首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flow cytometry was used to examine the effect of hydrodynamic forces in a stirred tank bioreactor on the CD13 and CD33 receptor surface content of HL60 (human promyelocytic leukemia) cells. A step increase in agitation rate from 80 to 400 rpm reduced the HL60 cell apparent growth rate and increased the CD13 receptor surface content per cell, on average, by 95%. In contrast, this step increase in agitation rate to 400 rpm decreased the CD33 receptor surface content per cell, on average, by 10%. The protective effects of 0.1% Methocel A15LV, polyethylene glycol (PEG), and polyvinyl alcohol (PVA) on CD13 and CD33 receptor surface content were examined under agitation at 300 rpm in parallel 2 L bioreactor runs. The average CD33 receptor surface content was unaffected by the presence of Methocel A15LV or PEG, while PVA had a slight protective effect. In contrast, in terms of CD13 receptor content, HL60 cells agitated at 300 rpm with Methocel A15LV, PEG, or PVA behaved like cells agitated at 80 rpm with no media additives (McDowell and Papoutsakis, 1998). That is, Methocel A15LV, PEG, and PVA prevented the transduction of mechanical forces which affect CD13 cell content. HL60 cells cultured with 0.1% A15LV, PEG or PVA under conditions of mild agitation (60 rpm) in spinner flasks exhibited glucose consumption and lactate production rates that were approximately 20% lower than values of cultures containing no additive. Under conditions of agitation at 300 rpm in the 2 L bioreactor, the presence of A15LV, PEG, and PVA reduced the HL60 glucose consumption and lactate production rates by approximately 50%. Thus, media additives can dramatically reduce lactate accumulation in agitated bioreactors due to cell growth, in addition to providing protection from cellular injury.  相似文献   

2.
Flow cytometry and Northern blotting were used to examine the effects of hydrodynamic forces in stirred tank bioreactors on CD13 receptor surface content and mRNA levels of HL60 (human promyelocytic leukemia) cells. A step increase in agitation rate from 80 to 300 or 400 rpm reduced the apparent HL60 growth rate in a dose-dependent manner. This step increase in agitation rate (to 300 or 400 rpm) also increased the CD13 receptor surface content on averge by 30% and 100%, respectively. This increase in CD13 receptor surface content was correlated with a 10% and a 60% increase in CD13 mRNA levels. We also observed a significant and very reproducible drop in CD13 expression over the course of a batch bioreactor run (80 rpm). Although we have no explanation for this, we show that the decrease in CD13 receptor surface content can be (at least partially, if not fully) explained by the corresponding decrease in CD13 mRNA. HL60 cell cultures agitated at 300 and 400 rpm exhibited glucose consumption and lactate production rates that were approximately 40% and 90% greater than values of the cultures agitated at 80 rpm. The physiological and practical implications of these results are discussed.  相似文献   

3.
The effects of serum medium concentration on the CD13 receptor surface content and mRNA levels of HL60 (human promyelocytic leukemia) cells were examined using flow cytometry and Northern blotting. Increasing the serum concentration from 2.5% to 10% and from 5% to 10% increased the CD13 receptor surface content of HL60 cells by 100% and 25%, respectively, in spinner flasks agitated at 60 rpm. In bioreactors at 80 rpm, increasing the serum concentration from 2.5% to 10% and from 5% to 10% increased the CD13 receptor surface content by 60% and 35%, respectively. This increase in CD13 receptor surface content was correlated with a 30% and a 20% increase in CD13 mRNA levels. Increasing serum concentrations also increased the average HL60 cell size under non-damaging conditions (60 rpm in spinner flasks, 80 rpm in bioreactors). Under conditions of agitation at 300 rpm in 2 L bioreactors, increasing serum concentrations (2.5% vs. 10%, 5% vs. 10%) allowed for higher HL60 apparent growth rates, but decreased the CD13 receptor surface content and mRNA levels. In view of our earlier findings on the effects of agitation on the CD13 antigen, these data suggest that serum reduces the transduction of mechanical forces that affect CD13 expression. At 300 rpm, HL60 cells cultured in 10% serum exhibited glucose consumption and lactate production rates that were approximately 50% and 60% lower than the values of cells cultured in 5% and 2.5% serum, respectively.  相似文献   

