首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Guanylyl cyclase activating protein 1 (GCAP-1), a Ca(2+)/Mg(2+) sensor protein that accelerates retinal guanylyl cyclase (RetGC) in the light and decelerates it in the dark, is inactive in cation-free form. Binding of Mg(2+) in EF-hands 2 and 3 was essential for RetGC activation in the conditions mimicking light adaptation. Mg(2+) binding in EF-hand 2 affected the conformation of a neighboring non-metal binding domain, EF-hand-1, and increased GCAP-1 affinity for RetGC nearly 40-fold compared with the metal-free EF-hand 2. Mg(2+) binding in EF-hand 3 increased GCAP-1 affinity for RetGC 5-fold and its maximal RetGC stimulation 2-fold. Mg(2+) binding in EF-hand 4 affected neither GCAP-1 affinity for RetGC, nor RetGC activation. Inactivation of Ca(2+) binding in EF-hand 4 was sufficient to render GCAP-1 a constitutive activator of RetGC, whereas the EF-hand 3 role in Ca(2+)-dependent deceleration of RetGC was likely to be through the neighboring EF-hand 4. Inactivation of Ca(2+) binding in EF-hand 2 affected cooperativity of RetGC inhibition by Ca(2+), but did not prevent the inhibition. We conclude that 1) Mg(2+) binding in EF-hands 2 and 3, but not EF-hand 4, is essential for the ability of GCAP-1 to activate RetGC in the light; 2) Mg(2+) or Ca(2+) binding in EF-hand 3 and especially in EF-hand 2 is required for high-affinity interaction with the cyclase and affects the conformation of the neighboring EF-hand 1, a domain required for targeting RetGC; and 3) RetGC inhibition is likely to be primarily caused by Ca(2+) binding in EF-hand 4.  相似文献   

2.
Guanylate cyclase regulator protein (GCAP)-2 is a Ca2+-binding protein that regulates photoreceptor outer segment membrane guanylate cyclase (RetGC) in a Ca2+-sensitive manner. GCAP-2 activates RetGC at free Ca2+ concentrations below 100 nM, characteristic of light-adapted photoreceptors, and inhibits RetGC when free Ca2+ concentrations are above the 500 nM level, characteristic of dark-adapted photoreceptors. We have mapped functional domains in GCAP-2 by using deletion mutants and chimeric proteins in which parts of GCAP-2 were substituted with corresponding fragments of other closely related recoverin-like proteins that do not regulate RetGC. We find that in addition to the EF-hand Ca2+-binding centers there are three regions that contain GCAP-2-specific sequences essential for regulation of RetGC. 1) The region between Phe78 and Asp113 determines whether GCAP-2 activates outer segment RetGC in low or high Ca2+ concentrations. Substitution of this domain with the corresponding region from neurocalcin causes a paradoxical behavior of the chimeric proteins. They activate RetGC only at high and not at low Ca2+ concentrations. 2) The amino acid sequence of GCAP-2 between Lys29 and Phe48 that includes the EF-hand-related motif EF-1 is essential both for activation of RetGC at low Ca2+ and inhibition at high Ca2+ concentrations. Most of the remaining N-terminal region can be substituted with recoverin or neurocalcin sequences without loss of GCAP-2 function. 3) Region Val171-Asn189, adjacent to the C-terminal EF-4 contributes to activation of RetGC, but it is not essential for the ability of Ca2+-loaded GCAP-2 to inhibit RetGC. Other regions of the molecule can be substituted with the corresponding fragments from neurocalcin or recoverin, or even partially deleted without preventing GCAP-2 from regulating RetGC. Substitution of these three domains in GCAP-2 with corresponding neurocalcin sequences also affects activation of individual recombinant RetGC-1 and RetGC-2 expressed in HEK293 cells.  相似文献   

