首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
T H Cromartie  C T Walsh 《Biochemistry》1975,14(12):2588-2596
L-alpha-Hydroxy acid oxidase (listed as EC 1.4.3.2, L-amino acid: O2 oxidoreductase) has been purified 100-fold from rat kidney to apparent homogeneity by gel electrophoresis. A subunit molecular weight of 47,500 was found by sodium dodecyl sulfate gel electrophoresis, but in contrast to previous reports, the enzyme has been found to have a molecular weight of ca. 200,000 by Sephadex gel filtration and by dodecyl sulfate gel electrophoresis of the enzyme cross-linked with dimethyl suberimidate. A somewhat higher value was found by sedimentation equilibrium, but a tetrameric structure for the active enzyme is definitely established. The enzyme was found to contain the FMN coenzyme at a concentration of one FMN/102,000 daltons or one flavine/two subunits, a highly unusual finding. This ratio was determined from spectroscopic analysis of the FMN in lyophilized samples of the enzyme and by titration of the coenzyme with the flavine specific enzyme inactivator 2-hydroxy-3-butynoate. The enzyme has the same specific activity as a crystalline sample of the enzyme reported to have twice as much flavine/milligram.  相似文献   

2.
Glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides is irreversibly inactivated by the 2,3'-dialdehyde of NADP+ (oNADP+) in the absence of substrate. The inactivation is first order with respect to NADP+ concentration and follows saturation kinetics, indicating that the enzyme initially forms a reversible complex with the inhibitor followed by covalent modification (KI = 1.8 mM). NADP+ and NAD+ protect the enzyme from inactivation by oNADP+. The pK of inactivation is 8.1. oNADP+ is an effective coenzyme in assays of glucose-6-phosphate dehydrogenase (Km = 200 microM). Kinetic evidence and binding studies with [14C] oNADP+ indicate that one molecule of oNADP+ binds per subunit of glucose-6-phosphate dehydrogenase when the enzyme is completely inactivated. The interaction between oNADP+ and the enzyme does not generate a Schiff's base, or a conjugated Schiff's base, but the data are consistent with the formation of a dihydroxymorpholino derivative.  相似文献   

3.
F Thomé  D B Pho  A Olomucki 《Biochimie》1985,67(2):249-252
Bromopyruvate, an analogue of pyruvate, one of the substrates of octopine dehydrogenase, was tested as an inhibitor of the enzyme. Provided both the coenzyme and the second substrate, arginine, were present, bromopyruvate rapidly inactivated the enzyme. This inactivation was irreversible, obeyed pseudo-first order kinetics and exhibited a rate saturation effect. Pyruvate protected the enzyme against inactivation by bromopyruvate and these compounds competed for the same site. Bromopyruvate also behaved as a true substrate for the enzyme. This reagent thus exhibits the kinetic characteristics of a good affinity label for octopine dehydrogenase.  相似文献   

4.
Solubilized 3-hydroxy-3-methylglutaryl coenzyme A reductase (EC 1.1.1.34) from rat liver microsomes has been reported to be reversibly inactivated by temperatures below 19 degrees C. Cold inactivation has now been found to be completely prevented by NADPH and by NADP+ at a concentration of 3 mM. NADPH, however, was more active than NADP+ at lower concentrations and prevented 50% of the cold inactivation at 0.2 mM, whereas a 1.1 mM NADPH+ without effect and the substrate 3-hydroxy-3-methylglutaryl coenzyme A prevented only 30% of the cold inactivation at a concentration 50 times greater than the Km value.  相似文献   