4.
With the aim to utilize human mesenchymal stem cells (hMSCs) grown in large scale for regenerative medicine, effects of agitation rate on aggregation during beads-to-beads subcultivation of microcarrier culture of hMSCs were studied. hMSCs could attach and grew on surface-type microcarriers of Cytodex 1, whereas almost no cell elongation and growth were observed on porous type microcarriers of Cytopores. The percentages of aggregated Cytodex 1 microcarriers at an agitation rate of 60 and 90 rpm were lower than that at 30 rpm, which was the lowest agitation rate necessary for the suspension of Cytodex 1 microcarriers, and the cells grew fastest at 60 rpm. hMSC could be subcultivated on Cytodex 1 by the beads-to-beads method at both 30 and 60 rpm without trypsinization. However, agitation at 60 rpm resulted in a markedly lower percentage of aggregated microcarriers not only before but also after subcultivation. The percentages of CD90- and CD166-positive cells among cells grown on Cytodex 1 at 60 rpm (91.5 and 87.6 %) were comparable to those of cells grown in the pre-culture on dishes. In conclusion, hMSCs could be subcultivated on Cytodex 1 by beads-to-beads method maintaining the expressions of the cell surface antigens CD90 and CD166, while adjusting agitation rate could decrease the microcarrier aggregation.  相似文献   

5.
Ex vivo expansion of T cells is a key step of many cellular immunotherapy protocols, which require large numbers of immune cells to eradicate malignant or virally infected cells. The use of stirred culture systems for T cell expansion offers many potential advantages over the static culture systems commonly used today, including homogeneity of culture conditions, ease of sampling, and implementation of control systems. Primary human T cells as well as the transformed TALL103/2 T cell line were cultured in 100-mL spinner flasks as well as 2-L bioreactors to investigate the effects of shear forces produced by agitation and sparging-based aeration on the expansion of T cells. Primary T cells could be successfully grown at agitation rates of up to 120 rpm in the spinner flasks and to 180 rpm in the bioreactors with no immediate detrimental effects on proliferation. Exposure to agitation and sparging did, however, cause a significantly increased rate of downregulation of the interleukin-2 receptor (IL-2R), resulting in lower overall expansion potential from a single stimulation as compared to static controls, with faster IL-2R downregulation occurring at higher agitation rates. For the primary T cells, no significant effects of agitation were found on expression levels of other key surface receptors (CD3, CD28, or CD62L) examined. No significant effects of agitation were observed on primary T cell metabolism or levels of cellular apoptosis in the cultures. The TALL103/2 T cell line was found to be extremely sensitive to agitation, showing severely reduced growth at speeds above 30 rpm in 100-mL spinner flasks. This unexpected increased fragility in the transformed T cell line as compared to primary T cells points out the importance of carefully selecting a model cell line which will accurately represent the characteristics of the cell system of interest.  相似文献   

6.
The effects of fluid-mechanical force (agitation) on the cell cycle kinetics of Chinese hamster ovary (CHO) cells cultured in suspension in 2-L bioreactors has been examined. A two-color flow cytometry method was used to determine the fraction rate of DNA synthesis. With increased agitation intensity, cell viability decreased as a result of increased cell death. However, increased agitation induced the viable cells of the culture to a higher proliferative state relative to a control culture. The fraction of viable cells of the high-agitation culture (250 rpm) in S phase was higher (up to 45%) and in G1 phase was lower (up to 50%) compared with the viable cells of the control culture (80 rpm). The DNA synthesis rate per viable S-phase cell of the high-agitation culture was confirmed by recovery experiments, which were conducted to measure the apparent specific growth rate and the cell cycle kinetics of the high-agitation culture upon reduction in the agitation rate from 250 rpm back to 80 rpm. The apparent specific growth rate of the test culture, calculated for the first 12 h of the recovery period, was greater than the apparent specific growth rate of the control culture. Furthermore, the proliferative state of the viable cells of the test culture, which had become higher relative to the control culture during the high agitation period, gradually approached the level of the control culture during recovery. Results also show that the magnitude of the agitation intensity; the culture agitated at 250 rpm attained a greater proliferative state than a parallel culture agitated at 235 rpm. The 250-rpm culture had a higher fraction of S-phase and a lower fraction of G1-phase cells than the 235-rpm culture. The DNA sunthesis rate per viable S-phase cell of the 250-rpm culture was greater than of the 235-rpm culture. (c) 1992 John Wiley & Sons, Inc.  相似文献   

