共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
《Expert review of proteomics》2013,10(6):907-917
Creutzfeldt–Jakob disease (CJD) is a rare fatal neurodegenerative disease belonging to the group of transmissible spongiform encephalopathies or prion diseases. The agent responsible for the disease is the prion protein in an altered conformational form. Although there have been countless studies performed on the prion protein, the mechanisms that induce the structural change of the normal protein, and the harmful action the altered protein has on nervous cells, are still not fully understood. Furthermore, the final diagnosis for CJD can only occur with a postmortem histopathological analysis of the brain; the antemortem diagnosis is only possible for some specific CJD forms. Finally, there is no current treatment able to stop or delay the progression of the disease. Studies directed at resolving these issues are, therefore, extremely relevant. The proteomic approach is a very good strategy to be applied in such contexts because it allows easy identification of proteins and peptides possibly involved in the disease processes. In this article, the existing data regarding prion infection, biomarkers for CJD diagnosis and the use of several modern proteomic technologies for the identification of new cerebrospinal fluid polypeptides involved in CJD are reviewed. 相似文献
3.
《朊病毒》2013,7(4):237-243
ABSTRACTA major unsolved issue of prion biology is the existence of multiple strains with distinct phenotypes and this strain phenomenon is postulated to be associated with the conformational diversity of the abnormal prion protein (PrPSc). Real-time quaking-induced conversion (RT-QUIC) assay that uses Escherichia coli-derived recombinant prion protein (rPrP) for the sensitive detection of PrPSc results in the formation of rPrP-fibrils seeded with various strains. We demonstrated that there are differences in the secondary structures, especially in the β-sheets, and conformational stability between 2 rPrP-fibrils seeded with either Chandler or 22L strains in the first round of RT-QUIC. In particular, the differences in conformational properties of these 2 rPrP-fibrils were common to those of the original PrPSc. However, the strain specificities of rPrP-fibrils seen in the first round were lost in subsequent rounds. Instead, our findings suggest that nonspecific fibrils became the major species, probable owing to their selective growth advantage in the RT-QUIC. This study shows that at least some strain-specific conformational properties of the original PrPSc can be transmitted to rPrP-fibrils in vitro, but further conservation appears to require unknown cofactors or environmental conditions or both. 相似文献
4.
5.
6.
7.
Deleault NR Dolph PJ Feany MB Cook ME Nishina K Harris DA Supattapone S 《Journal of neurochemistry》2003,85(6):1614-1623
A wealth of evidence supports the view that conformational change of the prion protein, PrPC, into a pathogenic isoform, PrPSc, is the hallmark of sporadic, infectious, and inherited forms of prion disease. Although the central role played by PrPSc in the pathogenesis of prion disease is appreciated, the cellular mechanisms that recognize PrPSc and modulate its production, clearance, and neural toxicity have not been elucidated. To address these questions, we used a tissue-specific expression system to express wild-type and disease-associated PrP molecules heterologously in Drosophila melanogaster. Our results indicate that Drosophila brain possesses a specific and saturable mechanism that suppresses the accumulation of PG14, a disease-associated insertional PrP mutant. We also found that wild-type PrP molecules are maintained in a detergent-soluble conformation throughout life in Drosophila brain neurons, whereas they become detergent-insoluble in retinal cells as flies age. PG14 protein expression in Drosophila eye did not cause retinal pathology. Our work reveals the presence of mechanisms in neurons that specifically counterbalance the production of misfolded PrP conformations, and provides an opportunity to study these processes in a model organism amenable to genetic analysis. 相似文献
8.
9.
Aberrant metal binding by prion protein in human prion disease 总被引:9,自引:0,他引:9
Wong BS Chen SG Colucci M Xie Z Pan T Liu T Li R Gambetti P Sy MS Brown DR 《Journal of neurochemistry》2001,78(6):1400-1408
Human prion diseases are characterized by the conversion of the normal prion protein (PrP(C)) into a pathogenic isomer (PrP(Sc)). Distinct PrP(Sc) conformers are associated with different subtypes of prion diseases. PrP(C) binds copper and has antioxidation activity. Changes in metal-ion occupancy can lead to significant decline of the antioxidation activity and changes in conformation of the protein. We studied the trace element status of brains from patients with sporadic Creutzfeldt-Jakob disease (sCJD). We found a decrease of up to 50% of copper and an increase in manganese of approximately 10-fold in the brain tissues from sCJD subjects. We have also studied the metal occupancy of PrP in sCJD patients. We observed striking elevation of manganese and, to a lesser extent, of zinc accompanied by significant reduction of copper bound to purified PrP in all sCJD variants, determined by the PrP genotype and PrP(Sc) type, combined. Both zinc and manganese were undetectable in PrP(C) preparations from controls. Copper and manganese changes were pronounced in sCJD subjects homozygous for methionine at codon 129 and carrying PrP(Sc) type-1. Anti-oxidation activity of purified PrP was dramatically reduced by up to 85% in the sCJD variants, and correlated with increased in oxidative stress markers in sCJD brains. These results suggest that altered metal-ion occupancy of PrP plays a pivotal role in the pathogenesis of prion diseases. Since the metal changes differed in each sCJD variants, they may contribute to the diversity of PrP(Sc) and disease phenotype in sCJD. Finally, this study also presented two potential approaches in the diagnosis of CJD; the significant increase in brain manganese makes it potentially detectable by MRI, and the binding of manganese by PrP in sCJD might represent a novel diagnostic marker. 相似文献
10.
