首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.

Commercial bioleaching of copper and the biooxidation of gold is a cost-effective and environmentally friendly process for metal recovery. A partial genome sequence of the acidophilic, bioleaching bacterium Acidithiobacillus ferrooxidans is available from two public sources. This information has been used to build preliminary models that describe how this microorganism confronts unusually high iron loads in the extremely acidic conditions (pH 2) found in natural environments and in bioleaching operations. A. ferrooxidans contains candidate genes for iron uptake, sensing, storage, and regulation of iron homeostasis. Predicted proteins exhibit significant amino acid similarity with known proteins from neutrophilic organisms, including conservation of functional motifs, permitting their identification by bioinformatics tools and allowing the recognition of common themes in iron transport across distantly related species. However, significant differences in amino acid sequence were detected in pertinent domains that suggest ways in which the periplasmic and outer membrane proteins of A. ferrooxidans maintain structural integrity and relevant protein-protein contacts at low pH. Unexpectedly, the microorganism also contains candidate genes, organized in operon-like structures that potentially encode at least 11 siderophore systems for the uptake of Fe(III), although it does not exhibit genes that could encode the biosynthesis of the siderophores themselves. The presence of multiple Fe(III) uptake systems suggests that A. ferrooxidans can inhabit aerobic environments where iron is scarce and where siderophore producers are present. It may also help to explain why it cannot tolerate high Fe(III) concentrations in bioleaching operations where it is out-competed by Leptospirillum species.

  相似文献   

2.
3.
This minireview presents recent advances in our understanding of iron oxidation and homeostasis in acidophilic Bacteria and Archaea. These processes influence the flux of metals and nutrients in pristine and man-made acidic environments such as acid mine drainage and industrial bioleaching operations. Acidophiles are also being studied to understand life in extreme conditions and their role in the generation of biomarkers used in the search for evidence of existing or past extra-terrestrial life. Iron oxidation in acidophiles is best understood in the model organism Acidithiobacillus ferrooxidans. However, recent functional genomic analysis of acidophiles is leading to a deeper appreciation of the diversity of acidophilic iron-oxidizing pathways. Although it is too early to paint a detailed picture of the role played by lateral gene transfer in the evolution of iron oxidation, emerging evidence tends to support the view that iron oxidation arose independently more than once in evolution. Acidic environments are generally rich in soluble iron and extreme acidophiles (e.g. the Leptospirillum genus) have considerably fewer iron uptake systems compared with neutrophiles. However, some acidophiles have been shown to grow as high as pH 6 and, in the case of the Acidithiobacillus genus, to have multiple iron uptake systems. This could be an adaption allowing them to respond to different iron concentrations via the use of a multiplicity of different siderophores. Both Leptospirillum spp. and Acidithiobacillus spp. are predicted to synthesize the acid stable citrate siderophore for Fe(III) uptake. In addition, both groups have predicted receptors for siderophores produced by other microorganisms, suggesting that competition for iron occurs influencing the ecophysiology of acidic environments. Little is known about the genetic regulation of iron oxidation and iron uptake in acidophiles, especially how the use of iron as an energy source is balanced with its need to take up iron for metabolism. It is anticipated that integrated and complex regulatory networks sensing different environmental signals, such as the energy source and/or the redox state of the cell as well as the oxygen availability, are involved.  相似文献   

4.
5.
Mutagenesis of group B streptococcus (GBS) with TnphoZ, a transposon designed to identify secreted protein genes, identified the gene homologues fhuD and fhuG. The encoded proteins participate in siderophore (hydroxamate)-dependent iron(III) transport in other bacterial species. Sequence analysis of the genome determined that fhuD and fhuG are members of a polycistronic operon comprised of four genes, fhuCDBG, that encode a putative ATPase, cell surface receptor and two transmembrane proteins respectively. We hypothesized that FhuD was a siderophore receptor. Western analysis of cell extracts localized FhuD to the bacterial cell membrane. Fluorescence quenching experiments determined that purified FhuD bound hydroxamate-type siderophores. FhuD displayed highest affinity for iron(III)-desferroxamine, with a K(D) (microM) = 0.05, identical to that described for FhuD2 from Staphylococcus aureus. The role of Fhu in siderophore-iron transport was also characterized. A fhu mutant, ACFhu1, was equally sensitive to the iron-dependent antibiotic streptonigrin as the wild-type strain, suggesting that ACFhu1 was not reduced for intracellular iron concentrations in the absence of exogenous siderophore. However, ACFhu1 transported significantly less siderophore-bound iron in (55)Fe accumulation assays. These data provide the first evidence of siderophore-mediated iron acquisition by GBS.  相似文献   