3.
We explored the possibility that, in the regulation of an effector enzyme by a Ca(2+)-sensor protein, the actual Ca(2+) sensitivity of the effector enzyme can be determined not only by the affinity of the Ca(2+)-sensor protein for Ca(2+) but also by the relative affinities of its Ca(2+)-bound versus Ca(2+)-free form for the effector enzyme. As a model, we used Ca(2+)-sensitive activation of photoreceptor guanylyl cyclase (RetGC-1) by guanylyl cyclase activating proteins (GCAPs). A substitution Arg(838)Ser in RetGC-1 found in human patients with cone-rod dystrophy is known to shift the Ca(2+) sensitivity of RetGC-1 regulation by GCAP-1 to a higher Ca(2+) range. We find that at physiological concentrations of Mg(2+) this mutation increases the free Ca(2+) concentration required for half-maximal inhibition of the cyclase from 0.27 to 0.61 microM. Similar to rod outer segment cyclase, Ca(2+) sensitivity of recombinant RetGC-1 is strongly affected by Mg(2+), but the shift in Ca(2+) sensitivity for the R838S mutant relative to the wild type is Mg(2+)-independent. We determined the apparent affinity of the wild-type and the mutant RetGC-1 for both Ca(2+)-bound and Ca(2+)-free GCAP-1 and found that the net shift in Ca(2+) sensitivity of the R838S RetGC-1 observed in vitro can arise predominantly from the change in the affinity of the mutant cyclase for the Ca(2+)-free versus Ca(2+)-loaded GCAP-1. Our findings confirm that the dynamic range for RetGC regulation by Ca(2+)/GCAP is determined by both the affinity of GCAP for Ca(2+) and relative affinities of the effector enzyme for the Ca(2+)-free versus Ca(2+)-loaded GCAP.  相似文献   

4.
Guanylyl cyclase-activating proteins (GCAP) are EF-hand Ca(2+)-binding proteins that activate photoreceptor guanylyl cyclase (RetGC) in the absence of Ca(2+) and inhibit RetGC in a Ca(2+)-sensitive manner. The reported data for the RetGC inhibition by Ca(2+)/GCAPs in vitro are in disagreement with the free Ca(2+) levels found in mammalian photoreceptors (Woodruff, M. L., Sampath, A. P., Matthews, H. R., Krasnoperova, N. V., Lem, J., and Fain, G. L. (2002) J. Physiol. (Lond.) 542, 843-854). We have found that binding of Mg(2+) dramatically affects both Ca(2+)-dependent conformational changes in GCAP-1 and Ca(2+) sensitivity of RetGC regulation by GCAP-1 and GCAP-2. Lowering free Mg(2+) concentrations ([Mg](f)) from 5.0 mm to 0.5 mm decreases the free Ca(2+) concentration required for half-maximal inhibition of RetGC ([Ca]((1/2))) by recombinant GCAP-1 and GCAP-2 from 1.3 and 0.2 microm to 0.16 and 0.03 microm, respectively. A similar effect of Mg(2+) on Ca(2+) sensitivity of RetGC by endogenous GCAPs was observed in mouse retina. Analysis of the [Ca]((1/2)) changes as a function of [Mg](f) in mouse retina shows that the [Ca]((1/2)) becomes consistent with the range of 23-250 nm free Ca(2+) found in mouse photoreceptors only if the [Mg](f) in the photoreceptors is near 1 mm. Our data demonstrate that GCAPs are Ca(2+)/Mg(2+) sensor proteins. While Ca(2+) binding is essential for cyclase activation and inhibition, Mg(2+) binding to GCAPs is critical for setting the actual dynamic range of RetGC regulation by GCAPs at physiological levels of free Ca(2+).  相似文献   

