共查询到20条相似文献,搜索用时 0 毫秒
1.
Nutrient hot spots in the soil have a limited life span, but the costs and benefits for root foraging are still underexposed. We assessed short-term costs that may arise when a nutrient-rich patch induces root proliferation, but then rapidly disappears. Rumex palustris plants were grown with a homogeneous or a heterogeneous nutrient application. After root proliferation in a nutrient-rich patch, nutrient supply was switched from homogeneous to heterogeneous, and vice versa, or the patch location was changed. R. palustris proliferated its roots in the rich patch. After switching, the relative growth rates of the roots were adjusted to the novel pattern of nutrient availability. However, the changes in local root biomass lagged behind the rapid shift in nutrient supply, because the root mass realized in specific sectors could not be rapidly relocated. Despite this, R. palustris did not exhibit costs of switching in terms of biomass or nitrogen uptake. Our data suggest that rapid shifts in uptake rate and redistribution of nitrogen within the plant may have lowered the costs of incorrect root placement. 相似文献
2.
Species differences in patterns of phenotypic plasticity may be an important aspect of adaptive diversity. Plasticity for functionally important root traits was studied in inbred field lineages of Polygonum persicaria and P. cespitosum (Polygonaceae). Replicate seedlings were grown in plexiglass rhizotrons under a range of constant and temporally variable moisture treatments. Plasticity was determined for final whole-plant biomass, root biomass allocation, and absolute and proportional root length. The dynamic aspect of root plasticity was examined by digitizing weekly tracings of the proportional deployment of each plant's root system to different vertical soil layers. Plants of both species expressed significant functionally adaptive phenotypic plasticity in the relative allocation, length, and vertical deployment of root systems in response to contrasting moisture conditions. Plasticity patterns in these closely related species were in general qualitatively similar, but for most traits differed in the magnitude and/or the timing of the plastic response. Dynamic changes in root deployment were more marked as well as faster in P. persicaria. Species differences in patterns of individual plasticity were generally consistent with the broader ecological distribution of P. persicaria in diverse as well as temporally variable moisture habitats. 相似文献
3.
4.
Signalling mechanisms underlying the morphological responses of the root system to nitrogen in Arabidopsis thaliana 总被引:8,自引:0,他引:8
Plants display considerable developmental plasticity in response to changing environmental conditions. The adaptations of the root system to variations in N supply are an excellent example of such developmental plasticity. In Arabidopsis, four morphological adaptations to the N supply have been characterized: (i) a localized stimulatory effect of external nitrate on lateral root elongation; (ii) a systemic inhibitory effect of high tissue nitrate concentrations on the activation of lateral root meristems; (iii) a suppression of lateral root initiation by high C:N ratios, and (iv) an inhibition of primary root growth and stimulation of root branching by external L-glutamate. These responses have provided valuable experimental systems for the study of N signalling in plants. This article will highlight some recent progress made in this direction from studies using the Arabidopsis root system. One recent development of note has been the emerging evidence of a regulatory role of nitrate transporters in some of the responses. It has been reported that the AtNRT1.1 (CHL1) dual-affinity nitrate transporter acts upstream of the ANR1 MADS box gene in mediating the stimulatory effect of a localized nitrate supply on lateral root proliferation. The AtNRT2.1 high-affinity nitrate transporter seems to be involved in the repression of lateral root initiation by high C:N ratios. The systemic inhibitory effect of high nitrate supply on lateral root development, which is mediated by abscisic acid (ABA), may be linked to the recently identified ABA receptor, FCA. The newly discovered root architectural response to external L-glutamate potentially offers a valuable experimental tool for studying the biological function of plant glutamate receptors and amino acid signalling. 相似文献
5.