6.
7.
The genes encoding for the large (rbcL) and small (rbcS) subunits of ribulose-1,5-bisphosphate carboxylase (RuBisCO) were cloned from the obligate autotroph Thiobacillus ferrooxidans, a bacterium involved in the bioleaching of minerals. Nucleotide sequence analysis of the cloned DNA showed that the two coding regions are separated by a 30-bp intergenic region, the smallest described for the RuBisCO genes. The rbcL and rbcS genes encode polypeptides of 473 and 118 amino acids, respectively. Comparison of the nucleotide and amino acid sequences with those of the genes for rbcL and rbcS found in other species demonstrated that the T. ferrooxidans genes have the closest degree of identity with those of Chromatium vinosum and of Alvinoconcha hessleri endosymbiont. Both T. ferrooxidans enzyme subunits contain all the conserved amino acids that are known to participate in the catalytic process or in holoenzyme assembly.  相似文献   

8.
Siderophores are iron-chelating molecules produced by microbes when intracellular iron concentrations are low. Low iron triggers a cascade of gene activation, allowing the cell to survive due to the synthesis of important proteins involved in siderophore synthesis and transport. Generally, siderophores are classified by their functional groups as catecholates, hydroxamates and hydroxycarboxylates. Although other chemical structural modifications and functional groups can be found. The functional groups participate in the iron-chelating process when the ferri-siderophore complex is formed. Classified as acidophiles, alkaliphiles, halophiles, thermophiles, psychrophiles, piezophiles, extremophiles have particular iron requirements depending on the environmental conditions in where they grow. Most of the work done in siderophore production by extremophiles is based in siderophore concentration and/or genomic studies determining the presence of siderophore synthesis and transport genes. Siderophores produced by extremophiles are not well known and more work needs to be done to elucidate chemical structures and their role in microorganism survival and metal cycling in extreme environments.  相似文献   

9.
10.
11.
The chemical and physical characteristics of realgar (an arsenic sulfide mineral that occurs in several crystalline forms) in the presence of Acidithiobacillus ferrooxidans BY-3 were investigated in this work. Grains of the mineral were incubated for 10, 20, and 30 days with A. ferrooxidans cultured in 9K medium at 30 °C and at 150 rpm agitation. Abiotic control experiments were conducted in identical solutions. The effect of bioleaching on the surface properties of realgar was characterized by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), inductively coupled plasma atomic emission spectroscope (ICP-AES), X-ray diffraction (XRD), and Raman spectroscopy. SEM and EDS analyses confirmed the ability of A. ferrooxidans to modify surfaces of realgar and to efficiently enhance its dissolution. ICP-AES showed the dissolution and precipitation of realgar during bioleaching. Based on the XRD pattern and the Raman spectra, the decrease in arsenic in the liquid phase was due to co-precipitation of the mineral with Fe(III) or Fe(III) compounds (e.g., jarosite or goethite). Thus, not only did Fe(III) alter the surface of realgar, but it also promoted its dissolution during bioleaching.  相似文献   

12.
【目的】了解嗜酸异养菌在诸如酸性矿坑水(AMD)和生物浸出体系等极端酸性环境中对浸矿微生物产生的影响。【方法】研究由嗜酸异养菌Acidiphilium acidophilum和自养菌Acidithiobacillus ferrooxidans经长期驯化后形成的共培养体系分别在Cd2+、Cu2+、Ni2+和Mg2+胁迫下的稳定性;并将此共培养体系应用于黄铁矿和低品位黄铜矿的生物浸出实验。【结果】在上述4种金属离子分别存在的条件下,异养菌Aph.acidophilum均能促进At.ferrooxidans对亚铁的氧化,提高其对能源利用的效率。共培养体系中的异养菌Aph.acidophilum使At.ferrooxidans对Cu2+的最大耐受浓度(MTC)由2.0 g/L提高到5.0 g/L,而且共培养的细胞数量与2.0 g/L Cu2+条件下生长的At.ferrooxidans纯培养相似。另外,共培养中的At.ferrooxidans对Mg2+的MTC也由12.0 g/L提高到17.0 g/L。生物浸出实验中嗜酸异养菌Aph.acidophilum促进了At.ferrooxidans对黄铁矿样品的浸出,浸出率较其纯培养提高了22.7%;但在含铁量较低的低品位黄铜矿浸出体系中共培养和At.ferrooxidans纯培养的浸出率均低于33%。在加入2.0 g/L Fe2+的低品位黄铜矿浸出体系中,共培养和At.ferrooxidans纯培养的浸出率均得到提高,分别达到52.22%和41.27%。【结论】以上结果表明,Aph.acidophilum与At.ferrooxidans共培养在一定的环境胁迫下仍能保持其稳定性并完成各自的生态功能,并且嗜酸异养菌Aph.acidophilum适合在含铁量较高的浸出体系中与铁氧化细菌共同作用来提高生物浸出的效率。  相似文献   