5.
Guanylyl cyclase (GC) plays a central role in the responses of vertebrate rod and cone photoreceptors to light. cGMP is an internal messenger molecule of vertebrate phototransduction. Light stimulates hydrolysis of cGMP, causing the closure of cGMP-dependent cation channels in the plasma membranes of photoreceptor outer segments. Light also lowers the concentration of intracellular free Ca(2+) and by doing so it stimulates resynthesis of cGMP by guanylyl cyclase. The guanylyl cyclases that couple Ca(2+) to cGMP synthesis in photoreceptors are members of a family of transmembrane guanylyl cyclases that includes atrial natriuretic peptide receptors and the heat-stable enterotoxin receptor. The photoreceptor membrane guanylyl cyclases, RetGC-1 and RetGC-2 (also referred to as GC-E and GC-F), are regulated intracellularly by two Ca(2+)-binding proteins, GCAP-1 and GCAP-2. GCAPs bind Ca(2+) at three functional EF-hand structures. Several lines of biochemical evidence suggest that guanylyl cyclase activator proteins (GCAPs) bind constitutively to an intracellular domain of RetGCs. In the absence of Ca(2+) GCAP stimulates and in the presence of Ca(2+) it inhibits cyclase activity. Proper functioning of RetGC and GCAP is necessary not only for normal photoresponses but also for photoreceptor viability since mutations in RetGC and in GCAP cause photoreceptor degeneration.  相似文献   

6.
Aequorin, which is a calcium-sensitive photoprotein and a member of the EF-hand superfamily, binds to Mg2+ under physiological conditions, which modulates its light emission. The Mg2+ binding site and its stabilizing influence were examined by NMR spectroscopy. The binding of Mg2+ to aequorin prevented the molecule from aggregating and stabilized it in the monomeric form. To determine the structural differences between Mg2+-bound and free aequorin, we have performed backbone NMR assignments of aequorin in the Mg2+-free state. Mg2+ binding induces conformational changes that are localized in the EF-hand loops. The chemical shift difference data indicated that there are two Mg2+-binding sites, EF-hands I and III. The Mg2+ titration experiment revealed that EF-hand III binds to Mg2+ with higher affinity than EF-hand I, and that only EF-hand III seems to be occupied by Mg2+ under physiological conditions.  相似文献   

7.
Guanylyl cyclase activating protein (GCAP)-1 regulates photoreceptor membrane guanylyl cyclase, RetGC, in a Ca2+-sensitive manner. It contains four Ca2+-binding motifs, EF-hands, three of which are capable of binding Ca2+. GCAP-1 activates RetGC in low Ca2+ and inhibits it in high Ca2+. In this study we used deletion and substitution analysis to identify regions of GCAP-1 sequence that are specifically required for inhibition and activation. A COOH-terminal sequence within Met157 to Arg182 is required for activation but not for inhibition of RetGC. We localized one essential stretch to 5 residues from Arg178 to Arg182. Another sequence essential for activation is within the N-terminal residues Trp21 to Thr27. The region between EF-hands 1 and 3 of GCAP-1 also contains elements needed for activation of RetGC. Finally, we found that inhibition of RetGC requires the first 9 amino-terminal residues of GCAP-1, but none of the residues from Gln33 to the COOH-terminal Gly205 are specifically required for inhibition. The ability of GCAP-1 mutants to regulate RetGC was tested on total guanylyl cyclase activity present in rod outer segments. In addition, the key mutants were also shown to produce similar effects on recombinant bovine outer segment cyclases GC1 and GC2.  相似文献   

8.
Guanylyl cyclase activating protein 1 (GCAP1), after substitution of Ca(2+) by Mg(2+) in its EF-hands, stimulates photoreceptor guanylyl cyclase, RetGC1, in response to light. We inactivated metal binding in individual EF-hands of GCAP1 tagged with green fluorescent protein to assess their role in GCAP1 binding to RetGC1 in co-transfected HEK293 cells. When expressed alone, GCAP1 was uniformly distributed throughout the cytoplasm and the nuclei of the cells, but when co-expressed with either fluorescently tagged or non-tagged RetGC1, it co-localized with the cyclase in the membranes. The co-localization did not occur when the C-terminal portion of RetGC1, containing its regulatory and catalytic domains, was removed. Mutations that preserved Mg(2+) binding in all three metal-binding EF-hands did not affect GCAP1 association with the cyclase in live cells. Locking EF-hand 4 in its apo-conformation, incapable of binding either Ca(2+) or Mg(2+), had no effect on GCAP1 association with the cyclase. In contrast to EF-hand 4, inactivation of EF-hand 3 reduced the efficiency of the co-localization, and inactivation of EF-hand 2 drastically suppressed GCAP1 binding to the cyclase. These results directly demonstrate that metal binding in EF-hand 2 is crucial for GCAP1 attachment to RetGC1, and that in EF-hand 3 it is less critical, although it enhances the efficiency of the GCAP1 docking on the target enzyme. Metal binding in EF-hand 4 has no role in the primary attachment of GCAP1 to the cyclase, and it only triggers the activator-to-inhibitor functional switch in GCAP1.  相似文献   