5.
2-Hydroxy-3-butynoate is both a substrate and an irreversible inactivator of the flavoenzyme L-lactate oxidase. The partitioning between catalytic oxidation of 2-hydroxy-3-butynoate and inactivation of the enzyme is determined by the concentration of the second substrate, O2. Rapid reaction studies show the formation of an intermediate which is common to both the oxidation and inactivation pathways. This intermediate appears to be a charge-transfer complex between enzyme-reduced flavin and 2-keto-3-butynoate. It is characterized by a long-wavelength absorbing band (gamma(max) 600 nm) and lack of fluorescence, making it easily distinguished from the subsequently formed inactivated enzyme, which has no long wavelength absorption (gamma(max) 318, 368 nm) and which is strongly fluorescent. Inactivation is also accomplished by reaction of the reduced enzyme with 2-keto-3-butynoate. The absorbance and fluorescence characteristics of the inactivated enzyme are similar to those of a model compound, C(4a), N(5)-propano-bridged FMN bound to apolactate oxidase. That the modified chromophore of the inactivated enzyme is an adduct involving both the C(4a) and N5 positions is further supported by the spectral and fluorescence changes resulting from treatment of the inactivated enzyme with borohydride.  相似文献   

6.
Modification of two SH-groups in the molecule of formate dehydrogenase by dithiobisnitrobenzoate or to dacetamide results in the enzyme inactivation. Coenzymes, but not the substrate, protect the enzyme against the inactivation. NAD in the presence of potassium azide completely preserves the enzyme activity. Two SH-groups per enzyme molecule are protected from modification. The Km values for partially inactivated formate dehydrogenase remain constant for both substrates. The enzyme with modified SH-groups does not bind conezymes. The pH-dependence of the inactivation rate reveals the ionizable group with pK 9.6 (25 degrees C). The involvement of essential SH-groups in coenzyme binding is discussed.  相似文献   

7.
The reaction of 2-chloro-2-phenylethylamine with monoamine oxidase B was investigated to study the mechanism of this enzyme and its inactivation by this compound. 2-Chloro-2-phenylethylamine is a substrate with a Km of 30 microM and a turnover number of 80 min-1 at pH 6.5 at 30 degrees C. Incubation of 2-chloro-2-phenylethylamine with the enzyme led to the normal oxidation product, 2-chloro-2-phenylacetaldehyde, but only traces (0.25 mol%) of 2-phenylacetaldehyde, the product anticipated if the oxidation of substrate involved a stabilized carbanion at C-1 and elimination of chloride ion. These data suggest that a carbanion is not a likely intermediate in the oxidation of amines by monoamine oxidase. During the mechanistic studies we noted time-dependent inactivation of monoamine oxidase B by 2-chloro-2-phenylethylamine under both aerobic and anaerobic conditions. Inactivation was not reversible. Aerobically 2-chloro-2-phenylethylamine is oxidized to 2-chloro-2-phenylacetaldehyde which covalently modifies the enzyme (tau 1/2 = 40 min). Benzyl alcohol, a substrate analog, gives substantial protection against inactivation under aerobic conditions (tau 1/2 = 320 min), suggesting that an active site residue is modified. Anaerobic reaction of 2-chloro-2-phenylethylamine with monoamine oxidase B probably proceeds by direct alkylation of an enzyme residue (tau 1/2 = 140 min). Reduction with [3H]NaBH4 of the inactivated enzyme gave from 0 to 0.7 and from 4.5 to 5.6 mol of hydride incorporation for enzyme inactivated anaerobically and aerobically, respectively. The latter results are in agreement with inactivation by unmodified inhibitor and inactivation by oxidized inhibitor for the anaerobic and aerobic reactions, respectively. It is suggested that 2-chloro-2-phenylethylamine or its oxidation product 2-chloro-2-phenylacetaldehyde may serve as an active site affinity reagent for monoamine oxidase.  相似文献   

8.
Pig heart NAD-specific isocitrate dehydrogenase is inactivated by reaction with iodoacetate at pH 6.0. Loss of activity can be attributed to the formation of 1-2 mol of carboxymethyl-cysteine per peptide chain. The rate of inactivation is markedly decreased by the combined addition of Mn2+ and isocitrate, but not by alpha-ketoglutarate, the coenzyme NAD or the allosteric activator ADP. The substrate concentration dependence of the decreased rate of inactivation yields a dissociation constant of 1.6 mM for the enzyme-manganous-dibasic isocitrate complex, a value that is 50 times higher than the Km for this substrate. This result suggests that in protecting the enzyme against iodoacetate, isocitrate may bind to a region distinct from the catalytic site. Isocitrate and Mn2+ also prevent thermal denaturation, with an affinity for the enzyme close to that observed for the iodoacetate-sensitive site. The alkylatable cysteine residues may contribute to a manganous-isocitrate binding site which is responsible for stabilizing an active conformation of the enzyme.  相似文献   