13.
An important microorganism of acid mine drainage (AMD) and bioleaching environments is Acidithiobacillus ferrooxidans which oxidizes ferrous iron and generates ferric iron, an oxidant. Most investigations to understand microbial aspects of sulfide mineral dissolution have focused on understanding physiological, metabolic, and genetic characteristics of A. ferrooxidans. In this study, a 16S rRNA oligonucleotide probe designated S-S-T.ferr-0584-a-A-18, and labeled at the 5'-end with indocarbocyanine dye (CY3), was used in a fluorescent in situ hybridization (FISH) procedure on pure cultures of nine isolates of A. ferrooxidans. These isolates were recovered from acid mine drainage and mining environments. The probe was also used to detect cells of A. ferrooxidans, recovered from AMD samples, growing on FeTSB and FeSo solid media in a FISH procedure. In addition, the presence of cells of A. ferrooxidans in an environmental water sample from an AMD site in Copper Cliff, Ontario, Canada was analyzed using the FISH technique. Probe specificity was first confirmed with A. ferrooxidans ATCC 19859 (positive control) and Acidithiobacillus thiooxidans ATCC 19377, Acidiphilium acidophilum ATCC 27807, and Lactobacillus plantarum ATCC 8014 (negative controls). Positive and negative control cells were also used to determine optimal stringency conditions for hybridizations with the probe. Cells of the nine isolates of A. ferrooxidans stained positive, although the fluorescent signal varied in intensity from isolate to isolate. Colonies of A. ferrooxidans from the environmental water sample of the AMD site were recovered only on FeTSB solid medium after 22 days of incubation. The probe was able to detect cells of A. ferrooxidans in a FISH procedure. However, no cells of A. ferrooxidans were detected in the AMD water sample without cultivation. Thus, probe S-S-T.ferr-0584-a-A-18 hybridized effectively with cells of A. ferrooxidans recovered from pure cultures but failed to directly detect cells of A. ferrooxidans in the AMD site.  相似文献   

14.
A method is described for the determination of Fe2+ and Fe3+ after its reduction to Fe2+ on the basis of oxygen uptake rate as a function of Fe2+ concentration. By using substrate-specific Thiobacillus ferrooxidans in combination with the standard addition method a specific determination of iron(II, III) is possible with the determination limit of 3 mumol/L.  相似文献   

15.
Iron acquisition by iron‐limited cyanobacteria is typically considered to be mediated mainly by siderophores, iron‐chelating molecules released by iron‐limited cyanobacteria into the environment. In this set of experiments, iron uptake by iron‐limited cells of the cyanobacterium Anabaena flos‐aquae (L.) Bory was investigated in cells resuspended in siderophore‐free medium. Removal of siderophores decreased iron‐uptake rates by ~60% compared to siderophore‐replete conditions; however, substantial rates of iron uptake remained. In the absence of siderophores, Fe(III) uptake was much more rapid from a weaker synthetic chelator [N‐(2‐hydroxyethyl)ethylenediamine‐N,N′,N′‐triacetic acid (HEDTA); log Kcond = 28.64 for Fe(III)HEDTA(OH)?] than from a very strong chelator [N,N′‐bis(2‐hydroxybenzyl)‐ethylenediamine‐N,N′‐diacetic acid (HBED); log Kcond = 31.40 for Fe(III)HBED?], and increasing chelator:Fe(III) ratios decreased the Fe(III)‐uptake rate; these results were evident in both short‐term (4 h; absence of siderophores) and long‐term (116 h; presence of siderophores) experiments. However, free (nonchelated) Fe(III) provided the most rapid iron uptake in siderophore‐free conditions. The results of the short‐term experiments are consistent with an Fe(III)‐binding/uptake mechanism associated with the cyanobacterial outer membrane that operates independently of extracellular siderophores. Iron uptake was inhibited by temperature‐shock treatments of the cells and by metabolically compromising the cells with diphenyleneiodonium; this finding indicates that the process is dependent on active metabolism to operate and is not simply a passive Fe(III)‐binding mechanism. Overall, these results point to an important, siderophore‐independent iron‐acquisition mechanism by iron‐limited cyanobacterial cells.  相似文献   

