首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The knowledge of the mature sperm proteome is undoubtedly the basis for understanding sperm function, the mechanisms responsible for fertilization, the reasons for infertility and possible treatments. The methods of sperm protein extraction depend mainly on the proteins of interest and the protein separation techniques that will be employed. The isolation of the membrane proteins appears to be most problematic step. Nevertheless, two-dimensional electrophoresis and mass spectrometry have become the main techniques used in human sperm protein analysis. We outline the present techniques used to examine the sperm proteome and data generated from studies on the human sperm and different types of male infertility. We present the most characteristic proteins that are involved in sperm function. Their value as biomarkers for diagnosis and treatment of infertility would require further validation. We focus on selected and critical studies of the human sperm proteome to present our subjective view of this fast-moving field.  相似文献   

2.
Sustained weight loss is a preferred intervention in a wide range of metabolic conditions, but the effects on an individual's health state remain ill‐defined. Here, we investigate the plasma proteomes of a cohort of 43 obese individuals that had undergone 8 weeks of 12% body weight loss followed by a year of weight maintenance. Using mass spectrometry‐based plasma proteome profiling, we measured 1,294 plasma proteomes. Longitudinal monitoring of the cohort revealed individual‐specific protein levels with wide‐ranging effects of losing weight on the plasma proteome reflected in 93 significantly affected proteins. The adipocyte‐secreted SERPINF1 and apolipoprotein APOF1 were most significantly regulated with fold changes of ?16% and +37%, respectively (P < 10?13), and the entire apolipoprotein family showed characteristic differential regulation. Clinical laboratory parameters are reflected in the plasma proteome, and eight plasma proteins correlated better with insulin resistance than the known marker adiponectin. Nearly all study participants benefited from weight loss regarding a ten‐protein inflammation panel defined from the proteomics data. We conclude that plasma proteome profiling broadly evaluates and monitors intervention in metabolic diseases.  相似文献   

3.
Human saliva contains a large number of proteins and peptides (salivary proteome) that help maintain homeostasis in the oral cavity. Global analysis of human salivary proteome is important for understanding oral health and disease pathogenesis. In this study, large-scale identification of salivary proteins was demonstrated by using shotgun proteomics and two-dimensinal gel electrophoresis-mass spectrometry (2-DE-MS). For the shotgun approach, whole saliva proteins were prefractionated according to molecular weight. The smallest fraction, presumably containing salivary peptides, was directly separated by capillary liquid chromatography (LC). However, the large protein fractions were digested into peptides for subsequent LC separation. Separated peptides were analyzed by on-line electrospray tandem mass spectrometry (MS/MS) using a quadrupole-time of flight mass spectrometer, and the obtained spectra were automatically processed to search human protein sequence database for protein identification. Additionally, 2-DE was used to map out the proteins in whole saliva. Protein spots 105 in number were excised and in-gel digested; and the resulting peptide fragments were measured by matrix-assisted laser desorption/ionization-mass spectrometry and sequenced by LC-MS/MS for protein identification. In total, we cataloged 309 proteins from human whole saliva by using these two proteomic approaches.  相似文献   

4.
The central region of the primate retina is called macula. The fovea is located at the center of the macula, where the photoreceptors are concentrated to create neural network adapted for high visual acuity. Damage to the fovea by macular dystrophies and age-related macular degeneration (AMD) can reduce the central visual acuity. The molecular mechanisms leading to these diseases are most likely dependent on the proteins in macula differ from that in peripheral retina in expression level. Previously, we reported an early onset macular degeneration with drusen in cynomolgus monkey pedigrees. These monkeys show similar fundus findings of early stage of AMD at 2 years after birth. To elucidate mechanism of drusen formation and to find disease biomarkers for early stage of AMD, we performed plasma proteome analysis. Plasma samples were collected from four affected and control monkeys within the same pedigree. Successful fractionation of the plasma proteins by ProteoMiner and Gelfree8100 were confirmed by SDS-PAGE. Total of 245 proteins were identified from eight samples. From the results of spectral counting, we selected some proteins, Apolipoprotein E, Histidine-rich glycoprotein, and Retinol-binding protein 4 as candidate proteins that would be related with drusen formation. Candidate proteins would be potentially beneficial as biomarkers for human AMD. One of the identified proteins, Apolipoprotein E (ApoE), is structural component of drusen and also related with other neurodegenerative disease like Alzheimer disease. In this plasma proteome analysis, ApoE would be one of the possible factors of early drusen formation in these cynomolgus monkey pedigrees.  相似文献   