Nitrogen uptake and root morphological responses of defoliated Lolium perenne (L.) to a heterogeneous nitrogen supply 总被引:4,自引:0,他引:4
Lolium perenne L. (c.v. Magella) plants were grown under three nutrient treatments for six weeks and then defoliated to test
the hypothesis that for their regrowth they could acquire N equally well irrespective of N distribution. Two different N levels
were applied; uniform level 1 N (U1), uniform level 2 (U2) and heterogeneous level 2 (H2). A system where the nutrient patch
could be applied without barriers to root growth was adopted. A single defoliation to 4 cm height resulted in a reduction
in tillering, biomass increment and N uptake at 3 weeks after defoliation. Root growth was reduced by defoliation under all
N treatments. Defoliation was found to reduce the proportion of N in the shoots which was derived from root uptake from 7
to 14 days. At 21 days this effect was significant for the plants with a heterogeneously distributed supply only. By the end
of the regrowth period, the undefoliated plants from H2 had a shoot biomass and N content equal to that of plants receiving
the same total N but supplied homogeneously (U2). However, defoliation reduced the ability of the plant to acquire N from
the patch. No preferential root growth was measured into the N-rich patch, but an increased root diameter within the patch
was found. Root diameter was reduced by defoliation, coinciding with a reduction in concentration of N in the root tissue.
As a result of the increased sink strength of the growing leaves after defoliation, the roots may become a source of carbon
and also nitrogen. These responses to an N-rich patch under defoliation could alter a plant's competitive balance in a mixed
sward.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
6.
Growth and root responses of woody species to rocky substrate: implications for gully rehabilitation
Fábio de Alcantara Fonseca 《Plant biosystems》2018,152(5):918-928
Gullies formed in the Velhas River basin in Brazil have been filled with urban construction waste for physical stabilisation purposes. Aimed at rehabilitating gullies, we selected woody species from the Brazilian Cerrado that can grow on rocky substrates under greenhouse conditions. An assessment was made regarding plant growth in both rocky and natural soil substrates by analysing the height, diameter, fresh and dry weights of shoots and roots, plant water content, root occupation and architecture. Principal component analysis and Chi-squared tests segregated rock-tolerant species based on the specific influence on root dry and fresh weights. Fast-growing species reduced the emergence of their lateral roots under rocks, compromising their growth in height and biomass production. In contrast, slow-growing woody species were particularly suitable for gully rehabilitation because these species exhibited a genetic pattern of low lateral root emergence that prevented damage to their roots. Most slow-growing species demonstrated a similar growth pattern in both substrates, and some of them, such as Copaifera langsdorffii, achieved better growth in height and biomass production on rocks than on soil, a finding attributed to the root plastic response involving primary root elongation and lateral root emergence. Therefore, slow-growing species are recommended for gully rehabilitation procedures. 相似文献
7.
Growth and morphological responses to water level and nutrient supply in three emergent macrophyte species 总被引:2,自引:0,他引:2
Sanjiang Plain is the largest freshwater marsh in China, where plant zonation along water-level gradients is a common phenomenon.
The aim of this experiment was to identify the role of water level and nutrient availability on plant zonation in the plain.
Growth and root morphology of three perennial emergent macrophyte species were investigated by growing in two water levels
(0.1 and 10.0 cm, relative to soil surface) and in two levels of nutrient supply (0 and 0.5 g slow-release fertilizer per
container). In the plain, Carex lasiocarpa typically occurs at low elevations, Glyceria spiculosa at medial elevations, and Deyeuxia angustifolia at high elevations. The relative growth rate was the highest in C. lasiocarpa and the lowest in D. angustifolia in the 10.0-cm water level. Among the three species, only total biomass of D. angustifolia was affected by water level, and decreased with increasing water level. High nutrient supply led to increased total biomass
in C. lasiocarpa and G. spiculosa. High water level led to an increased root diameter in G. spiculosa and a decreased root length in C. lasiocarpa. In the 10.0-cm water level, low nutrient supply led to thinner roots in D. angustifolia, but resulted in an increased specific root length (SRL) in C. lasiocarpa and root diameter in G. spiculosa. Water-level effect on root porosity was only observed in G. spiculosa, and nutrient amendment did not influence root porosity in all the species. These data indicate that both nutrient and water
level are important factors regulating plant distribution pattern in the Sanjiang Plain, because both C. lasiocarpa and G. spiculosa are relatively sensitive to nutrient supply whereas D. angustifolia is sensitive to water level.
