首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
脑对多感觉信息的整合是人和高等动物获取环境中有意义信息的重要方式。长期以来科学界一直认为,脑对不同感觉刺激(包括视觉、听觉、躯体感觉等)信息的分析和加工由不同的感觉皮层介导,最终在联络皮层进行整合,形成综合性的感觉和意识,但最近的一些实验证据显示,以前被认为只负责对单一感觉刺激分析和处理的感觉皮层亦可受其他感觉刺激的影响并直接参与多感觉信息的整合作用,这些新的发现对过去传统的大脑皮层功能分区概念提出了严峻的挑战。就近些年来有关感觉皮层(主要包括听觉、视觉和躯体感觉皮层)对多感觉刺激信息整合的研究进行综述,以增加人们对大脑皮层功能的新认识,为感觉信息处理和编码及感觉信息整合的后续研究提供借鉴。  相似文献   

3.
4.
在39只用三碘季铵酚麻痹的成年家兔上观察刺激大脑皮层听区对内膝体神经元听反应的影响。刺激 Woolsey 氏 AⅠ、AⅡ区及其周围颞叶皮层,或刺激大脑嗅鼻沟后缘皮层,能抑制一部分 MGB 神经元的听反应,但也有少数神经元受到易化。有效的颞叶皮层刺激点分布范围弥散,而嗅鼻沟后缘皮层的有效刺激点分布得相当集中。根据抑制潜伏期较短以及抑制内膝体早、晚二反应的潜伏期相同等事实,作者认为,刺激嗅鼻沟后缘皮层对 MGB 神经元的下行性影响发生在 MGB 核团之内。  相似文献   

5.
应用蛋白质印迹检测技术,研究早期听觉剥夺、经验对大鼠听皮层NMDA受体NR2B蛋白表达的影响.结果表明,听觉剥夺使生后14天龄组和28天龄组动物听皮层NR2B蛋白表达水平明显下降(P<0.05,P<0.01),听觉剥夺7天后再给予纯音暴露则又使NR2B表达水平明显提高(P<0.05),呈现双向调节趋势.听觉剥夺和纯音暴露对生后42天龄组大鼠听皮层NR2B表达不再产生明显调节作用(P>0.05).结果提示,在大鼠生后发育关键期,听觉剥夺、经验可改变听皮层NMDA受体NR2B蛋白表达水平.研究结果为研究感觉功能发育可塑性的机制提供了重要实验资料.  相似文献   

6.
Speech is the most interesting and one of the most complex sounds dealt with by the auditory system. The neural representation of speech needs to capture those features of the signal on which the brain depends in language communication. Here we describe the representation of speech in the auditory nerve and in a few sites in the central nervous system from the perspective of the neural coding of important aspects of the signal. The representation is tonotopic, meaning that the speech signal is decomposed by frequency and different frequency components are represented in different populations of neurons. Essential to the representation are the properties of frequency tuning and nonlinear suppression. Tuning creates the decomposition of the signal by frequency, and nonlinear suppression is essential for maintaining the representation across sound levels. The representation changes in central auditory neurons by becoming more robust against changes in stimulus intensity and more transient. However, it is probable that the form of the representation at the auditory cortex is fundamentally different from that at lower levels, in that stimulus features other than the distribution of energy across frequency are analysed.  相似文献   

7.
Comparative analysis was performed of sensitivity of three populations of neurons of the inferior colliculus central nucleus and of neurons of the auditory cortex A1 and AAF fields of the house mouse Mus musculus to series of signals of wideband noise with spectral notch shifting along the frequency axis and to series of the band noise signals with shifting band. Sensitivity to spectral notches in noise was estimated from a change of impulse activity depending on notch location on the frequency axis (modulation coefficients were determined as the normalized difference between the maximal and minimal spike number in neuronal responses to all noises with notch exposed in the series). It was shown that the highest modulation coefficient values and accordingly the highest frequency-dependent sensitivity to spectral notches in the noise were peculiar to inhibition-dependent inferior colliculus neurons. Statistical analysis confirmed that distribution of modulation coefficients for the group of the inhibition-dependent neurons differed statistically significantly from the distribution for groups of primary-like and V-shaped inferior colliculus neurons as well as of cortical neurons (U-test, p < 0.0001). The lowest sensitivity to spectral notches was revealed in the V-shaped inferior colliculus neurons and cortical neurons; in these groups, distribution of modulation coefficients did not differed statistically significantly (p > 0.3). Thus, although a part of cortical neurons does have the frequency-dependent selectivity to spectral localizationally informative changes in sound signals, its formation needs participation of the inferior colliculus and its inhibition-dependent neurons. Selectivity to direction of the shift of spectral changes in noise signals in neurons of the inferior colliculus and auditory cortex was similar and was manifested mainly as shift along the frequency axis of dependences of the spike number in the neuronal responses and latent periods on central frequency of notch in noise (the noise band).  相似文献   