9.
B Foucaud  J F Biellmann 《Biochimie》1982,64(10):941-947
Yeast alcohol dehydrogenase is very rapidly and irreversibly inactivated by 3-chloroacetyl pyridine adenine dinucleotide, a reactive NAD+-analogue (Biellmann et al., 1974, FEBS Lett. 40, 29-32). Kinetic investigations with this compound, and structurally related compounds, show that this inactivation, against which NAD+ provides a complete protection, corresponds to an affinity label. The incorporation of the coenzyme analogue correlates linearly with the enzyme inactivation, the total inactivation corresponding to one mole of inactivator per coenzyme binding site. The pH-dependence of the inactivation rates of the enzyme by this coenzyme analogue and by its reduced form reflects exactly the pH variation of their respective dissociation constants. In spite of a good stability of the label in the non denatured inactivated enzyme, no modified amino-acid residue could be identified. Considering the affinity of this analogue for yeast alcohol dehydrogenase and the strict steric requirements of this enzyme towards its ligands, the nature of the inactivation reaction as well as different possibilities of the loss of the label in the inactivated enzyme are discussed.  相似文献   

10.
D L Anton  R Kutny 《Biochemistry》1987,26(20):6444-6447
S-Adenosylmethionine decarboxylase, a pyruvoyl-containing decarboxylase, is inactivated in a time-dependent process under turnover conditions. The inactivation is dependent on the presence of both substrate and Mg2+, which is also required for enzyme activity. The rate of inactivation is dependent on the concentration of substrate and appears to be saturable. Inactivation by [methionyl-3,4-14C]-adenosylmethionine results in stoichiometric labeling of the protein. In contrast, when either S-[methyl-3H]adenosylmethionine or [8-14C]adenosylmethionine is used, there is virtually no incorporation of radioactivity. Automated Edman degradation of the alpha (pyruvoyl-containing) subunit reveals that substrate inactivation results in the conversion of the pyruvoyl group to an alanyl residue. These data suggest a mechanism of inactivation which involves the transamination of the nascent product to the pyruvoyl group, followed by the elimination of methylthioadenosine and the generation of a 2-propenal equivalent which could undergo a Michael addition to the enzyme. This is the first evidence for a transamination mechanism for substrate inactivation of a pyruvoyl enzyme.  相似文献   

11.
3-Dimethylamino-1-propyne irreversibly inactivates mitochondrial monoamine oxidase from bovine liver. The inactivation results in the loss of absorption in the 450-500-nm region of the flavine spectrum and a concomitant increase in absorbance at 410 nm. For the enzyme-bound adduct epsilon410 = 28000. The spectral properties of the adduct of the liver enzyme with 3-dimethylamino-1-propyne are similar to those observed when the pig kidney enzyme is inactivated with pargyline (Chuang et al. (1974), J. Biol. Chem. 249, 2381). From a proteolytic digest of the enzyme inactivated with labeled inhibitor a flavine peptide has been isolated which contains 1 mol of inactivator/mol of flavine. The chemical and spectral properties of the adduct are those of compounds containing the structure --N--CH==CH--CH==N+ less than. It was concluded that the flavine-inhibtor adduct is a N-5 substituted dihydroflavine and its structure has been determined.  相似文献   