新型冠状病毒肺炎(coronavirus disease 2019,COVID-19)是一种由严重急性呼吸综合征冠状病毒2 (severe acute respiratory syndrome coronavirus 2,SARS-CoV-2)引发的传染病。此种病毒传染性强、传播速度快,对全球人民的身体健康和生命安全造成严重威胁。蛋白质组学技术以其高通量、高灵敏度的特点,在疾病生物标志物的发现、分子机制研究及治疗靶点研究中扮演着重要角色,并被广泛应用于COVID-19的研究中。本文介绍了SARS-CoV-2的基因组结构及病毒感染过程,总结了目前常用的基于质谱的蛋白质组学研究技术,重点综述了蛋白质组学技术在COVID-19生物标志物的发现、分子机制研究和药物治疗靶标研究中的应用进展,最后展望了蛋白质组学的未来发展方向,以期能够有助于推动蛋白质组学技术在COVID-19精准诊断和治疗中的发展。 相似文献
11.
《Expert review of proteomics》2013,10(6):919-929
Alzheimer’s disease is a progressive neurodegenerative disorder and the most common form of dementia. The disease is confirmed by the presence of neuritic plaques and neurofibrillary tangles in the cerebral cortex at autopsy, but the accuracy of antemortem diagnosis, especially at the early stages of the disease, is not ideal. Thus, there is a substantial need for the discovery and validation of diagnostic biomarkers. Many Alzheimer’s disease biomarker discovery studies emphasize the analysis of cerebrospinal fluid (CSF) because of its close association with the brain. Here, we review recent mass spectrometry-based studies of Alzheimer’s disease CSF, and additionally discuss issues associated with CSF in proteomics studies. 相似文献
12.
13.
Proteomic profiling of cerebrospinal fluid identifies biomarkers for amyotrophic lateral sclerosis 总被引:4,自引:0,他引:4
Ranganathan S Williams E Ganchev P Gopalakrishnan V Lacomis D Urbinelli L Newhall K Cudkowicz ME Brown RH Bowser R 《Journal of neurochemistry》2005,95(5):1461-1471
Amyotrophic lateral sclerosis (ALS) is characterized by degeneration of motor neurons. We tested the hypothesis that proteomic analysis will identify protein biomarkers that provide insight into disease pathogenesis and are diagnostically useful. To identify ALS specific biomarkers, we compared the proteomic profile of cerebrospinal fluid (CSF) from ALS and control subjects using surface-enhanced laser desorption/ionization-time of flight mass spectrometry (SELDI-TOF-MS). We identified 30 mass ion peaks with statistically significant (p < 0.01) differences between control and ALS subjects. Initial analysis with a rule-learning algorithm yielded biomarker panels with diagnostic predictive value as subsequently assessed using an independent set of coded test subjects. Three biomarkers were identified that are either decreased (transthyretin, cystatin C) or increased (carboxy-terminal fragment of neuroendocrine protein 7B2) in ALS CSF. We validated the SELDI-TOF-MS results for transthyretin and cystatin C by immunoblot and immunohistochemistry using commercially available antibodies. These findings identify a panel of CSF protein biomarkers for ALS. 相似文献
14.
现代质谱技术在蛋白质组学中的应用及其最新进展 总被引:1,自引:0,他引:1
简述了蛋白质组学的概念、内容和意义,重点综述了现代质谱技术在蛋白质组学中的应用,主要包括蛋白质和肽段的鉴定和定量、蛋白质翻译后修饰的鉴定和蛋白质间相互作用的检测等。随着新的高质量精确度、分辨率、灵敏度和通量质谱仪的出现,现代质谱技术在蛋白质组学中的应用将越来越广泛,并给蛋白质组学研究带来新的机遇。 相似文献
15.