Handling editor: S. M. Thomaz 相似文献
8.
While plant species respond differently to nutrient patches, the forces that drive this variability have not been extensively examined. In particular, the role of herbivory in modifying plant-resource interactions has been largely overlooked. We conducted a glasshouse study in which nutrient heterogeneity and root herbivory were manipulated, and used differences in foraging among plant species to predict the influence of root herbivores on these species in competition. We also tracked the influence of neighborhood composition, heterogeneity, and herbivory on whole-pot plant biomass. When herbivores were added to mixed-species neighborhoods, Eupatorium compositifolium, the most precise forager, was the only plant species to display a reduction in shoot biomass. Neighborhood composition had the greatest influence on whole-pot biomass, followed by nutrient heterogeneity; root herbivory had the smallest influence. These results suggest that root herbivory is a potential cost of morphological foraging in roots. Root herbivores reduced standing biomass and influenced the relative growth of species in mixed communities, but their effect was not strong enough at the density examined to overwhelm the bottom-up effects of resource distribution. 相似文献
9.
Jan J. Ślaski 《Plant and Soil》1994,167(1):165-171
The effects of aluminium (Al) ions on the metabolism of root apical meristems were examined in 4-day-old seedlings of two cereals which differed in their tolerance to Al: wheat cv. Grana (Al-sensitive) and rye cv. Dakowskie Nowe (Al tolerant). During a 24 h incubation period in nutrient solutions containing 0.15 mM and 1.0 mM of Al for wheat and rye, respectively, the activity of first two enzymes in the pentose phosphate pathway (G-6-PDH and 6-PGDH) decreased in the sensitive cultivar. In the tolerant cultivar activities of these enzymes increased initially, then decreased slightly, and were at control levels after 24 h. In the Al-sensitive wheat cultivar a 50% reduction in the activity of 6-phosphogluconate dehydrogenase was observed in the presence of Al. Changes in enzyme activity were accompanied by changes in levels of G-6-P- the initial substrate in the pentose phosphate pathway. When wheat was exposed for 16 h to a nutrient solution containing aluminium, a 90% reduction in G-6-P concentration was observed. In the Al-tolerant rye cultivar, an increase and subsequently a slight decrease in G-6-P concentration was detected, and after 16 h of Al-stress the concentration of this substrate was still higher than in control plants. This dramatic Al-induced decrease in G-6-P concentration in the Al-sensitive wheat cultivar was associated with a decrease in both the concentration of glucose in the root tips as well as the activity of hexokinase, an enzyme which is responsible for phosphorylation of glucose to G-6-P. However, in the Al-tolerant rye cultivar, the activity of this enzyme remained at the level of control plants during Al-treatment, and the decrease in the concentration of glucose occurred at a much slower rate than in wheat. These results suggest that aluminium ions change cellular metabolism of both wheat and rye root tips. In the Al-sensitive wheat cultivar, irreversible disturbances induced by low doses of Al in the nutrient solution appear very quickly, whereas in the Al-tolerant rye cultivar, cellular metabolism, even under severe stress conditions, is maintained for a long time at a level which allows for root elongation to continue.Abbreviations G-6-PDH
glucose-6-phosphate dehydrogenase
- 6-PGDH
6-phosphogluconate dehydrogenase
- G-6-P
glucose-6-phosphate
- TEA
triethanolamine 相似文献
10.
