydrogenase (hSORD, Cys140, Cys165, and Cys179), and PARK7 (hPARK7, Cys46 and Cys53). Extensive oxidation was also present in lens‐specific intermediate filament proteins, such as BFSP1 and BFSP12 (hBFSP1 and hBFSP12, Cys167, Cys65, and Cys326), vimentin (mVim, Cys328), and cytokeratins, as well as microfilament and microtubule filament proteins, such as tubulin and actins. While the biological impact of these modifications for lens physiology remains to be determined, many of these oxidation sites have already been associated with either impaired metabolism or cytoskeletal architecture, strongly suggesting that they have a pathogenic role in cataractogenesis. By extrapolation, these findings may be of broader significance for age‐ and disease‐related dysfunctions associated with oxidant stress. 相似文献
19.
To investigate whether the action potential duration (APD) or resting tension was dependent on global ATP content, and whether they were preferentially dependent on glycolytic ATP, APD and resting tension were measured under various metabolic inhibition with corresponding measurement of ATP content in guinea pig ventricular muscles. Oxidative phosphorylation was inhibited by either hypoxic perfusion, the perfusion of sodium cyanide, or 2,4-dinitrophenol. Glycolysis was blocked by the perfusion of iodoacetic acid, and hypoxia with variable glycolytic activities was achieved by hypoxic perfusion in the presence of glucose (5, 10, and 50 mM). APD began to decrease when ATP content decreased to less than 3 mM/kg w.w. from the control level of 4.35 mM/kg w.w. APD shortened significantly and resting tension increased steeply, when ATP content decreased below 1 mM/kg w.w. The dependence of APD and the increase in resting tension on ATP content was not affected by the mode of metabolic block, that is, the inhibition of glycolysis and/or oxidative phosphorylation. Though other factors can affect APD and resting tension, we found no evidence of functional ATP compartmentation, with respect to APD and the increase in resting tension during metabolic inhibition. 相似文献
20.
Abstract Oxidative stress imparted by reactive oxygen species (ROS) is implicated in the pathogenesis of Alzheimer's disease (AD). Given that amyloid beta (Abeta) itself generates ROS that can directly damage proteins, elucidating the functional consequences of protein oxidation can enhance our understanding of the process of Abeta-mediated neurodegeneration. In this study, we employed a biocytin hydrazide/streptavidin affinity purification methodology followed by two-dimensional liquid chromatography tandem mass spectrometry coupled with SEQUEST bioinformatics technology, to identify the targets of Abeta-induced oxidative stress in cultured primary cortical mouse neurons. The Golgi-resident enzyme glucuronyltransferase (GlcAT-P) was a carbonylated target that we investigated further owing to its involvement in the biosynthesis of HNK-1, a carbohydrate epitope expressed on cell adhesion molecules and implicated in modulating the effectiveness of synaptic transmission in the brain. We found that increasing amounts of Abeta, added exogenously to the culture media of primary cortical neurons, significantly decreased HNK-1 expression. Moreover, in vivo, HNK-1 immunoreactivity was decreased in brain tissue of a transgenic mouse model of AD. We conclude that a potential consequence of Abeta-mediated oxidation of GlcAT-P is impairment of its enzymatic function, thereby disrupting HNK-1 biosynthesis and possibly adversely affecting synaptic plasticity. Considering that AD is partly characterized by progressive memory impairment and disordered cognitive function, the data from our in vitro studies can be reconciled with results from in vivo studies that have demonstrated that HNK-1 modulates synaptic plasticity and is critically involved in memory consolidation. 相似文献
|