首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Preeclampsia (PE) is a common, potentially life‐threatening pregnancy syndrome triggered by placental factors released into the maternal circulation, resulting in maternal vascular dysfunction along with activated inflammation and coagulation. Currently there is no screening test for PE. We sought to identify differentially expressed plasma proteins in women who subsequently develop PE that may perform as predictive biomarkers. In seven DIGE experiments, we compared the plasma proteome at 20 wk gestation in women who later developed PE with an appropriate birth weight for gestational age baby (n=27) or a small for gestational age baby (n=12) to healthy controls with uncomplicated pregnancies (n=57). Of the 49 differentially expressed spots associated with PE‐appropriate for gestational age, PE‐small for gestational age or both (p<0.05, false discovery rate corrected), 39 were identified by LC‐MS/MS. Two protein clusters that accurately (>90%) classified women at risk of developing PE were identified. Immunoblots confirmed the overexpression of fibrinogen γ chain and α‐1‐antichymotrypsin in plasma prior to PE. The proteins identified are involved in lipid metabolism, coagulation, complement regulation, extracellular matrix remodeling, protease inhibitor activity and acute‐phase responses, indicating novel synergism between pathways involved in the pathogenesis of PE. Our findings are remarkably similar to recently identified proteins complexed to high‐density lipoprotein and linked to cardiovascular disease.  相似文献   

2.

Objective

To investigate the relation of circulating four adipokines (apelin, vaspin, visfatin, adiponectin) with markers of insulin sensitivity in large for gestational age (LGA) infants.

Patients and methods

Forty LGA infants (20 LGA born from diabetic mothers and 20 LGA born from non-diabetic mothers) and 34 appropriate for gestational age (AGA) infants were recruited. Hyperinsulinism and insulin resistance was evaluated using the homeostasis model assessment (HOMA-IR), fasting glucose-to-insulin ratio (FGIR), quantitative insulin-sensitivity check index (QUICK-I) from fasting samples. Plasma adiponectin and vaspin levels were determined by radioimmunoassay. Determination of visfatin and apelin levels was performed by enzyme immunoassay.

Results

HOMA-IR, apelin and visfatin levels (p < 0.001, p < 0.001, p < 0.001, respectively) were significantly elevated and adiponectin levels, FGIR and QUICK-I values. (p < 0.001, p < 0.001, p < 0.05, respectively) were significantly lower in the LGA group. Vaspin levels were higher in the LGA group than AGA neonates without a significance. The LGA infants with diabetic mother had significantly higher visfatin, apelin, HOMA-IR values, fasting insulin levels and significantly lower adiponectin, FGIR, QUICK-I values. Apelin and visfatin were correlated positively, and adiponectin was correlated negatively with birthweight, HOMA-IR values and fasting insulin levels.

Conclusion

Based on the findings of this study, it is too difficult to explain relation between birthweight and these adipocytokines, but findings of high insulin, HOMA-IR, visfatin, apelin and low adiponectin levels in the LGA neonates showed that these adipocytokines can be used as a good predictor for metabolic syndrome.  相似文献   

3.
Human angiogenin is a potent inducer of neovascularization. There is a strong evidence to suggest that it might be involved in morphological and angiogenic changes in the placenta, that are necessary for a successful fetal outcome during pregnancy. However, its precise role in the pathogenesis of abnormal pregnancies is yet unknown. Intrauterine growth retardation (IUGR), an abnormal pregnancy is not a specific disease entity per se, but rather a manifestation of many possible fetal and maternal disorders. In this study, we demonstrated, for the first time, that placental explants in vitro secrete significantly elevated levels of angiogenin in placental tissues from patients with IUGR. We also observed enhanced mRNA expression in placenta from these patients. In addition, using the immunohistochemical methods, we observed identical staining of angiogenin to villous syncytiotrophobalst and fetal endothelial cells in both IUGR and normal placenta. Functionally active placental explants were used to detect immunoreactive angiogenin in conditioned media of all the samples from IUGR placenta and normal term group. The mean levels of angiogenin secreted by IUGR placenta were 1.4-, 1.6-, and 1.3-fold higher (P < 0.01) than normal term samples at 24, 48, and 72 hr of culture, respectively. Expression profiles of angiogenin from term and IUGR cases are in agreement with its mRNA levels and immunoblot analysis. In conclusion, the significant elevated levels of angiogenin in IUGR placenta may provide a molecular mechanism for the abnormal placental development.  相似文献   