9.
GCAP-2, a mammalian photoreceptor-specific protein, is a Ca2+-dependent regulator of the retinal membrane guanylyl cyclases (Ret-GCs). Sensing the fall in intracellular free Ca2+ after photo-excitation, GCAP-2 stimulates the activity of Ret-GC leading to cGMP production. Like other members of the recoverin superfamily, GCAP-2 is a small N-myristoylated protein containing four EF-hand consensus motifs. In this study, we demonstrate that like recoverin and neurocalcin, GCAP-2 alters its conformation in response to Ca2+-binding as measured by a Ca2+-dependent change in its far UV CD spectrum. Differences in the conformation of the Ca2+-bound and Ca2+-free forms of GCAP-2 were also observed by examining their relative susceptibility to V8 protease. In contrast to recoverin, we do not observe proteolytic cleavage of the myristoylated N-terminus of Ca2+-bound GCAP-2. NMR spectra also show that, in contrast to recoverin, the chemical environment of the N-terminus of GCAP-2 is not dramatically altered by Ca2+ binding. Despite the similarity of GCAP-2 and recoverin, the structural consequences of Ca2+-binding for these two proteins are significantly dissimilar.  相似文献   

10.
Guanylyl cyclase activator proteins (GCAPs) are calcium-binding proteins closely related to recoverin, neurocalcin, and many other neuronal Ca(2+)-sensor proteins of the EF-hand superfamily. GCAP-1 and GCAP-2 interact with the intracellular portion of photoreceptor membrane guanylyl cyclase and stimulate its activity by promoting tight dimerization of the cyclase subunits. At low free Ca(2+) concentrations, the activator form of GCAP-2 associates into a dimer, which dissociates when GCAP-2 binds Ca(2+) and becomes inhibitor of the cyclase. GCAP-2 is known to have three active EF-hands and one additional EF-hand-like structure, EF-1, that deviates form the EF-hand consensus sequence. We have found that various point mutations within the EF-1 domain can specifically affect the ability of GCAP-2 to interact with the target cyclase but do not hamper the ability of GCAP-2 to undergo reversible Ca(2+)-sensitive dimerization. Point mutations within the EF-1 region can interfere with both the activation of the cyclase by the Ca(2+)-free form of GCAP-2 and the inhibition of retGC basal activity by the Ca(2+)-loaded GCAP-2. Our results strongly indicate that evolutionary conserved and GCAP-specific amino acid residues within the EF-1 can create a contact surface for binding GCAP-2 to the cyclase. Apparently, in the course of evolution GCAP-2 exchanged the ability of its first EF-hand motif to bind Ca(2+) for the ability to interact with the target enzyme.  相似文献   