16.
Pseudomonas syringae pv. syringae B301D produces a yellow-green, fluorescent siderophore, pyoverdin(pss), in large quantities under iron-limited growth conditions. Maximum yields of pyoverdin(pss) of approximately 50 mug/ml occurred after 24 h of incubation in a deferrated synthetic medium. Increasing increments of Fe(III) coordinately repressed siderophore production until repression was complete at concentrations of >/= 10 muM. Pyoverdin(pss) was isolated, chemically characterized, and found to resemble previously characterized pyoverdins in spectral traits (absorbance maxima of 365 and 410 nm for pyoverdin(pss) and its ferric chelate, respectively), size (1,175 molecular weight), and amino acid composition. Nevertheless, pyoverdin(pss) was structurally unique since amino acid analysis of reductive hydrolysates yielded beta-hydroxyaspartic acid, serine, threonine, and lysine in a 2:2:2:1 ratio. Pyoverdin(pss) exhibited a relatively high affinity constant for Fe(III), with values of 10 at pH 7.0 and 10 at pH 10.0. Iron uptake assays with [Fe]pyoverdin(pss) demonstrated rapid active uptake of Fe(III) by P. syringae pv. syringae B301D, while no uptake was observed for a mutant strain unable to acquire Fe(III) from ferric pyoverdin(pss). The chemical and biological properties of pyoverdin(pss) are discussed in relation to virulence and iron uptake during plant pathogenesis.  相似文献   

17.
18.
Chen P  Yan L  Leng F  Nan W  Yue X  Zheng Y  Feng N  Li H 《Bioresource technology》2011,102(3):3260-3267
The characteristics of the bioleaching of realgar by Acidithiobacillus ferrooxidans BY-3 (A. ferrooxidans) were investigated in this work. We examined the effects of using ferrous iron and elemental sulfur as the sole and mixed energy sources on the bioleaching of realgar. Under all experimental conditions, A. ferrooxidans BY-3 significantly enhanced the dissolution of realgar. Moreover, arsenic was more efficiently leached using A. ferrooxidans BY-3 in the presence of ferrous iron than in other culture conditions. A high concentration of arsenic was observed in the absence of alternative energy sources. This concentration was higher than that in cultures with sulfur only and lower than that in cultures with ferrous iron and sulfur. Linear or nonlinear models best fit the experimental data; the nonlinear model exhibited the dual effects of dissolution and removal on the bioleaching of realgar, whereas the linear model only applied to situations of slow bioleaching rather than removal.  相似文献   

19.
Siderophore production in response to iron limitation was observed in Alcaligenes eutrophus CH34, and the corresponding siderophore was named alcaligin E. Alcaligin E was characterized as a phenolate-type siderophore containing neither catecholate nor hydroxamate groups. Alcaligin E promoted the growth of siderophore-deficient A. eutrophus mutants under iron-restricted conditions and promoted 59Fe uptake by iron-limited cells. However, the growth of the Sid- mutant AE1152, which was obtained from CH34 by Tn5-Tc mutagenesis, was completely inhibited by the addition of alcaligin E. AE1152 also showed strongly reduced 59Fe uptake in the presence of alcaligin E. This indicates that a gene, designated aleB, which is involved in transport of ferric iron-alcaligin E across the membrane is inactivated. The aleB gene was cloned, and its putative amino acid sequence showed strong similarity to those of ferric iron-siderophore receptor proteins. Both wild-type strain CH34 and aleB mutant AE1152 were able to use the same heterologous siderophores, indicating that AleB is involved only in ferric iron-alcaligin E uptake. Interestingly, no utilization of pyochelin, which is also a phenolate-type siderophore, was observed for A. eutrophus CH34. Genetic studies of different Sid- mutants, obtained after transposon mutagenesis, showed that the genes involved in alcaligin E and ferric iron-alcaligin E receptor biosynthesis are clustered in a 20-kb region on the A. eutrophus CH34 chromosome in the proximity of the cys-232 locus.  相似文献   

20.
Chemolithoautotrophic acidophilic bacteria, which belong to the genus Leptospirillum, can only grow with Fe(II) as electron donor and oxygen as an electron acceptor. Members of this genus play an important role in bioleaching sulfide ores. We used nearly complete genome sequences of Leptospirillum ferrooxidans (group I), Leptospirillum rubarum, Leptospirillum '5-way CG' (group II) and Leptospirillum ferrodiazotrophum (group III) to identify cytochromes that are likely involved in electron transfer chain(s). The results show the presence of genes encoding a number of c-type cytochromes (18-20 genes were identified in each species), as well as bd and cbb? oxidases. Genes encoding cbb? oxidase are clustered, with predicted genes involved in cbb? maturation proteins. Duplication of cbb? encoding genes (ccoNO) was detected in all four genomes. Interestingly, these micro-organisms also contain genes that potentially encode bc? and b?f-like complexes organized into two putative operon structures. To date, the Leptospirillum genus includes the only organisms reported to have genes coding for two different bc complexes. This study provides detailed insights into the components of electron transfer chains of Leptospirillum spp., revealing their conservation among leptospirilla groups and suggesting that there may be a single common pathway for electron transport between Fe(II) and oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号