4.
BackgroundStudies focused on independent effects of metals on small for gestational age, failing to account for potential interdependence among metals.MethodsIn this case-control study, we selected 187 pregnant women and 187 matched controls from the First Hospital of Shanxi Medical University. Determination of 12 elements in the venous blood of pregnant women before delivery by ICP-MS. Logistic regression, weighted quantile sum regression (WQSR) and Bayesian kernel machine regression (BKMR) were used to estimate the overall effect and identify important mixture components that drive the associations with SGA.ResultsAn increased risk of SGA was associated with As (OR= 1.06,95%CI: 1.01,1.12), Cd (OR= 1.24,95%CI: 1.04,1.47) and Pb (OR= 1.05,95%CI: 1.02,1.08), while Zn (OR= 0.58,95%CI: 0.45,0.76) and Mn (OR= 0.97,95%CI: 0.94,0.99) were protective factors for SGA. In the WQSR positive model, the mixture of heavy metals has a positive combined effect on SGA (OR= 1.74,95%CI: 1.15, 2.62), with Sb and Cd having the highest weights. The BKMR models confirmed that the metal mixture was associated with decreased risk of SGA when the concentration of 12 metals was between the 30th percentile and the 65th percentile, and Zn and Cd had the greatest independent effect. Zn and SGA may not be linearly correlated, higher Zn level may reduce the effect of Cd on the risk of SGA.ConclusionsOur study suggested that exposure to multiple metals was associated with risk of SGA, and the observed association with multiple metals was dominated by Zn, Cd. Sb exposure during pregnancy may also increase the risk of SGA.  相似文献   

5.
Objective: Oxidative stress, a common feature in cardiovascular and renal disease is associated with the causes and consequences of fetal growth restriction. Hence, renal redox status is likely an early determinant of morbidity in small-for-gestational-age (SGA) infants. In this study, we examined renal oxidative stress in naturally-farrowed SGA newborn pigs.

Methods: We studied SGA newborn pigs with 52% less body weight and 59% higher brain/liver weight ratio compared with their appropriate-for-gestational-age (AGA) counterparts.

Results: The kidneys of the SGA newborn pigs weighed 56% less than the AGA group. The glomerular cross-sectional area was also smaller in the SGA group. SGA newborn pigs exhibited increased renal lipid peroxidation, reduced kidney and urine total antioxidant capacity, and increased renal nitrotyrosine immunostaining. Whereas the protein expression level of NADPH oxidase (NOX)2 was unchanged, NOX4 expression was significantly higher in SGA kidneys. The level of serum potassium was lower, but serum sodium and creatinine were similar in SGA compared with AGA newborn pigs. The serum concentrations of C‐reactive protein and NGAL, the biomarkers of inflammation and early acute kidney injury were significantly elevated in the SGA group.

Conclusion: Early induction of oxidative stress may contribute to the onset of kidney injury in growth-restricted infants.  相似文献   


6.
In order to obtain timed pregnancies in squirrel monkeys and to monitor development of the size of the fetus and its brain, tests were made of various combinations of vaginal examination, bioassay of chorionic gonadotropin (CG), measurement of maternal body weight and uterine fundus height during pregnancy, and determination of fetal biparietal diameter by ultrasonography and magnetic resonance imaging. The usefulness of these methods in developmental and teratological studies is discussed.  相似文献   

7.

Background

Accumulating evidence reveals that intrauterine growth retardation (IUGR) can cause varying degrees of pulmonary arterial hypertension (PAH) later in life. Moreover, epigenetics plays an important role in the fetal origin of adult disease. The goal of this study was to investigate the role of epigenetics in the development of PAH following IUGR.

Methods

The IUGR rats were established by maternal undernutrition during pregnancy. Pulmonary vascular endothelial cells (PVEC) were isolated from the rat lungs by magnetic-activated cell sorting (MACS). We investigated epigenetic regulation of the endothelin-1 (ET-1) gene in PVEC of 1-day and 6-week IUGR rats, and response of IUGR rats to hypoxia.

Results

The maternal nutrient restriction increased the histone acetylation and hypoxia inducible factor-1α (HIF-1α) binding levels in the ET-1 gene promoter of PVEC in IUGR newborn rats, and continued up to 6 weeks after birth. These epigenetic changes could result in an IUGR rat being highly sensitive to hypoxia later in life, causing more significant PAH or pulmonary vascular remodeling.