11.
The 'EF-hand' Ca2+-binding motif plays an essential role in eukaryotic cellular signalling, and the proteins containing this motif constitute a large and functionally diverse family. The EF-hand is defined by its helix-loop-helix secondary structure as well as the ligands presented by the loop to bind the Ca2+ ion. The identity of these ligands is semi-conserved in the most common (the 'canonical') EF-hand; however, several non-canonical EF-hands exist that bind Ca2+ by a different co-ordination mechanism. EF-hands tend to occur in pairs, which form a discrete domain so that most family members have two, four or six EF-hands. This pairing also enables communication, and many EF-hands display positive co-operativity, thereby minimizing the Ca2+ signal required to reach protein saturation. The conformational effects of Ca2+ binding are varied, function-dependent and, in some cases, minimal, but can lead to the creation of a protein target interaction site or structure formation from a molten-globule apo state. EF-hand proteins exhibit various sensitivities to Ca2+, reflecting the intrinsic binding ability of the EF-hand as well as the degree of co-operativity in Ca2+ binding to paired EF-hands. Two additional factors can influence the ability of an EF-hand to bind Ca2+: selectivity over Mg2+ (a cation with very similar chemical properties to Ca2+ and with a cytoplasmic concentration several orders of magnitude higher) and interaction with a protein target. A structural approach is used in this review to examine the diversity of family members, and a biophysical perspective provides insight into the ability of the EF-hand motif to bind Ca2+ with a wide range of affinities.  相似文献   

12.
Guanylyl cyclase-activating protein 1 (GCAP1), a myristoylated Ca(2+) sensor in vision, regulates retinal guanylyl cyclase (RetGC). We show that protein-myristoyl group interactions control Ca(2+) sensitivity, apparent affinity for RetGC, and maximal level of cyclase activation. Mutating residues near the myristoyl moiety affected the affinity of Ca(2+) binding to EF-hand 4. Inserting Phe residues in the cavity around the myristoyl group increased both the affinity of GCAP1 for RetGC and maximal activation of the cyclase. NMR spectra show that the myristoyl group in the L80F/L176F/V180F mutant remained sequestered inside GCAP1 in both Ca(2+)-bound and Mg(2+)-bound states. This mutant displayed much higher affinity for the cyclase but reduced Ca(2+) sensitivity of the cyclase regulation. The L176F substitution improved affinity of myristoylated and non-acylated GCAP1 for the cyclase but simultaneously reduced the affinity of Ca(2+) binding to EF-hand 4 and Ca(2+) sensitivity of the cyclase regulation by acylated GCAP1. The replacement of amino acids near both ends of the myristoyl moiety (Leu(80) and Val(180)) minimally affected regulatory properties of GCAP1. N-Lauryl- and N-myristoyl-GCAP1 activated RetGC in a similar fashion. Thus, protein interactions with the central region of the fatty acyl chain optimize GCAP1 binding to RetGC and maximize activation of the cyclase. We propose a dynamic connection (or "tug") between the fatty acyl group and EF-hand 4 via the C-terminal helix that attenuates the efficiency of RetGC activation in exchange for optimal Ca(2+) sensitivity.  相似文献   

13.
Guanylyl cyclase activating protein-2 (GCAP-2) is a Ca2+-sensitive regulator of phototransduction in retinal photoreceptor cells. GCAP-2 activates retinal guanylyl cyclases at low Ca2+ concentration (<100 nM) and inhibits them at high Ca2+ (>500 nM). The light-induced lowering of the Ca2+ level from approximately 500 nM in the dark to approximately 50 nM following illumination is known to play a key role in visual recovery and adaptation. We report here the three-dimensional structure of unmyristoylated GCAP-2 with three bound Ca2+ ions as determined by nuclear magnetic resonance spectroscopy of recombinant, isotopically labeled protein. GCAP-2 contains four EF-hand motifs arranged in a compact tandem array like that seen previously in recoverin. The root mean square deviation of the main chain atoms in the EF-hand regions is 2.2 A in comparing the Ca2+-bound structures of GCAP-2 and recoverin. EF-1, as in recoverin, does not bind calcium because it contains a disabling Cys-Pro sequence. GCAP-2 differs from recoverin in that the calcium ion binds to EF-4 in addition to EF-2 and EF-3. A prominent exposed patch of hydrophobic residues formed by EF-1 and EF-2 (Leu24, Trp27, Phe31, Phe45, Phe48, Phe49, Tyr81, Val82, Leu85, and Leu89) may serve as a target-binding site for the transmission of calcium signals to guanylyl cyclase.  相似文献   