7.
Mechanical stress caused by agitation is one of the factors that can affect hematopoietic stem cell expansion in suspension bioreactors. Therefore, we have investigated the effects of agitation on umbilical cord blood hematopoietic stem cell (UCB-HSC) growth and differentiation. A comparison was made between various agitation rates (20, 40 and 60 rpm) in spinner-flask and cells cultured in glass petri dish as a static culture. Moreover, the fluid dynamic at various agitation rates of spinner-flask was analyzed to determine shear stress. The spinner-flask contained a rotational moving mixer with glass ball and was kept in tissue culture incubator. To reduce consumption of cytokines, UCB-serum was used which widely decreased the costs. Our results determined that, agitation rate at 40 rpm promoted UCB-HSCs expansion and their colony forming potential. Myeloid progenitors were the main type of cells at 40 rpm agitation rate. The results of glucose consumption and lactic acid production were in complete agreement with colony assay and expansion data and indicated the superiority of culture in spinner-flask when agitated at 40 rpm over to other agitation speeds and also static culture. Cell viability and colony count was affected by changing the agitation speed. We assume that changes in cell growth resulted from the effect of shear stress directly on cell viability, and indirectly on signaling pathways that influence the cells to differentiate.  相似文献   

8.
It has been established that the forces resulting from bubbles rupturing at the free air (gas)/liquid surface injure animal cells in agitated and/or sparged bioreactors. Although it has been suggested that bubble coalescence and breakup within agitated and sparged bioreactors (i.e., away from the free liquid surface) can be a source of cell injury as well, the evidence has been indirect. We have carried out experiments to examine this issue. The free air/liquid surface in a sparged and agitated bioractor was eliminated by completely filling the 2-L reactor and allowing sparged bubbles to escape through an outlet tube. Two identical bioreactors were run in parallel to make comparisons between cultures that were oxygenated via direct air sparging and the control culture in which silicone tubing was used for bubble-free oxygenation. Thus, cell damage from cell-to-bubble interactions due to processes (bubble coalescence and breakup) occurring in the bulk liquid could be isolated by eliminating damage due to bubbles rupturing at the free air/liquid surface of the bioreactor. We found that Chinese hamster ovary (CHO) cells grown in medium that does not contain shear-protecting additives can be agitated at rates up to 600 rpm without being damaged extensively by cell-to bubble interactions in the bulk of the bioreactor. We verified this using both batch and high-density perfusion cultures. We tested two impeller designs (pitched blade and Rushton) and found them not to affect cell damage under similar operational conditions. Sparger location (above vs. below the impeller) had no effect on cell damage at higher agitation rates but may affect the injury process at lower agitation intensities (here, below 250 rpm). In the absence of a headspace, we found less cell damage at higher agitation intensities (400 and 600 rpm), and we suggest that this nonintuitive finding derives from the important effect of bubble size and foam stability on the cell damage process. (c) 1996 John Wiley & Sons, Inc.  相似文献   

9.
Effects of microcarrier concentration in animal cell culture   总被引:1,自引:0,他引:1  
Results are presented which show how the microcarrier concentration affects the hydrodynamic environment in animal cell bioreactors. At low levels of agitation, no physical effects of microcarrier concentration were found. However, cell growth was strongly influenced by cell concentration. At high levels of agitation, a strong detrimental effect of microcarrier concentration was found. A new mechanism of hydrodynamic damage was identified which is second order in microcarrier concentration. The identification of this mechanism adds to the fundamental understanding of hydrodynamic phenomena in microcarrier bioreactors.  相似文献   

10.
Increased rate of chondrocyte aggregation in a wavy-walled bioreactor   总被引:2,自引:0,他引:2  
A novel wavy-walled bioreactor designed to enhance mixing at controlled shear stress levels was used to culture chondrocytes in suspension. Chondrocyte aggregation in suspensions mixed at 30, 50, and 80 rpm was characterized in the wavy-walled bioreactor and compared with that in conventional smooth-walled and baffled-walled spinner flask bioreactors. Aggregation was characterized in terms of the percentage of cells that aggregated over time, and aggregate size changes over time. The kinetics of chondrocyte aggregation observed in the bioreactors was composed of two phases: early aggregation between 0 and 2 h of culture, and late aggregation between 3 and 24 h of culture. At 50 rpm, the kinetics of early aggregation in the wavy-walled bioreactor was approximately 25% and 65% faster, respectively, than those in the smooth-walled and baffled-walled spinner flask bioreactors. During the late aggregation phase, the kinetics of aggregation in the wavy-walled bioreactor were approximately 45% and 65% faster, respectively, than in the smooth-walled and baffled-walled spinner flasks. The observed improved kinetics of chondrocyte aggregation was obtained at no cost to the cell survival rate. Results of computerized image analysis suggest that chondrocyte aggregation occurred initially by the formation of new aggregates via cell-cell interactions and later by the joining of small aggregates into larger cell clumps. Aggregates appeared to grow for only a couple of hours in culture before reaching a steady size, possibly determined by limitations imposed by the hydrodynamic environment. These results suggest that the novel geometry of the wavy-walled bioreactor generates a hydrodynamic environment distinct from those traditionally used to culture engineered cartilage. Such differences may be useful in studies aimed at distinguishing the effects of the hydrodynamic environment on tissue-engineered cartilage. Characterizing the wavy-walled bioreactor's hydrodynamic environment and its effects on cartilage cell/tissue culture can help establish direct relationships between hydrodynamic forces and engineered tissue properties.  相似文献   