5.
In‐depth proteome analysis of the haloarchaeal model organism Haloferax volcanii has been performed under standard, low/high salt, and low/high temperature conditions using label‐free mass spectrometry. Qualitative analysis of protein identification data from high‐pH/reversed‐phase fractionated samples indicates 61.1% proteome coverage (2509 proteins), which is close to the maximum recorded values in archaea. Identified proteins match to the predicted proteome in their physicochemical properties, with only a small bias against low‐molecular‐weight and membrane‐associated proteins. Cells grown under low and high salt stress as well as low and high temperature stress are quantitatively compared to standard cultures by sequential window acquisition of all theoretical mass spectra (SWATH‐MS). A total of 2244 proteins, or 54.7% of the predicted proteome, are quantified across all conditions at high reproducibility, which allowed for global analysis of protein expression changes under these stresses. Of these, 2034 are significantly regulated under at least one stress condition. KEGG pathway enrichment analysis shows that several major cellular pathways are part of H. volcanii’s universal stress response. In addition, specific pathways (purine, cobalamin, and tryptophan) are affected by temperature stress. The most strongly downregulated proteins under all stress conditions, zinc finger protein HVO_2753 and ribosomal protein S14, are found oppositely regulated to their immediate genetic neighbors from the same operon.  相似文献   

6.
Porosomes are the universal secretory portals at the cell plasma membrane, where membrane-bound secretory vesicles transiently dock and fuse to expel intravesicular contents to the outside during cell secretion. In the past decade, the neuronal porosome complex, a 10-15nm cup-shaped lipoprotein structure has been isolated, its partial composition and 3D contour map determined, and it has been functionally reconstituted into artificial lipid membrane. Here we further determine the composition of the neuronal porosome proteome using immunoisolation and gel filtration chromatography, followed by tandem mass spectrometry. Results from the study demonstrate nearly 40 proteins to constitute the neuronal porosome proteome. Furthermore, interaction of proteins within the porosome and their resulting arrangement is predicted. The association and dissociation of proteins at the porosome following stimulation of cell secretion demonstrate the dynamic nature of the organelle.  相似文献   

7.
生物质谱与蛋白质组学   总被引:4,自引:0,他引:4  
蛋白质组学是后基因组学时代最受关注的研究领域之一,其核心的鉴定技术——生物质谱近年来在仪器设计以及鉴定通量、分辨率和灵敏度等各方面均有质的飞跃,促进了蛋白质表达谱作图、定量蛋白质组分析、亚细胞器蛋白质组作图、蛋白质翻译后修饰以及蛋白质相互作用等蛋白质组研究各个领域的飞速发展。本综述了生物质谱技术的最新进展,及其在蛋白质组学研究中的应用。  相似文献   

8.
Two-dimensional (2D) gel electrophoresis and mass spectrometry (MS) have been used in comparative proteomics but inherent problems of the 2D electrophoresis technique lead to difficulties when comparing two samples. We describe a method (sub-proteome differential display) for comparing the proteins from two sources simultaneously. Proteins from one source are mixed with radiolabelled proteins from a second source in a ratio of 100:1. These combined proteomes are fractionated simultaneously using column chromatographic methods, followed by analysis of the pre-fractionated proteomes (designated sub-proteomes) using 2D gel electrophoresis. Silver staining and (35)S autoradiography of a single gel allows precise discrimination between members of each sub-proteome, using commonly available computer software. This is followed by MS identification of individual proteins. We have demonstrated the utility of the technology by identifying the product of a transfected gene and several proteins expressed differentially between two renal carcinoma proteomes. The procedure has the capacity to enrich proteins prior to 2D electrophoresis and provides a simple, inexpensive approach to compare proteomes. The single gel approach eliminates differences that might arise if separate proteome fractionations or 2D gels are employed.  相似文献   

9.
There is significant interest in characterization of the human plasma proteome due to its potential for providing biomarkers applicable to clinical diagnosis and treatment and for gaining a better understanding of human diseases. We describe here a strategy for comparative proteome analyses of human plasma, which is applicable to biomarker identifications for various disease states. Multidimensional liquid chromatography-mass spectrometry (LC-MS/MS) has been applied to make comparative proteome analyses of plasma samples from an individual prior to and 9 h after lipopolysaccharide (LPS) administration. Peptide peak areas and the number of peptide identifications for each protein were used to evaluate the reproducibility of LC-MS/MS and to compare relative changes in protein concentration between the samples following LPS treatment. A total of 804 distinct plasma proteins (not including immunoglobulins) were confidently identified with 32 proteins observed to be significantly increased in concentration following LPS administration, including several known inflammatory response or acute-phase mediators such as C-reactive protein, serum amyloid A and A2, LPS-binding protein, LPS-responsive and beige-like anchor protein, hepatocyte growth factor activator, and von Willebrand factor, and thus, constituting potential biomarkers for inflammatory response.  相似文献   