Conclusions

These findings suggest that epigenetics is closely associated with the development of hypoxic PAH following IUGR, further providing a new insight for improved prevention and treatment of IUGR-related PAH.  相似文献   

8.
9.
Intrauterine growth restriction (IUGR) affects approximately 10% of human pregnancies globally and has immediate and life‐long consequences for offspring health. However, the mechanisms underlying the pathogenesis of IUGR and its association with later health and disease outcomes are poorly understood. To address these knowledge gaps, the use of experimental animals is critically important. Since the 50's different environmental, pharmacological, and surgical manipulations have been performed in the rabbit to improve our knowledge of the control of fetal growth, fetal responses to IUGR, and mechanisms by which offspring may be programmed by an adverse gestational environment. The purpose of this review is therefore to summarize the utility of the rabbit as a model for IUGR research. It first summarizes the knowledge of prenatal and postnatal development in the rabbit and how these events relate to developmental milestones in humans. It then describes the methods used to induce IUGR in rabbits and the knowledge gained about the mechanisms determining prenatal and postnatal outcomes of the offspring. Finally, it discusses the application of state of the art approaches in the rabbit, including high‐resolution ultrasound, magnetic resonance imaging, and gene targeting, to gain a deeper integrative understanding of the physiological and molecular events governing the development of IUGR. Overall, we hope to engage and inspire investigators to employ the rabbit as a model organism when studying pregnancy physiology so that we may advance our understanding of mechanisms underlying IUGR and its consequences in humans and other mammalian species.  相似文献   

10.
Healthy feto-maternal communication is critical during pregnancy and is orchestrated by the placenta. Dysfunction of the placenta leads to fetal growth complications; however, the underlying biological mechanisms have yet to be fully elucidated. Circulating extracellular microRNAs (exmiRNAs) in the blood have been implicated in cell-to-cell communication. Therefore, exmiRNAs may provide useful biological information about communication between the mother, the fetus, and the placenta during pregnancy. We used logistic regression to determine the association of exmiRNAs with abnormal fetal growth by comparing mothers of infants classified as small-for-gestational age (SGA) (n = 36) and large-for-gestational age (LGA) (n = 13) to appropriate-for-gestational age (AGA), matched by gestational age at delivery and infant sex. In addition, we used linear regression to determine associations between exmiRNAs and birth weight-for-gestational age (BWGA) z-score (n = 100), adjusting for maternal age, body mass index, and parity. We found that higher levels of miR-20b-5p, miR-942-5p, miR-324-3p, miR-223-5p, and miR-127-3p in maternal serum were associated with lower odds for having a SGA vs. AGA infant, and higher levels of miR-661, miR-212-3p, and miR-197-3p were associated with higher odds for having a LGA vs. AGA infant. We also found associations between miR-483-5p, miR-10a-5p, miR-204-5p, miR-202-3p, miR-345-5p, miR-885-5p, miR-127-3p, miR-148b-3p, miR-324-3p, miR-1290, miR-597-5p, miR-139-5p, miR-215-5p, and miR-99b-5p and BWGA z-score. We also found sex-specific associations with exmiRNAs and fetal growth. Our findings suggest that exmiRNAs circulating in maternal blood at second trimester are associated with fetal growth. Validation of our findings may lead to the development of minimally-invasive biomarkers of fetal growth during pregnancy.  相似文献   

11.
Noeker M 《Hormone research》2005,64(Z3):83-88
Interest in the neurocognitive and psychosocial outcomes in children who are born small for gestational age (SGA) has increased since the recent approval of growth hormone (GH) therapy in this indication. The objective of GH treatment in SGA children is to provide a symptomatic treatment for growth retardation. From a patient perspective, the ultimate goals of GH therapy are the reduction in the present or future risk of neurocognitive, psychological, social or occupational impairment, not the accompanying improvements in growth velocity and final height per se. Therefore, from a scientific perspective, neurocognitive and psychosocial endpoints become relevant domains of assessment to determine the final treatment benefit experienced by the patient born SGA. This article reviews recent available studies on developmental risks in SGA, and then transforms the empirical findings into an integrated conceptual framework on the sources and mediators of neurocognitive and psychosocial outcomes in intrauterine growth retardation and SGA. This framework depicts two distinct therapeutic pathways by which GH therapy may improve neurocognitive and behavioural outcomes. The first ('traditional') pathway is the prevention of exposure to short-stature-related stressors via an improvement in growth velocity and final height. The second pathway refers to potential metabolic, and thus neurotropic and psychotropic, effects of GH binding at receptors in the central nervous system, thus changing neuronal activity. To date, the existence and potential mechanisms of such physiologically and not psychologically mediated effects of GH on neurocognitive functioning in SGA patients remain hypothetical.  相似文献   