12.
S Ghisla  S T Olson  V Massey  J M Lhoste 《Biochemistry》1979,18(21):4733-4742
The Zn-dependent flavoenzyme D-lactate dehydrogenase from Megasphaera elsdenii is irreversibly inactivated by the D form of the suicide substrate 2-hydroxy-3-butynoic acid. The process of inactivation involves formation of a new pink chromophore, which can be released in intact form from the protein and which was purified to homogeneity by affinity chromatography. Inactivation involves covalent addition of the suicide substrate to the flavin coenzyme. The optical spectra indicate an elongation of the flavin chromophore, and the chemical reactivity suggests a derivative of reduced flavin. The structure of this adduct was deduced from Fourier transform NMR, from the chemical properties, and from comparison with appropriate models, which were synthesized chemically. This structure involves the covalent linkage of the acetylenic inhibitor to positions N(5) and C(6) of the flavin coenzyme via carbon atoms 2 and 4 of the inhibitor to form an additional fused aromatic ring. The pink adduct can be reconverted to an isoalloxazine chromophore by reduction with borohydride and subsequent reoxidation with oxygen. This new isoalloxazine has the spectral properties of an isoflavin, and it is proposed to carry the moiety of the inactivator molecule as substituent at position C(6). The structure of the pink chromophore representing a cyclic adduct to the flavin positions N(5) and C(6) is compared to that of the adduct obtained from L-lactate oxidase from Mycobacterium smegmatis and the L form of the same inhibitor [C(4a)--N(5) cyclic adduct; Schonbrunn, A., Abeles, R. H., Walsh, C. T., Ghisla, S., Ogata, H., and Massey, V. (1976) Biochemistry 15, 1978]. This comparison allows deductions about the relative orientation of substrate, coenzyme, and active center functional groups in the two enzymes.  相似文献   

13.
Pigeon liver malic enzyme (malate dehydrogenase (decarboxylating), EC 1.1.1.40) was reversibly inactivated by periodate-oxidized NADP in a biphasic manner. The reversibility could be made irreversible by treating the modified enzyme with sodium borohydride. The inactivation showed saturation kinetics and could be prevented by nucleotide (NADP or NADPH). Fully protection was afforded by the combination of NADP, Mn2+ and L-malate. Oxidized NADP was also found to be a coenzyme and noncompetitive inhibitor of L-malate in the oxidative decarboxylase reaction catalyzed by malic enzyme.  相似文献   

14.
[1-3H]Allylamine was synthesized by sodium boro[3H]hydride reduction of acrolein followed by direct conversion of the [1-3H]allyl alcohol to N-allylphthalimide with triphenylphosphine, diethylazodicarboxylate, and phthalimide. The protecting group was removed with hydrazine. Inactivation of beef liver mitochondrial monoamine oxidase with [1-3H]allylamine led to incorporation of 1-6 eq of inactivator/active site depending upon the length of incubation time. Inactivation and radioactivity incorporation coincided; however, after 1 eq of tritium was incorporated and 5% enzyme activity remained, additional radioactivity continued to become incorporated into the enzyme. The optical spectrum of the FAD coenzyme changed during inactivation from that of oxidized to reduced flavin. Following dialysis of the inactivated enzyme, the spectrum remained reduced, but denaturation in urea rapidly resulted in reoxidation of the flavin. Under these same denaturing conditions, 96% of the radioactivity associated with the enzyme remained bound, therefore indicating that allylamine attachment is not to the flavin coenzyme but rather to an active site amino acid residue. The adduct also was stable to base and, to a lesser degree, acid treatment. Although allylamine and N-cyclopropylbenzylamine appear to be oxidized by monoamine oxidase to give 3-(amino acid residue) propanal adducts, two different amino acids seem to be involved because of a difference in stability of the adducts. The mechanisms for inactivation of monoamine oxidase by allylamine and reactivation by benzylamine are discussed in relation to previously reported results.  相似文献   

15.
The action of plasma amine oxidase upon beta-Br-ethylamine beta-Cl-ethylamine, beta-OH-phenylethylamine, and beta-Cl-phenylethylamine was examined. Beta-Br-ethylamine is a substrate and irreversible inactivator of the enzyme. The enzyme becomes covalently labeled by the inactivator. Approximately 2 mol of inactivator are incorporated per mol of enzyme (MW 170,000). The reduced enzyme is not inactivated. The enzyme catalyzes the elimination of HCl from beta-Cl-phenylethylamine to produce phenylacetaldehyde. The rate of the elimination reaction is comparable to the normal oxidative reaction. We conclude that the occurrence of this elimination reaction establishes the ability of the enzyme to catalyze proton abstraction from C-1 of the substrate and that proton abstraction occurs during the catalytic oxidation normally catalyzed by plasma amine oxidase. Beta-Cl-ethylamine is only oxidized to corresponding aldehyde. Beta-OH-phenylethylamine is neither oxidized, nor does elimination occur. It is a competitive inhibitor in the oxidation of benzylamine and in the elimination of HCl from beta-Cl-phenylethylamine.  相似文献   