11.
Mammalian cells are the most frequently used hosts for biopharmaceutical proteins manufacturing. Inoculum quality is a key element for establishing an efficient bioconversion process. The main objective in inoculation expansion process is to generate large volume of viable cells in the shortest time. The aim of this paper was to optimize the inoculum preparation stage of baby hamster kidney (BHK)-21 cells for suspension cultures in benchtop bioreactors, by means of a combination of static and agitated culture systems. Critical parameters for static (liquid column height: 5, 10, 15 mm) and agitated (working volume: 35, 50, 65 mL, inoculum volume percentage: 10, 30 % and agitation speed: 25, 60 rpm) cultures were study in T-flask and spinner flask, respectively. The optimal liquid column height was 5 mm for static culture. The maximum viable cell concentration in spinner flask cultures was reached with 50 mL working volume and the inoculum volume percentage was not significant in the range under study (10–30 %) at 25 rpm agitation. Agitation speed at 60 rpm did not change the main kinetic parameters with respect to those observed for 25 rpm. These results allowed for a schedule to produce more than 4 × 109 BHK-21 cells from 4 × 106 cells in 13 day with 1,051 mL culture medium.  相似文献   

12.
The effect of serum on the growth rate and metabolism of CRL-8018 hybridoma cells in an agitated, surface-aerated bioreactor was examined. In the employed well-controlled bioreactors at high agitation rates, hybridoma cells in medium containing 1% fetal bovine serum rapidly die in the presence of a vortex with accompanying gas-bubble entrainment, whereas non-agitated control cultures grow normally in medium containing 1% serum. Serum levels greater than 5% counteract the detrimental hydrodynamic effects due to agitation and bubble entrainment. The protective effect is present after short-term (less than 1 h) exposure to 10% serum concentration, suggesting a protection mechanism which is, at least in part, of a physical nature. The apparent cell yields on glucose, lactate, and glutamine decreased with decreasing growth rate due to low serum concentrations. The results are incorporated into a simple model in which the apparent growth rate is the sum of an invariable growth rate and a changing death rate.  相似文献   

13.
Information about the function of aminopeptidase N/CD13 on monocytes is limited. In order to gain more insight into its interaction with other proteins, we have identified molecules that co-localize with the membrane ectoenzyme at the cell surface of monocytes. Using laser scanning and electron microscopy as well as fluorescence resonance energy transfer (FRET) measured by flow cytometry we show that monocytic CD13 co-localized with the Fc gamma receptor II/CD32 after Fc receptor ligation by a CD32-specific antibody. FRET was also observed between CD13 and the Fc gamma receptor I/CD64, but not with the myeloid marker CD33 representing a member of the sialoadhesin family. Our results imply a novel functional role of CD13 and Fc gamma receptors as members of a multimeric receptor complex. Further studies have to be done to elucidate common signaling pathways of these molecules.  相似文献   

14.
A model was developed to evaluate the effects of cells and surfactants on oxygen transfer in surface-aerated bioreactors. The model assumed the presence of serial layers of adsorbed surfactants and microorganisms directly adjacent to the gas-liquid interface due to their surface activities, followed by a stagnant liquid layer to account for the oxygen transfer resistance in the liquid phase. The interfacial surfactant film, although posing as an additional resistance, was found to have negligible effect on the oxygen transfer rate because of its extremely small thickness as compared to the cell monolayer and the stagnant liquid layer. On the other hand, cells affect oxygen transfer by two mechanisms: the biological enhancement due to the respiration of interfacial cells and the physical blocking resulting from the semipermeable nature of cell bodies. Due to the low specific oxygen uptake rates of the sludges, the two mechanisms were found to be of comparable importance in activated-sludge systems; the oxygen transfer enhancement factor, E, varied from about 0.97 to 1.10 depending on the operating conditions. The biological enhancement effect, however, predominated in fermentations of actively growing bacteria. At relatively low agitation speed (e. g., 300 rpm), the value of E could reach about 3 to 5 in fermentations with high cell concentrations. Effects of other operating variables, such as the agitation intensity, the oxygen content in the mixed liquor, and the bulk cell concentration, on biological oxygen transfer enhancement were also studied. (c) 1992 John Wiley & Sons, Inc.  相似文献   