12.
Stewart ([1979] Essentials of Forensic Anthropology, pp. 128–131) cites five regression formulae presented by Olivier and Pineau ([1960] Ann. Méd. Lég. 40:141–144) for estimation of fetal stature from diaphyseal length. Of these formulae, one appears problematic: the formula for calculation of stature from the radius yields values which suggest the fetus has a much greater crown-heel (CH) length than do the remaining formulae for the diaphyses of other long bones. Moreover, when this stature estimate, so derived, is then inserted into these authors' earlier general formula for estimation of lunar age (Olivier and Pineau [1958] Arch. Anat. 6:21–28) the error is compounded. A fetus is now indicated to be nearly a trimester older than when the CH lengths obtained by the other long bone formulae are used. Accordingly, we believe this particular formula, unlike the others, is incorrect and should not be used to estimate lunar age from fetal remains. © 1996 Wiley-Liss, Inc.  相似文献   

13.
Reduced fetal growth associates with endothelial dysfunction and cardiovascular risk in both young and adult offspring and the nitric oxide (NO) system has been implicated in these effects. Epigenetic processes are likely to underlie such effects, but there is to date no evidence that endothelial dysfunction in early life results from epigenetic processes on key genes in the NO system, such as NOS3 (eNOS) and ARG2 (arginase-2). We determined basal DNA methylation status in NOS3 and ARG2 promoters, and DNA methyltransferase 1 (DNMT1) effect on eNOS and arginase-2 expression using human endothelial cells isolated from umbilical arteries (HUAEC) and veins (HUVEC) from control and intrauterine growth restricted (IUGR) fetuses. Compared with cells from control pregnancies, eNOS protein and mRNA levels were increased in HUAEC, but decreased in HUVEC, from IUGR, while arginase-2 levels were increased in IUGR-HUVEC. The NOS3 promoter showed a decrease in DNA methylation at CpG -352 in IUGR-HUAEC, and an increase in IUGR-HUVEC, when compared with control cells. Methylation in the hypoxia response element of the NOS3 promoter was increased in IUGR-HUAEC and decreased in HUVEC. Methylation in the AGR2 promoter in IUGR-HUVEC was decreased in a putative HRE, and without changes in IUGR-HUAEC. Silencing of DNMT1 expression normalized eNOS expression in IUGR endothelial cells, and restored the normal response to hypoxia in HUVEC, without effects on arginase-2. This data suggest that eNOS expression in IUGR-derived endothelial cells is programmed by altered DNA methylation, and can be reversed by transient silencing of the DNA methylation machinery.  相似文献   

14.
Ultrasonographic examination of the equine fetus in mid-late gestation is usually performed only if there are concerns about fetal or maternal health. Even then it is difficult to determine whether development is ‘normal’ for gestational age because the reference values include considerable error margins. This study examined maternal factors that influence fetal growth with the aim of producing more precise late gestation fetal growth curves for Dutch Warmblood horses. Fetal development was monitored at 2-week intervals from day 100 of gestation until term in 32 mares ranging from 4 to 18 years in age; seven of the mares were primiparous. Transrectal and/or transabdominal ultrasonographic measurement of the fetal eye orbit, cranium, aorta, heart rate and of the combined thickness of uterus and placenta (CTUP) were performed using a portable ultrasound machine equipped with 6 MHz linear and 3.5 MHz curved array probes.During days 100–250 of gestation, the CTUP was thicker in primiparous than multiparous mares (p < 0.05). After day 220 the maximum cross-sectional area, but not diameter, of both the eye orbit and cranium were also greater in primiparous than multiparous mares (p < 0.05). Fetal aorta diameter was not influenced by parity but was affected by maternal age, being smaller in mares ≥15 years of age than younger animals (p < 0.05). Only biparietal cross-sectional surface area and aorta diameter increased linearly throughout late gestation. However, even allowing for the effects of parity and maternal age, the late gestational variation in fetal size is such that serial measurements may be required to definitively identify abnormal development.  相似文献   