16.
Serial extraction of lyophilized pig brain mitochondria with cold pentane resulted in complete loss of α-glycerophosphate oxidase activity. On titration with coenzyme Q10 the activity was fully recovered. On comparing the decline of α-glycerophosphate, NADH, and succinoxidase activities during serial extraction with pentane, α-glycerophosphate oxidation was always the first to be lost. Extraction of coenzyme Q10 from lyophilized brain mitochondria with pentane does not affect the activities of α-glycerophosphate or NADH dehydrogenase, but succinate dehydrogenase is partially inactivated. Reversible inactivation of the α-glycerophosphate oxidase system on depletion of the coenzyme Q content is taken as evidence that coenzyme Q is an obligatory component of this system. In accord with the conclusion that coenzyme Q is probably the physiological oxidant of α-glycerophosphate dehydrogenase, in antimycin-treated brain mitochondria α-glycerophosphate causes full activation of endogenous succinate dehydrogenase, in analogy to the previously observed activation by NAD-linked substrates in liver and heart mitochondria and by NADH in submitochondrial particles.  相似文献   

17.
beta-Br-ethylamine is both a substrate and an irreversible inhibitor of amine oxidase from Aspergillus niger. The enzyme catalyzes the nonoxidative elimination of HBr from beta-Br-ethylamine to form acetaldehyde. beta-Br-ethylamine meets several criteria for an irreversible substrate analog or suicide inhibitor. 1) It inactivates the oxidized enzyme, but not the reduced enzyme. 2) The Michaelis constant for beta-Br-ethylamine in the elimination reaction showed a similar magnitude to that of the related constant found when the haloamine acted as an inhibitor. 3) The enzyme was protected from the inactivation by the co-existence of the substrate. 4) Inactivation with beta-Br-[14C]ethylamine resulted in the incorporation of radioactivity corresponding to 1 mol of the label/mol of the monomeric unit of the enzyme and a decrease of 1 mol of the -SH group. 5) Inactivation was accompanied by the formation of a new absorption peak at 320 nm which was bleached by addition of NaBH4.  相似文献   

18.
The 2',3'-dialdehyde nicotinamide ribose derivatives of NAD (oNAD) and NADH (oNADH) have been prepared enzymatically from the corresponding 2',3'-dialdehyde analogs of NADP and NADPH. Pig heart NAD-dependent isocitrate dehydrogenase requires NAD as coenzyme but binds NADPH, as well as NADH, ADP, and ATP, at regulatory sites. Incubation of 1-3 mM oNAD or oNADH with this isocitrate dehydrogenase causes a time-dependent decrease in activity to a limiting value 40% that of the initial enzyme, suggesting that reaction does not occur at the catalytic coenzyme site. Upon varying the concentration of oNAD or oNADH from 0.2 to 3 mM, the inactivation rate constants increase in a nonlinear manner, consistent with reversible binding of oNAD and oNADH to the enzyme prior to covalent reaction. Inactivation is accompanied by incorporation of radioactive reagent with extrapolation to 0.54 mol [14C]oNAD or 0.45 mol [14C]oNADH/mol average enzyme subunit (or about 2 mol reagent/mol enzyme tetramer) when the enzyme is maximally inactivated; this value corresponds to the number of reversible binding sites for each of the natural ligands of isocitrate dehydrogenase. The protection against oNAD or oNADH inactivation by NADH, NADPH, and ADP (but not by isocitrate, NAD, or NADP) indicates that reaction occurs in the region of a nucleotide regulatory site. In contrast to the effects of oNAD and oNADH, oNADP and oNADPH cause total inactivation of the NAD-dependent isocitrate dehydrogenase, concomitant with incorporation, respectively, of about 3.5 mol [14C]oNADP or 1.3 mol [14C]oNADPH/mol average subunit. Reaction rates exhibit a linear dependence on [oNADP] or [oNADPH] and protection by natural ligands against inactivation is not striking. These results imply that oNADP and oNADPH are acting in this case as general chemical modifiers and indicate the importance of the free adenosine 2'-OH of oNAD and oNADH for specific labeling of the NAD-dependent isocitrate dehydrogenase. The new availability of 2',3'-dialdehyde nicotinamide ribose derivatives of NAD, NADH, NADP, and NADPH may allow selection of the appropriate reactive coenzyme analog for affinity labeling of a variety of dehydrogenases.  相似文献   