15.
A concentric cylinder bioreactor has been developed to culture tissue engineered cartilage constructs under hydrodynamic loading. This bioreactor operates in a low shear stress environment, has a large growth area for construct production, allows for dynamic seeding of constructs, and provides for a uniform loading environment. Porous poly-lactic acid constructs, seeded dynamically in the bioreactor using isolated bovine chondrocytes, were cultured for 4 weeks at three seeding densities (60, 80, 100 x 10(6) cells per bioreactor) and three different shear stresses (imposed at 19, 38, and 76 rpm) to characterize the effect of chondrocyte density and hydrodynamic loading on construct growth. Construct seeding efficiency with chondrocytes is greater than 95% within 24 h. Extensive chondrocyte proliferation and matrix deposition are achieved so that after 28 days in culture, constructs from bioreactors seeded at the highest cell densities contain up to 15 x 10(6) cells, 2 mg GAG, and 3.5 mg collagen per construct and exhibit morphology similar to that of native cartilage. Bioreactors seeded with 60 million chondrocytes do not exhibit robust proliferation or matrix deposition and do not achieve morphology similar to that of native cartilage. In cultures under different steady hydrodynamic loading, the data demonstrate that higher shear stress suppresses matrix GAG deposition and encourages collagen incorporation. In contrast, under dynamic hydrodynamic loading conditions, cartilage constructs exhibit robust matrix collagen and GAG deposition. The data demonstrate that the concentric cylinder bioreactor provides a favorable hydrodynamic environment for cartilage construct growth and differentiation. Notably, construct matrix accumulation can be manipulated by hydrodynamic loading. This bioreactor is useful for fundamental studies of construct growth and to assess the significance of cell density, nutrients, and hydrodynamic loading on cartilage development. In addition, studies of cartilage tissue engineering in the well-characterized, uniform environment of the concentric cylinder bioreactor will develop important knowledge of bioprocessing parameters critical for large-scale production of engineered tissues.  相似文献   

16.
Trichoderma reesei was grown in a stirred-tank bioreactor (STB) and a reciprocating plate bioreactor (RPB) at four different agitation speeds. A semiautomatic image analysis protocol that was developed to characterize the mycelium morphology during the fermentation process based on four morphological types (unbranched, branched, entangled, and clumped microorganisms) was applied to study the effect of agitation on the morphology of T. reesei. It was shown via statistical validation that broth samples used for image analysis represented the whole population of the fungi in the bioreactor. High shear was found to be damaging to T. reesei grown in the STB. The gentler shear produced in the RPB was not detrimental to the microorganism even at higher agitation speed. Better productivity was obtained for T. reesei grown in the STB and the highest productivity, 0.121 IU/mL h, was obtained at 400 rpm. The morphological parameter, the hyphal growth unit, was found to be correlated to the productivity. Understanding the effect of agitation on the morphology and productivity of T. reesei could lead to the design of better bioreactors and the selection of operating conditions of bioreactors to optimize the production of cellulase.  相似文献   

17.
The effect of agitation speeds on the performance of producing pyruvate by a multi-vitamin auxotrophic yeast, Torulopsis glabrata, was investigated in batch fermentation. High pyruvate yield on glucose (0.797 g g(-1)) was achieved under high agitation speed (700 rpm), but the glucose consumption rate was rather low (1.14 g l(-1) h(-1)). Glucose consumption was enhanced under low agitation speed (500 rpm), but the pyruvate yield on glucose decreased to 0.483 g g(-1). Glycerol production was observed under low agitation speed and decreased with increasing agitation speed. Based on process analysis and carbon flux distribution calculation, a two-stage oxygen supply control strategy was proposed, in which the agitation speed was controlled at 700 rpm in the first 16 h and then switched to 500 rpm. This was experimentally proven to be successful. Relatively high concentration of pyruvate (69.4 g l(-1)), high pyruvate yield on glucose (0.636 g g(-1)), and high glucose consumption rate (1.95 g l(-1)h(-1)) were achieved by applying this strategy. The productivity (1.24 g l(-1) h(-1)) was improved by 36%, 23% and 31%, respectively, compared with fermentations in which agitation speeds were kept constant at 700 rpm, 600 rpm, and 500 rpm. Experimental results indicate that the difference between the performances for producing pyruvate under a favorable state of oxygen supply (dissolved oxygen concentration >50%) was caused by the different regeneration pathways of NADH generated from glycolysis.  相似文献   