Localized supply of phosphorus induces root morphological and architectural changes of rice in split and stratified soil cultures 总被引:13,自引:0,他引:13
A localized supply of phosphorus may affect root morphology and architecture, and thereby affect phosphorus uptake by rice plants. In the present study, we attempted to test this hypothesis using two rice cultivars representing upland and lowland ecotypes grown in specially designed split and stratified soil cultures with a low-phosphorus red soil. Our data indicate that a localized supply of phosphorus increased both total root length and root fineness, particularly in the high-phosphorus zone. In split culture, plants roots tended to preferentially grow on the high-phosphorus zone, with about 70–75% of the total root length allocated to the high-phosphorus compartment. The total root length on the high-phosphorus side in the split-phosphorus treatment was significantly longer than that in the homogenously high-phosphorus treatment, implying that a phosphorus-deficiency signal from the low-phosphorus side may stimulate the growth of the roots located in the high-phosphorus zone. In stratified soil culture, changes in root morphology and architecture were also observed as indicated by increased total root length, root fineness and relative root allocation in the high-phosphorus layers, again suggesting altered root morphology and preferential root proliferation in the high-phosphorus regions. The induced changes in root morphology and architecture by localized phosphorus supply may have both physiological significance and practical implications in that plants can meet the demand for phosphorus with parts of the roots reaching the high-phosphorus zone, hence localized fertilization methods such as side dressing or banded application of phosphorus fertilizers may both minimize phosphorus fixation by the soil and increase phosphorus uptake efficiency from the fertilizers. 相似文献
11.
Root morphological and physiological plasticity of perennial grass species and the exploitation of spatial and temporal heterogeneous nutrient patches 总被引:10,自引:0,他引:10
Root morphological and physiological characteristics of four perennial grass species were investigated in response to spatial
and temporal heterogeneous nutrient patches. Two species from nutrient-rich habitats (i.e. Holcus lanatus and Lolium perenne)
and two species from nutrient-poor habitats (i.e. Festuca rubra and Anthoxanthum odoratum) were included in the study. Patches
were created by injecting equal amounts of nutrient solution into the soil either on one location (i.e. spatial heterogeneity)
or on several, alternating locations (i.e. temporal heterogeneity) within the pot. The consequences of changes in root morphology
and the implications for the exploitation of the nutrient patches by individual plants were quantified by the amount of 15N captured from the enriched patches. The effects of nutrient heterogeneity on the acquisition of nutrients by species were
determined by comparing the total nitrogen and phosphorus acquisition of the species in the two heterogeneous habitats with
the total nitrogen and phosphorus acquisition in a homogeneous treatment. In this homogeneous treatment the same amount of
nutrient solution was supplied homogeneously over the soil surface. The experiment lasted for 27 days and comprised one harvest.
In response to the spatial enrichment treatment, all species produced significantly more root biomass within the enriched
patch. The magnitude of the response was similar for species from nutrient-rich and nutrient-poor habitats. In contrast to
this response of root biomass, root morphology, including specific root length, branching frequency and mean lateral root
length was not affected by the treatments. In response to the temporal enrichment treatment, all species were able to increase
the nitrogen uptake rate per unit of root biomass. The species from nutrient-poor habitats had, on average, higher uptake
rates per unit root biomass than the species from nutrient-rich habitats, but the magnitude of the response did not differ
between the species. These results question the general validity of the assumptions that root foraging characteristics differ
among species from nutrient-rich and nutrient-poor habitats.
As a result of these root responses, all species captured an equal amount of 15N from the spatial and temporal enriched nutrient patches and all species acquired significantly more nitrogen in the heterogeneous
treatments than in homogeneous treatment. Hence, the ability to exploit local and temporal nutrient heterogeneity does not
appear to differ between species from nutrient-rich and nutrient-poor habitats, but is achieved by these species in different
ways. The ecological implications of these differences are discussed.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
12.
Historical domestication and the "Green revolution" have both contributed to the evolution of modern, high-performance crops. Together with increased irrigation and application of chemical fertilizers, these efforts have generated sufficient food for the growing global population. Root architecture, and in particular root branching, plays an important role in the acquisition of water and nutrients, plant performance, and crop yield. Better understanding of root growth and responses to the belowground environment could contribute to overcoming the challenges faced by agriculture today. Manipulating the abilities of crop root systems to explore and exploit the soil environment could enable plants to make the most of soil resources, increase stress tolerance and improve grain yields, while simultaneously reducing environmental degradation. In this article it is noted that the control of root branching, and the responses of root architecture to nitrate availability, differ between root types and between plant species. Since the control of root branching depends upon both plant species and root type, further work is urgently required to determine the appropriate genes to manipulate to improve resource acquisition by specific crops. 相似文献
13.