15.
Maternal and cord blood were collected from 54 Indian women at parturition and analyzed for Zn, Cu, and Fe by flame atomic absorption spectrophotometry to determine the relationship between levels of these elements in mother’s and infant’s blood and maternal age, birth weight, and gestational age of the baby. The blood Zn level of mothers in the age group 24–28 yr was significantly higher than those of mothers in the age group of 18–23 yr (p<0.05). Similarly, mothers in the 24 to 28-yr group also had higher blood Fe level than mothers in the group 29–38 yr (p<0.05). The levels of Zn, Cu, and Fe were higher in the maternal blood and lower, but not significantly, in the cord blood of low-birth-weight babies than in those of normal-birth-weight babies. However, differences in the levels of Zn, Cu, and Fe between maternal and cord blood of the two birth-weight groups was statistically significant. There were no significant differences in the levels of the three elements in maternal or cord blood by the gestational age of the baby. A weak but significant correlation was found between the birth weight of the baby and the Fe level in the cord blood (r=0.26; p<0.05). Also, weak significant correlations were observed between gestational age of the baby and Fe (r=0.23; p<0.05) and Cu (r=0.31; p<0.05) levels in the cord blood. Although, there are many confounders of low birth weight and preterm deliveries, a diminished placental transfer of these essential elements could be one of the several etiological factors for low birth weight of newborns.  相似文献   

16.
Neurodevelopmental disorders such as schizophrenia and autism are thought to involve an imbalance of excitatory and inhibitory signaling in the brain. Intrauterine growth restriction (IUGR) is a risk factor for these disorders, with IUGR onset occurring during critical periods of neurodevelopment. The aim of this study was to determine the impact of IUGR on excitatory and inhibitory neurons of the fetal neocortex and hippocampus. Fetal brains (n = 2) were first collected from an unoperated pregnant guinea pig at mid-gestation (32 days of gestation [dg]; term ∼67 dg) to visualize excitatory (Ctip2) and inhibitory (calretinin [CR] and somatostatin [SST]) neurons via immunohistochemistry. Chronic placental insufficiency (CPI) was then induced via radial artery ablation at 30 dg in another cohort of pregnant guinea pigs (n = 8) to generate IUGR fetuses (52 dg; n = 8); control fetuses (52 dg; n = 7) were from sham surgeries with no radial artery ablation. At 32 dg, Ctip2- and CR-immunoreactive (IR) cells had populated the cerebral cortex, whereas SST-IR cells had not, suggesting these neurons were yet to complete migration. At 52 dg, in IUGR versus control fetuses, there was a reduction in SST-IR cell density in the cerebral cortex (p = .0175) and hilus of the dentate gyrus (p = .0035) but not the striatum (p > .05). There was no difference between groups in the density of Ctip2-IR (cortex) or CR-IR (cortex, hippocampus) neurons (p > 0.05). Thus, we propose that an imbalance in inhibitory (SST-IR) and excitatory (Ctip2-IR) neurons in the IUGR fetal guinea pig brain could lead to excitatory/inhibitory dysfunction commonly seen in neurodevelopmental disorders such as autism and schizophrenia.  相似文献   

17.
目的:探讨Toll样受体4在小于胎龄儿生后发生胰岛素抵抗的作用。方法:建立动物模型,分为小于胎龄儿追赶生长组(S1组)、小于胎龄儿无追赶生长组(S2组)、适于胎龄儿组(AGA组)。生后4周和12周取血、肝脏和脂肪组织,检测血糖、胰岛素、甘油三酯、游离脂肪酸和总胆固醇,计算胰岛素抵抗指数(Homeostasis model assessment for insulin resistance index,HOMA-IR);ELISA法检测血清白介素-6、肿瘤坏死因子-α;实时定量RT-PCR法检测相同体质量肝脏和脂肪组织中Toll样受体4、髓细胞样分化因子88、核因子κB、肿瘤坏死因子-α和白介素-6 mRNA的表达。结果:与适于胎龄儿组和小于胎龄儿无追赶生长组相比,小于胎龄儿追赶生长组随年龄增长血糖、血清胰岛素、游离脂肪酸、甘油三酯和HOMA-IR逐渐增高(P0.05),相同体质量肝脏和脂肪组织中Toll样受体4、髓细胞样分化因子88、核因子κB、肿瘤坏死因子-α和白介素-6 mRNA表达量也逐渐升高(P0.05);肝脏和脂肪组织中Toll样受体4信号通路与胰岛素抵抗指数HOMA-IR呈显著正相关(P0.05),脂肪组织中的相关性显著高于肝脏组织(P0.05)。结论:SGA生后追赶生长者随年龄增长出现糖脂代谢异常;肝脏和脂肪组织Toll样受体4信号途径激活,诱发以TNF-α和IL-6为炎性介质的慢性炎症,促进胰岛素抵抗发生发展;脂肪组织在胰岛素抵抗发生发展中作用更强。  相似文献   