14.
Guanylate cyclase-activating proteins (GCAPs) are neuronal calcium sensors that activate membrane bound guanylate cyclases (EC 4.6.1.2.) of vertebrate photoreceptor cells when cytoplasmic Ca2+ decreases during illumination. GCAPs contain four EF-hand Ca2+-binding motifs, but the first EF-hand is nonfunctional. It was concluded that for GCAP-2, the loss of Ca2+-binding ability of EF-hand 1 resulted in a region that is crucial for targeting guanylate cyclase [Ermilov, A.N., Olshevskaya, E.V. & Dizhoor, A.M. (2001) J. Biol. Chem.276, 48143-48148]. In this study we tested the consequences of mutations in EF-hand 1 of GCAP-1 with respect to Ca2+ binding, Ca2+-induced conformational changes and target activation. When the nonfunctional first EF-hand in GCAP-1 is replaced by a functional EF-hand the chimeric mutant CaM-GCAP-1 bound four Ca2+ and showed similar Ca2+-dependent changes in tryptophan fluorescence as the wild-type. CaM-GCAP-1 neither activated nor interacted with guanylate cyclase. Size exclusion chromatography revealed that the mutant tended to form inactive dimers instead of active monomers like the wild-type. Critical amino acids in EF-hand 1 of GCAP-1 are cysteine at position 29 and proline at position 30, as changing these to glycine was sufficient to cause loss of target activation without a loss of Ca2+-induced conformational changes. The latter mutation also promoted dimerization of the protein. Our results show that EF-hand 1 in wild-type GCAP-1 is critical for providing the correct conformation for target activation.  相似文献   

15.
Factor IX is an indispensable protein required in the blood coagulation cascade. It binds to the surface of phospholipid membrane by means of a gamma-carboxyglutamic acid (Gla) domain situated at the N terminus. Recently, we showed that physiological concentrations of Mg2+ ions affect the native conformation of the Gla domain and in doing so augment the biological activity of factor IXa and binding affinity with its binding protein even in the presence of Ca2+ ions. Here we report on the crystal structures of the Mg2+/Ca2+-bound and Ca2+-bound (Mg2+-free) factor IX Gla domain (IXGD1-46) in complex with its binding protein (IX-bp) at 1.55 and 1.80 A resolutions, respectively. Three Mg2+ and five Ca2+ ions were bound in the Mg2+/Ca2+-bound IXGD1-46, and the Mg2+ ions were replaced by Ca2+ ions in Mg2+-free IXGD1-46. Comparison of Mg2+/Ca2+-bound with Ca2+-bound structures of the complexes showed that Mg2+ ion, which formed a bridge between IXGD1-46 and IX-bp, forced IXGD1-46 to rotate 4 degrees relative to IX-bp and hence might be the cause of a more tight interaction between the molecules than in the case of the Mg2+-free structure. The results clearly suggest that Mg2+ ions are required to maintain native conformation and in vivo function of factor IX Gla domain during blood coagulation.  相似文献   

16.
Guanylyl cyclase-activating proteins (GCAPs) are calcium sensor proteins of the EF-hand superfamily that inhibit retinal photoreceptor membrane guanylyl cyclase (retGC) in the dark when they bind Ca(2+) but activate retGC when Ca(2+) dissociates from GCAPs in response to light stimulus. We addressed the difference in exposure of GCAP-2 structure to protein kinase and a protease as indicators of conformational change caused by binding and release of Ca(2+). We have found that unlike its homolog, GCAP-1, the C terminus of GCAP-2 undergoes phosphorylation by cyclic nucleotide-dependent protein kinases (CNDPK) present in the retinal extract and rapid dephosphorylation by the protein phosphatase PP2C present in the retina. Inactivation of the CNDPK phosphorylation site in GCAP-2 by substitutions S201G or S201D, as well as phosphorylation or thiophosphorylation of Ser(201), had little effect on the ability of GCAP-2 to regulate retGC in reconstituted membranes in vitro. At the same time, Ca(2+) strongly inhibited phosphorylation of the wild-type GCAP-2 by retinal CNDPK but did not affect phosphorylation of a constitutively active Ca(2+)-insensitive GCAP-2 mutant. Partial digestion of purified GCAP-2 with Glu-C protease revealed at least two sites that become exposed or constrained in a Ca(2+)-sensitive manner. The Ca(2+)-dependent conformational changes in GCAP-2 affect the areas around Glu(62) residue in the entering helix of EF-hand 2, the areas proximal to the exiting helix of EF-hand 3, and Glu(136)-Glu (138) between EF-hand 3 and EF-hand 4. These changes also cause the release of the C-terminal Ser(201) from the constraint caused by the Ca(2+)-bound conformation.  相似文献   