Kuczius T Kleinert J Karch H Sibrowski W Kelsch R 《Journal of cellular biochemistry》2011,112(3):954-962
Prion diseases are characterized by high accumulation of infectious prion proteins (PrP(Sc)) in brains. PrP(Sc) are propagated by the conversion of host-encoded cellular prion proteins (PrP(C)) which are essential for developing the disease but are heterogeneously expressed in brains. The disease can be transmitted to humans and animals through blood and blood products, however, little attention has been given to molecular characterization of PrP(C) in blood cells. In this presented study, we characterized phenotypically PrP(C) of platelets (plt) and characterized the proteins regarding their glycobanding profiles by quantitative immunoblotting using a panel of monoclonal antibodies. The glycosylation patterns of plt and brain PrP(C) were compared using the ratios of di-, mono-, and non-glycosylated prions. The detergent solubility of plt and brain PrP(C) was also analyzed. The distinct banding patterns and detergent solubility of plt PrP(C) differed clearly from the glycosylation profiles and solubility characteristics of brain PrP(C). Plt PrP(C) exhibited single or only few prion protein types, whereas brain PrP(C) showed more extensive banding patterns and lower detergent solubility. Plt PrP(C) are post-translational modified differently from PrP(C) in brain. These findings suggest other or less physiological functions of plt PrP(C) than in brain. 相似文献
16.
17.
蛋白质组学发展至今已日趋成熟,在生物医药相关领域研究中的应用显著增加,与之相关的样品制备技术、蛋白定量方法及先进的质谱仪器也得到了快速发展。网络药理学是近年来提出的新药发现新策略,是药理学的新兴分支学科,它从整体的角度探索药物与疾病的关联性,发现药物靶标,指导新药研发。将蛋白质组学技术应用于网络药理学研究,能使研究人员系统地预测和解释药物的作用,加速药物靶点的确认,从而设计多靶点药物或药物组合。综述了蛋白质组学技术的新近研究进展,并简单概述了其在网络药理学中的应用。 相似文献
18.
生物质谱技术是蛋白质组学的支撑技术.详细论述了质谱技术的分类与基本分析原理,重点论述了质谱技术的发展变化,包括基质辅助激光解吸飞行时间质谱技术,电喷雾质谱技术,MALDI-Q-TOF和MAL-DI-TOF-TOF等质谱技术,以及质谱技术在蛋白质组学研究中的应用与未来的发展和挑战. 相似文献
19.
帕金森病(Parkinson′s disease,PD)是一种中枢神经系统慢性进展性疾病.本研究采用双向凝胶电泳(two-dimensional gel electrophoresis,2-DE)分离脑脊液(cerebrospinal fluid,CSF)蛋白,获得2-DE图谱,通过ImageMaster 2D Elite软件分析寻找两组的差异蛋白点.结果显示,PD患者CSF中有4个蛋白点丰度下降,22个蛋白点丰度上升.还利用电喷雾质谱(electrospray ionization-tandem mass spectrometric,ESI-MS)对差异蛋白点进行鉴定,发现丰度上升的蛋白点有电压依赖性钙通道α2/δ1亚基,结合珠蛋白,β2-微球蛋白和阿朴脂蛋白A-IV前体,丰度下降的蛋白点为转铁蛋白和转甲状腺蛋白.研究发现,PD患者与对照组CSF蛋白质表达有明显差异,对差异蛋白进行质谱鉴定并了解它们的功能,为以后进一步研究他们在PD发病机制和病程进展中的作用奠定基础. 相似文献
20.
《Bioorganic & medicinal chemistry》2014,22(6):1960-1972
Purpose: Previous studies showed that lowering PrPC concomitantly reduced PrPSc in the brains of mice inoculated with prions. We aimed to develop assays that measure PrPC on the surface of human T98G glioblastoma and IMR32 neuroblastoma cells. Using these assays, we sought to identify chemical hits, confirmed hits, and scaffolds that potently lowered PrPC levels in human brains cells, without lethality, and that could achieve drug concentrations in the brain after oral or intraperitoneal dosing in mice. Methods: We utilized HTS ELISA assays to identify small molecules that lower PrPC levels by ⩾30% on the cell surface of human glioblastoma (T98G) and neuroblastoma (IMR32) cells. Results: From 44,578 diverse chemical compounds tested, 138 hits were identified by single point confirmation (SPC) representing 7 chemical scaffolds in T98G cells, and 114 SPC hits representing 6 scaffolds found in IMR32 cells. When the confirmed SPC hits were combined with structurally related analogs, >300 compounds (representing 6 distinct chemical scaffolds) were tested for dose–response (EC50) in both cell lines, only studies in T98G cells identified compounds that reduced PrPC without killing the cells. EC50 values from 32 hits ranged from 65 nM to 4.1 μM. Twenty-eight were evaluated in vivo in pharmacokinetic studies after a single 10 mg/kg oral or intraperitoneal dose in mice. Our results showed brain concentrations as high as 16.2 μM, but only after intraperitoneal dosing. Conclusions: Our studies identified leads for future studies to determine which compounds might lower PrPC levels in rodent brain, and provide the basis of a therapeutic for fatal disorders caused by PrP prions. 相似文献