10.
The emergence of advanced liquid chromatography mass spectrometry technologies for characterizing very complex mixtures of proteins has greatly propelled the field of proteomics, the goal of which is the simultaneous examination of all the proteins expressed by an organism. This research area represents a paradigm shift in molecular biology by attempting to provide a top-down qualitative and quantitative view of all the proteins (including their modifications and interactions) that are essential for an organism’s life cycle, rather than targeting a particular protein family. This level of global protein information about an organism such as a bacterium can be combined with genomic and metabolomic data to enable a systems biology approach for understanding how these organisms live and function.  相似文献   

11.
人血液含有来源于几乎所有细胞、组织、器官的蛋白质,可以直接反映病理、生理状态,是各种疾病诊断、生物标志物发现的最有价值的标本。因此,长期以来,血浆蛋白质组一直是人们研究的热点,并被人类蛋白质组组织(HUPO)列为首批启动的重大国际合作研究项目。血浆蛋白质含量动态范围非常广、成分极其复杂,血浆蛋白质组的研究极富挑战性。近年来,血浆高丰度蛋白质去除、蛋白质/肽段分离、质谱鉴定、数据处理等多种相关技术都取得了很大的进展。本文简要综述了上述技术领域的研究和应用进展。  相似文献   

12.
In many studies, particularly in the field of systems biology, it is essential that identical protein sets are precisely quantified in multiple samples such as those representing differentially perturbed cell states. The high degree of reproducibility required for such experiments has not been achieved by classical mass spectrometry-based proteomics methods. In this study we describe the implementation of a targeted quantitative approach by which predetermined protein sets are first identified and subsequently quantified at high sensitivity reliably in multiple samples. This approach consists of three steps. First, the proteome is extensively mapped out by multidimensional fractionation and tandem mass spectrometry, and the data generated are assembled in the PeptideAtlas database. Second, based on this proteome map, peptides uniquely identifying the proteins of interest, proteotypic peptides, are selected, and multiple reaction monitoring (MRM) transitions are established and validated by MS2 spectrum acquisition. This process of peptide selection, transition selection, and validation is supported by a suite of software tools, TIQAM (Targeted Identification for Quantitative Analysis by MRM), described in this study. Third, the selected target protein set is quantified in multiple samples by MRM. Applying this approach we were able to reliably quantify low abundance virulence factors from cultures of the human pathogen Streptococcus pyogenes exposed to increasing amounts of plasma. The resulting quantitative protein patterns enabled us to clearly define the subset of virulence proteins that is regulated upon plasma exposure.  相似文献   

13.
蛋白质点阵/芯片技术的新进展   总被引:6,自引:0,他引:6  
蛋白质点阵/芯片技术是分子生物学技术的重要进展,在功能蛋白质组研究方面具有广阔的潜在应用价值.目前发展起来的印迹蛋白微阵列、分子扫描技术和传感器生物芯片质谱,将应用于药靶检测、疾病诊断、蛋白质结构鉴定和/或蛋白质之间的相互作用分析等方面,具有分析速度快、效率高、样品消耗少等特点,将成为生命科学与医学领域新的研究工具.  相似文献   

14.
叶绿体蛋白质组研究进展   总被引:3,自引:1,他引:2  
亚细胞蛋白质组学是近年来蛋白组学研究中的一个热点。通过细胞器的纯化和亚细胞组分的分离,降低了样品的复杂性,增大了相应蛋白质组分的富集,有利于由此分离获得的蛋白质的序列分析及功能鉴定。叶绿体蛋白质组为植物亚细胞蛋白质组学研究中相对全面的一部分,利用亚细胞分离结合双向电泳技术系统地鉴定叶绿体中蛋白质组分是获取叶绿体蛋白质信息、确定其功能的重要技术手段。本文就近年来植物叶绿体蛋白质组涵盖的叶绿体内、外被膜、叶绿体基质、类囊体膜和类囊体腔蛋白的研究进行综述,以全面认识叶绿体蛋白的组成、特点及其在叶绿体生理生化代谢网络中的作用。  相似文献   

15.
Proteomic Profiling and Neurodegeneration in Alzheimer's Disease   总被引:6,自引:0,他引:6  
Quantitative proteome analysis of Alzheimer's disease (AD) brains was performed using 2-D gels to identify disease specific changes in protein expression. The task of characterizing the proteome and its components is now practically achievable because of the development and integration of four important tools: protein, EST, and complete genome sequence databases, mass spectrometry, matching software for protein sequences and protein separation technology. Mass spectrometry (MS) instrumentation has undergone a tremendous change over the past decade, culminating in the development of highly sensitive, robust instruments that can reliably analyze biomolecules, particularly proteins and peptides; we identified 35 proteins from over 100 protein spots on a 2-D gel. Using this current technology, protein-expression profiling, which is actually a specialized form of mining, is an important principal application of proteomics. The information obtained has tremendous potential as a means of determining the pathogenesis, and detecting disease markers and potential targets for drug therapy in AD.  相似文献   