19.
The acetylenic alpha-hydroxy acid 2-hydroxy-3-butynoate (alpha HB) is a substrate and an irreversible inactivator of the FAD-containing flavoenzyme D-lactate dehydrogenase from Megasphaera elsdenii. On the average, the enzyme undergoes five catalytic turnovers with alpha HB in air at pH 7.0 before being inactivated. Irreversible inactivation is due to the conversion of the flavin to a pink adduct with visible absorption peaks at 522, 382, and 330 nm and weak fluorescence with an emission maximum at 635 nm. The adduct is stable and can be released from the enzyme and purified. It retains a structure analogous to FAD since it binds to the FAD-specific apo-D-amino acid oxidase. It can be further converted to an FMN analogue with phosphodiesterase which binds to the FMN-specific apoflavodoxin. Experiments were conducted to test whether inactivation was initiated by an alpha HB allene carbanion or the dehydrogenation product of alpha HB. Kinetic studies proved inconclusive in that a rapid equilibrium between an oxidized enzyme--allene carbanion pair and reduced enzyme--keto acid pair would make these two species kinetically equivalent. The olefinic substrate 2-hydroxy-3-butenoate, however, produced no flavin adduct. Since the keto acid derived from the oxidation of this alpha-hydroxy acid is expected to be as reactive as 2-keto-3-butynoate, it is concluded that an allene carbanion produced by abstraction of the alpha-hydrogen of alpha HB is the reactive species which covalently adds to the flavin.  相似文献   

20.
The substrate analogue 3-bromo-2-ketoglutarate reacts with pig heart NADP+-dependent isocitrate dehydrogenase to yield partially inactive enzyme. Following 65% inactivation, no further inactivation was observed. Concomitant with this inactivation, incorporation of 1 mol of reagent/mol of enzyme dimer was measured. The dependence of the inactivation rate on bromoketoglutarate concentration is consistent with reversible binding of reagent (KI = 360 microM) prior to irreversible reaction. Manganous isocitrate reduces the rate of inactivation by 80% but does not provide complete protection even at saturating concentrations. Complete protection is obtained with NADP+ or the NADP+-alpha-ketoglutarate adduct. By modification with [14C]bromoketoglutarate or by NaB3H4 reduction of modified enzyme, a single major radiolabeled tryptic peptide was obtained by high performance liquid chromatography with the sequence: Asp-Leu-Ala-Gly-X-Ile-His-Gly-Leu-Ser-Asn-Val-Lys. Evidence in the following paper (Bailey, J.M., Colman, R.F. (1987) J. Biol. Chem. 262, 12620-12626) indicates that X is glutamic acid. Enzyme modified at the coenzyme site by 2-(bromo-2,3-dioxobutylthio)-1,N(6)-ethenoadenosine 2',5'-biphosphate in the presence of manganous isocitrate is not further inactivated by bromoketoglutarate. Bromoketoglutarate-modified enzyme exhibits a stoichiometry of binding isocitrate and NADPH equal to 1 mol/mol of enzyme dimer, half that of native enzyme. These results indicate that bromoketoglutarate modifies a residue in the nicotinamide region of the coenzyme site proximal to the substrate site and that reaction at one catalytic site of the enzyme dimer decreases the activity of the other site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号