14.
15.
Summary Flooding ofPlatanus occidentalis L. seedlings for up to 40 days induced several changes including early stomatal closure, greatly accelerated ethylene production by stems, formation of hypertrophied lenticels and adventitious roots on submerged portions of stems, and marked growth inhibition. Poor adaptation ofPlatanus occidentalis seedlings to soil inundation was shown in stomatal closure during the entire flooding period, inhibition of root elongation and branching, and death of roots. Some adaptation to flooding was indicated by (1) production of hypertrophied lenticels which may assist in exchange of dissolved gases in flood water and in release of toxic compounds, and (2) production of adventitious roots on stems which may increase absorption of water. These adaptations appeared to be associated with greatly stimulated ethylene production in stems of flooded plants. The greater reduction of root growth over shoot growth in flooded seedlings will result in decreased drought tolerance after the flood waters recede. The generally low tolerance to flooding of seedlings of species that are widely rated as highly flood tolerant is emphasized. 相似文献
16.
Abstract. Soil flooding causes rapid reductions in transpiration, stomatal conductance and photosynthesis of many woody plants, which can decrease growth and ultimately result in plant death. This study was conducted to determine the role of the root system in the flooding response. Eastern larch ( Larix laricina ) seedlings were grown in Plexiglas tubes in which water uptake by flooded and unflooded roots was measured independently. Further flooding studies were conducted with eastern larch and white spruce ( Picea glauca ) in which stems were girdled. Root hydraulic properties were analysed using pressure-flow relationships. Transpiration rates of partially flooded plants declined more slowly than fully-flooded plants. Water uptake by unflooded roots of partially flooded seedlings increased momentarily with flooding. After lOd, flooding caused little change in root hydraulic conductance, a decrease in root system reflection coefficient, and an increase in osmotic permeability. Stem girdling had little effect on stomatal conductance and transpiration in comparison to flooding effects. The response of plant tops to flooding appears to be xylem-mediated and in proportion to the amount of root system flooded. Root hydraulic conductance appears to be unaffected by flooding except for a possible temporary increase on the first day following flooding treatments. 相似文献
17.
A model of three-dimensional root growth has been developed to simulate the interactions between root systems, water and nitrate in the rooting environment. This interactive behaviour was achieved by using an external-supply/internal-demand regulation system for the allocation of endogenous plant resources. Data from pot experiments on lupins heterogeneously supplied with nitrate were used to test and parameterise the model for future simulation work. The model reproduced the experimental results well (R
2 = 0.98), simulating both the root proliferation and enhanced nitrate uptake responses of the lupins to differential nitrate supply. These results support the use of the supply/demand regulation system for modelling nitrate uptake by lupins. Further simulation work investigated the local uptake response of lupins when nitrate was supplied to a decreasing fraction of the root system. The model predicted that the nitrate uptake activity of lupin roots will increase as the fraction of root system with access to nitrate decreases, but is limited to an increase of around twice that of a uniformly supplied control. This work is the first example of a modelled root system responding plastically to external nutrient supply. This model will have a broad range of applications in the study of the interactions between root systems and their spatially and temporally heterogeneous environment. 相似文献
18.