18.
A series of fed-batch experiments at different agitation speeds were performed using the industrially important strain Trichoderma reesei RUT C-30 in two different bioreactors to understand the close relationship that exists between the shear field within a bioreactor, the morphology of the microorganism, the rheology of cultivation broth, and the process performance. The two bioreactors, stirred tank bioreactor (STB) and reciprocating plate bioreactor (RPB), are characterized by a significantly different shear field to which microorganisms are exposed. Highest biomass concentration (ca. 15 g l−1) was obtained at higher agitation rates in both bioreactors due to better oxygen supply. However, better filter paper activities per mg of protein were obtained at lower agitation in both bioreactors. In both bioreactors, young and healthier fungi in the batch phase were not affected by shear even at higher agitation rates. However, during the fed-batch phase, higher degree of fragmentation of clump morphology at high agitation intensity was confirmed by image analysis. Also, the rheological analysis showed an increase in apparent viscosity during the batch phase and early fed-batch phase due to the increase in the biomass concentration. During the late stages of cultivation, the apparent viscosity decreased due to cell lysis and spore formation.  相似文献   

19.
When monocyte-derived immature dendritic cells (imDCs) were stimulated with LPS in the presence of anti-CD33/Siglec-3 mAb, the production of IL-12 and phosphorylation of NF-κB decreased significantly. The cell surface proteins of imDCs were chemically cross-linked, and CD33-linked proteins were analyzed by SDS-PAGE and immunoblotting. It was CD14 that was found to be cross-linked with CD33. A proximity ligation assay also indicated that CD33 was colocalized with CD14 on the cell surface of imDCs. Sialic acid-dependent binding of CD33 to CD14 was confirmed by a plate assay using recombinant CD33 and CD14. Three types of cells (HEK293T cells expressing the LPS receptor complex (Toll-like receptor (TLR) cells), and the LPS receptor complex plus either wild-type CD33 (TLR/CD33WT cells) or mutated CD33 without sialic acid-binding activity (TLR/CD33RA cells)) were prepared, and then the binding and uptake of LPS were investigated. Although the level of LPS bound on the cell surface was similar among these cells, the uptake of LPS was reduced in TLR/CD33WT cells. A higher level of CD14-bound LPS and a lower level of TLR4-bound LPS were detected in TLR/CD33WT cells compared with the other two cell types, probably due to reduced presentation of LPS from CD14 to TLR4. Phosphorylation of NF-κB after stimulation with LPS was also compared. Wild-type CD33 but not mutated CD33 significantly reduced the phosphorylation of NF-κB. These results suggest that CD14 is an endogenous ligand for CD33 and that ligation of CD33 with CD14 modulates with the presentation of LPS from CD14 to TLR4, leading to down-regulation of TLR4-mediated signaling.  相似文献   

20.
The interaction between CD28 on T cells and CD80 on APCs intensifies the linkage between TCR and MHC at the site of contact between T cells and APCs. In this study, we demonstrate that during human T cell/human APC interaction, the autologous or allogeneic human CD4(+) T cells become positive for the detection of CD80 at an early stage of activation (24 h). This detection of CD80 is attributable to the acquisition of CD80 from APCs, as opposed to the up-regulation of endogenous CD80, as demonstrated by CD4(+) T cells treated with cyclohexamide. Furthermore, no CD80 mRNA could be detected at 24 h in T cells that had acquired CD80 from APCs. CD80 acquisition by T cells from APCs was enhanced upon TCR engagement. The amount of CD80 acquisition by CD4(+) T cells was shown to be related to the expression of CD80 on APCs. Using soluble fusion proteins (soluble CTLA-4, CD28, and CD80) to block either CD28 on the surface of T cells or CD80 on the surface of APCs, it was demonstrated that CD80 acquisition by T cells is mediated through its receptors, possibly CD28 interaction. Moreover, we demonstrate that T cells that have acquired CD80 have the ability to stimulate other T cells. These data thus suggest that CD80 acquisition by human T cells might play a role in the immunoregulation of T cell responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号