18.
Spray and soil treatments of paclobutrazol and uniconazole were applied to young and mature olive plants and olive cuttings. Two clear phases, were found in the growth response of olive shoots to growth retardants: an early phase, which retards and even inhibits growth considerably; and a later phase, during which the shoots are released from the retardation and start to elongate rapidly. A somewhat slower response of the plants to soil application than to spray application of growth retardants was noticed. Paclobutrazol enhanced the rooting of cv. Manzanillo cuttings, whether applied to the mother plants or to the cuttings themselves. Indole-3-butyric acid (IBA) was needed in both cases. Sprouting was shown to reduce rooting. Paclobutrazol significantly inhibited sprouting and increased the meristematic activity in the base of the cuttings. Rooting of the hard-to-root cv. Kalamata was not enhanced by the treatments although callus formation was induced and viability was prolonged.  相似文献   

19.
The incidence of maternal obesity and its co-morbidities (diabetes, cardiovascular disease) continues to increase at an alarming rate, with major public health implications. In utero exposure to maternal obesity has been associated with development of cardiovascular and metabolic diseases in the offspring as a result of developmental programming. The placenta regulates maternal-fetal metabolism and shows significant changes in its function with maternal obesity. Autophagy is a cell-survival process, which is responsible for the degradation of damaged organelles and misfolded proteins. Here we show an activation of autophagosomal formation and autophagosome-lysosome fusion in placentas of males but not females from overweight (OW) and obese (OB) women vs. normal weight (NW) women. However, total autophagic activity in these placentas appeared to be decreased as it showed an increase in SQSTM1/p62 and a decrease in lysosomal biogenesis. A mouse model with a targeted deletion of the essential autophagy gene Atg7 in placental tissue showed significant placental abnormalities comparable to those seen in human placenta with maternal obesity. These included a decrease in expression of mitochondrial genes and antioxidants, and decreased lysosomal biogenesis. Strikingly, the knockout mice were developmentally programmed as they showed an increased sensitivity to high-fat diet-induced obesity, hyperglycemia, hyperinsulinemia, increased adiposity, and cardiac remodeling. In summary, our results indicate a sexual dimorphism in placental autophagy in response to maternal obesity. We also show that autophagy plays an important role in placental function and that inhibition of placental autophagy programs the offspring to obesity, and to metabolic and cardiovascular diseases.  相似文献   

20.
Identifying the genetic input for fetal growth will help to understand common, serious complications of pregnancy such as fetal growth restriction. Genomic imprinting is an epigenetic process that silences one parental allele, resulting in monoallelic expression. Imprinted genes are important in mammalian fetal growth and development. Evidence has emerged showing that genes that are paternally expressed promote fetal growth, whereas maternally expressed genes suppress growth. We have assessed whether the expression levels of key imprinted genes correlate with fetal growth parameters during pregnancy, either early in gestation, using chorionic villus samples (CVS), or in term placenta. We have found that the expression of paternally expressing insulin-like growth factor 2 (IGF2), its receptor IGF2R, and the IGF2/IGF1R ratio in CVS tissues significantly correlate with crown–rump length and birthweight, whereas term placenta expression shows no correlation. For the maternally expressing pleckstrin homology-like domain family A, member 2 (PHLDA2), there is no correlation early in pregnancy in CVS but a highly significant negative relationship in term placenta. Analysis of the control of imprinted expression of PHLDA2 gave rise to a maternally and compounded grand-maternally controlled genetic effect with a birthweight increase of 93/155 g, respectively, when one copy of the PHLDA2 promoter variant is inherited. Expression of the growth factor receptor-bound protein 10 (GRB10) in term placenta is significantly negatively correlated with head circumference. Analysis of the paternally expressing delta-like 1 homologue (DLK1) shows that the paternal transmission of type 1 diabetes protective G allele of rs941576 single nucleotide polymorphism (SNP) results in significantly reduced birth weight (−132 g). In conclusion, we have found that the expression of key imprinted genes show a strong correlation with fetal growth and that for both genetic and genomics data analyses, it is important not to overlook parent-of-origin effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号