16.
Plasma membrane (PM) proteome is one of the major subproteomes present in the cell,and is very important in liver function. In the present work, C57 mouse liver PM was purified by density-gradient centrifugation. The purified PM was verified by electron microscope analysis and Western blotting. The results showed that the PM was enriched by more than 20-fold and the contamination of mitochondria was reduced by 2-fold compared with the homogenization fraction. Proteins were separated by 2DE and 1DE, trypsin-digested and submitted to ESI-Q-TOF and MALDI-TOF-TOF mass spectrometry or directly digested in solution and analyzed by LC-ESI ion trap mass spectrometry. In all, 547 non-redundant mouse liver PM proteins were identified, of which 34% contributed to plasma membrane or plasma membrane-related proteins. This study optimized and evaluated the HLPP plasma membrane proteome analysis method and made a systematic analysis on PM proteome.  相似文献   

17.
Accurate and rapid protein quantitation is essential for screening biomarkers for disease stratification and monitoring, and to validate the hundreds of putative markers in human biofluids, including blood plasma. An analytical method that utilizes stable isotope-labeled standard (SIS) peptides and selected/multiple reaction monitoring-mass spectrometry (SRM/MRM-MS) has emerged as a promising technique for determining protein concentrations. This targeted approach has analytical merit, but its true potential (in terms of sensitivity and multiplexing) has yet to be realized. Described herein is a method that extends the multiplexing ability of the MRM method to enable the quantitation 142 high-to-moderate abundance proteins (from 31 mg/mL to 44 ng/mL) in undepleted and non-enriched human plasma in a single run. The proteins have been reported to be associated to a wide variety of non-communicable diseases (NCDs), from cardiovascular disease (CVD) to diabetes. The concentrations of these proteins in human plasma are inferred from interference-free peptides functioning as molecular surrogates (2 peptides per protein, on average). A revised data analysis strategy, involving the linear regression equation of normal control plasma, has been instituted to enable the facile application to patient samples, as demonstrated in separate nutrigenomics and CVD studies. The exceptional robustness of the LC/MS platform and the quantitative method, as well as its high throughput, makes the assay suitable for application to patient samples for the verification of a condensed or complete protein panel. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.  相似文献   

18.
Dried saliva spot sampling is a minimally invasive technique for the spatial mapping of salivary protein distribution in the oral cavity. In conjunction with untargeted nano‐flow liquid chromatography tandem mass spectrometry (nanoLC–MS/MS) analysis, DSS is used to compare the proteomes secreted by unstimulated parotid and submandibular/sublingual salivary glands. Two hundred and twenty proteins show a statistically significant association with parotid gland secretion, while 30 proteins are at least tenfold more abundant in the submandibular/sublingual glands. Protein identifications and label‐free quantifications are highly reproducible across the paired glands on three consecutive days, enabling to establish the core proteome of glandular secretions categorized into eight salivary protein groups according to their biological functions. The data suggest that the relative contributions of the salivary glands fine‐tune the biological activity of human saliva via medium‐abundant proteins. A number of biomarker candidates for Sjögren's syndrome are observed among the gland‐specifically expressed proteins, which indicates that glandular origin is an important factor to consider in salivary biomarker discovery.  相似文献   

19.
Target identification by modification-free proteomic approaches can potentially reveal the pharmacological mechanism of small molecular compounds. By combining the recent solvent-induced protein precipitation (SIP) method with TMT-labeling quantitative proteomics, we propose solvent-induced proteome profiling (SIPP) approach to identify small molecule–protein interactions. The SIPP approach enables to depict denaturation curves of the target protein by varying concentrations of organic solvents to induce unfolding and precipitation of the cellular proteome. By using this approach, we have successfully identified the known targets of market drugs and natural products and extended the proteome information of SIP for target identification.  相似文献   

20.
Plasma membrane (PM) proteome is one of the major subproteomes present in the cell,and is very important in liver function. In the present work, C57 mouse liver PM was purified by density-gradient centrifugation. The purified PM was verified by electron microscope analysis and Western blotting. The results showed that the PM was enriched by more than 20-fold and the contamination of mitochondria was reduced by 2-fold compared with the homogenization fraction. Proteins were separated by 2DE and 1DE, trypsin-digested and submitted to ESI-Q-TOF and MALDI-TOF-TOF mass spectrometry or directly digested in solution and analyzed by LC-ESI ion trap mass spectrometry. In all, 547 non-redundant mouse liver PM proteins were identified, of which 34% contributed to plasma membrane or plasma membrane-related proteins. This study optimized and evaluated the HLPP plasma membrane proteome analysis method and made a systematic analysis on PM proteome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号