17.
18.
A key challenge in studying protein/protein interactions is to accurately identify contact surfaces, i.e. regions of two proteins that are in direct physical contact. Aside from x-ray crystallography and NMR spectroscopy few methods are available that address this problem. Although x-ray crystallography often provides detailed information about contact surfaces, it is limited to situations when a co-crystal of proteins is available. NMR circumvents this requirement but is limited to small protein complexes. Other methods, for instance protection from proteolysis, are less direct and therefore less informative. Here we describe a new method that identifies candidate contact surfaces in protein complexes. The complexes are first stabilized by cross-linking. They are then digested with a protease, and the cross-linked fragments are analyzed by mass spectrometry. We applied this method, referred to as COSUMAS (contact surfaces by mass spectrometry), to two proteins, retinal guanylyl cyclase 1 (RetGC1) and guanylyl cyclase-activating protein-1 (GCAP-1), that regulate cGMP synthesis in photoreceptors. Two regions in GCAP-1 and three in RetGC1 were identified as possible contact sites. The two regions of RetGC1 that are in the vicinities of Cys(741) and Cys(780) map to a kinase homology domain in RetGC1. Their identities as contact sites were independently evaluated by peptide inhibition analysis. Peptides with sequences from these regions block GCAP-1-mediated regulation of guanylyl cyclase at both high and low Ca2+ concentrations. The two regions of GCAP-1 cross-linked to these peptides were in the vicinities of Cys(17) and Cys(105) of GCAP-1. Peptides with sequences derived from these regions inhibit guanylyl cyclase activity directly. These results support a model in which GCAP-1 binds constitutively to RetGC1 and regulates cyclase activity by structural changes caused by the binding or dissociation of Ca2+.  相似文献   

19.
Calbindin D28k, a highly conserved protein with Ca2+-sensing and Ca2+-buffering capabilities, is abundant in brain and sensory neurons. This protein contains six EF-hand subdomains, four of which bind Ca2+ with high affinity. Calbindin D28k can be reconstituted from six synthetic peptides corresponding to the six EF-hands, indicating a single-domain structure with multiple interactions between the EF-hand subdomains. In this study, we have undertaken a detailed characterization of the Ca2+-binding and oligomerization properties of each individual EF-hand peptide using CD spectroscopy and analytical ultracentrifugation. Under the conditions tested, EF2 is monomeric and does not bind Ca2+, whereas EF6, which binds Ca2+ weakly, aggregates severely. We have therefore focused this study on the high-affinity binding sites, EF-hands 1, 3, 4, and 5. Our sedimentation equilibrium data show that, in the presence of Ca2+, EF-hands 1, 3, 4, and 5 all form dimers in solution in which the distribution between the monomer, dimer, and higher order oligomers differs. The processes of Ca2+ binding and oligomerization are linked to different degrees, and three main mechanisms emerge. For EF-hands 1 and 5, the dimer binds Ca2+ more strongly than the monomer and Ca2+ binding drives dimerization. For EF-hand 4, dimer formation requires only one of the monomers to be Ca2+-bound. In this case, the Ca2+ affinity is independent of dimerization. For EF-hand 3, dimerization occurs both in the absence and presence of Ca2+, while oligomerization increases in the presence of Ca2+.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号