Comparing morphological plasticity of root orders in slow- and fast-growing citrus rootstocks supplied with different nitrate levels 总被引:1,自引:0,他引:1
BACKGROUND AND AIMS: Studies of the plasticity of functional root traits involved in resource acquisition have focused mainly on root length without considering such 'morphological components' as biomass allocation, specific root length, root fineness, and tissue density that affect root length. The plasticity of the above components in response to nitrate supply was studied in each root order of two co-generic citrus rootstocks, namely the fast-growing Citrus jambhiri 'Rough Lemon' (RL) and the slow-growing Citrus reshni 'Cleopatra Mandarin' (CM). METHODS: Morphological traits of individual root orders of CM and RL, grown at different nitrate levels (NO(3)-N at 0.1, 0.5, 1 and 10 mm) were examined by using an image-specific analysis system. KEY RESULTS: At high nitrate levels, the root length ratio, root mass ratio and, to a lesser degree, specific root length, root fineness and tissue density of tap and 1st-order laterals in both CM and RL were reduced. In 2nd-order laterals, however, the same treatment led to increased values of each morphological trait in CM but decreased values of the same traits in RL. At low nitrate supply, CM exhibited longer tap roots whereas RL developed longer 2nd-order laterals. These effects were due to root mass ratio and, to a lesser extent, specific root length. CONCLUSIONS: Biomass allocation was the main component of nitrate-induced changes in root length ratio. The 2nd-order laterals were more sensitive to nitrate availability than the tap root and 1st-order laterals. At low nitrate availability, RL displayed longer 2nd-order lateral roots and lower root plasticity than CM. This suggests a different root growth strategy among citrus rootstocks for adapting to nitrate availability: RL invests in 2nd-order laterals, the preferred zone for acquiring the nutrient, whereas CM responds with longer tap roots. 相似文献
19.
Visser EJ Bögemann GM Smeets M de Bruin S de Kroon H Bouma TJ 《The New phytologist》2008,177(2):457-465
Ethylene is a strong controller of root development, and it has been suggested that it is involved in the increase of lateral root development in nutrient-rich soil patches (selective root placement). Here, this contention was tested by comparing selective root placement of an ethylene-insensitive transgenic tobacco (Nicotiana tabacum) genotype (Tetr) with that of wild-type (Wt) plants. Wt and Tetr plants were grown in pots with locally increased nitrate or phosphate concentrations, after which the root growth patterns were compared with those of plants grown in pots with homogeneous nutrient distribution. Tetr plants responded to nutrient patches in a similar way to Wt plants, by placing their roots preferentially at locations with higher nutrient content, and other aspects of plant morphology were also not greatly influenced by ethylene insensitivity. The response of both Wt and Tetr plants to high-nitrate patches was considerably stronger than to locally high phosphate, suggesting that the two responses are not linked in any functional or regulatory way. As the response to nutrient patches was similar in ethylene-sensing and ethylene-insensitive plants, it is concluded that selective root placement in response to nitrate or phosphate is, at least in tobacco, not mediated or modified by ethylene action. 相似文献
20.
Maize seedlings were grown for 10 to 20 days in either nutrient solution or in soils with or without fertilizer supply. Air temperature was kept uniform for all treatments, while root zone temperature (RZT) was varied between 12 and 24°C. In some treatments the basal part of the shoot (with apical shoot meristem and zone of leaf elongation) was lifted up to separate the indirect effects of root zone temperature on shoot growth from the direct effects of temperature on the shoot meristem.Shoot and root growth were decreased by low RZT to a similar extent irrespective of the growth medium (i.e. nutrient solution, fertilized or unfertilized soil). In all culture media Ca concentration was similar or even higher in plants grown at 12 as compared to 24°. At lower RZT concentrations of N, P and K in the shoot dry matter decreased in unfertilized soil, whereas in nutrient solution and fertilized soil only the K concentration decreased.When direct temperature effects on the shoot meristem were reduced by lifting the basal part of the shoot above the temperature-controlled root zone, shoot growth at low RZT was significantly increased in nutrient solution and fertilized soil, but not in unfertilized soil. In fertilized soil and nutrient solution at low RZT the uptake of K increased to a similar extent as plant growth, and thus shoot K concentration was not reduced by increasing shoot growth rates. In contrast, uptake of N and P was not increased, resulting in significantly decreased shoot concentrations.It is concluded that shoot growth at suboptimal RZT was limited both by a direct temperature effect on shoot activity and by a reduced nutrient supply through the roots. Nutrient concentrations in the shoot tissue at low RZT were not only influenced by availability in the substrate and dilution by growth, but also by the internal demand for growth. 相似文献