8.
Yang WW  Zhou XM  Zhang JP  Sun XD 《生理学报》2007,59(6):784-790
本文应用常规电生理学技术,研究电刺激大鼠内侧额叶前皮质(medial prefrontal cortex,mPFC)对初级听皮层神经元频率感受野(receptive field,RF)可塑性的调制。电刺激mPFC,137个听皮层神经元(72.8%)RF可塑性受到影响,其中抑制性调制71个神经元(37.7%),易化性调制66个神经元(35.1%),其余51个神经元(27.2%)不受影响。mPFC的抑制性调制效应表现为,RF的偏移时间延长,恢复时间缩短。相反,mPFC的易化性调制效应表现为,RF的偏移时间缩短,恢复时间延长。电刺激mPFC对RF可塑性的调制与声、电刺激之间的时间间隔有关,最佳时间间隔介于5-30ms之间。结果提示,大鼠mPFC可以调制听皮层神经元的功能活动,可能参与听觉学习记忆过程。  相似文献   

9.
目的:研究顺铂的中枢听觉毒性以及褪黑素对其的保护作用。方法:用顺铂和不同浓度褪黑素分别在豚鼠左右腹腔注射7d后,用分光光度计测量听皮层脑组织LDH活力、MDA、NO含量。结果:顺铂注射7d后各组的体重均下降,其中以单独注射顺铂组和10mg·kg^-1·d^-1褪黑素加顺铂组下降趋势最明显,较处理前有显著差异(P〈0.01)。顺铂组动物听皮层LDH活力水平明显高于生理盐水组(P〈0.01);褪黑索能显著降低顺铂引起的听皮层脑组织中的LDH增高(P〈0.05)。豚鼠腹腔注射顺铂7d后听皮层MDA含量较腹腔注射生理盐水组明显增高(P〈0.01);同时腹腔注射褪黑素能降低听皮层组织MDA含量(P〈0.05)。各药物作用后听皮层的NO含量变化统计学比较无显著性意义。结论:腹腔注射顺铂能够作用于听皮层引起细胞损伤。褪黑素对顺铂所致的听皮层细胞损伤有防护作用,机制可能与其抗自由基作用有关。  相似文献   

10.
尽管大脑听皮层神经元对声音空间信息的编码已有不少的研究报道,但其编码机制并不十分清楚,相关研究在大鼠的初级听皮层也未见详细的研究报道.用神经电生理学方法在大鼠初级听皮层考察了151个听神经元的听空间反应域,分析了神经元对来自不同空间方位声刺激反应的放电数和平均首次发放潜伏期的关系.结果表明,多数(52.32%)神经元对来自对侧听空间的声刺激反应较强,表现为对侧偏好型特征,其他神经元分别归类为同侧偏好型(18.54%)、中间偏好型(18.54%)、全向型(3.31%)和复杂型(7.28%).多数神经元偏好的听空间区域的几何中心位于记录部位对侧听空间的中部和上部.绝大多数初级听皮层神经元对来自偏好听空间的声刺激反应的放电数较多、反应潜伏期较短,对来自非偏好听空间的声刺激反应的放电数较少、反应潜伏期较长,放电数与平均首次发放潜伏期呈显著负相关.在对声音空间信息的编码中,大脑初级听皮层可能综合放电数和潜伏期的信息以实现对声源方位的编码.  相似文献   

11.
近期的脑成像研究在盲人等感官缺陷被试者身上发现了感觉替换现象,即传统上认为仅对单一感觉通道刺激反应的皮层区域也参与其他感觉通道的信息加工.类似的效应在感觉剥夺(蒙住眼睛)的明视人被试中也被观察到,提示脑内可能预存着多感觉交互作用的神经通路.通常认为,上述神经通路在常态的人脑中是以潜伏形式存在的,只有当感觉剥夺时才显露出来或得到加强.但是,感觉剥夺是否是该类神经通路发挥作用的必要条件,已有的研究尚缺乏确切的证据.采用统计力度较强的实验设计,给未蒙眼明视人被试听觉呈现一组名词,要求其对听到的每一个词语做出是人工物体还是自然物体的语义判断.对同步采集的功能磁共振信号进行统计分析,观察到视皮层脑区有显著激活.这些结果表明,跨感觉通道的神经通路在未实施感觉剥夺的条件下依然能够显示出来,因而在常态人脑中也不是完全以潜伏形式存在的.上述研究为建立多感觉交互作用神经机制的具体理论模型提供了一个约束条件.  相似文献   

12.
Neurons can transmit information about sensory stimuli via their firing rate, spike latency, or by the occurrence of complex spike patterns. Identifying which aspects of the neural responses actually encode sensory information remains a fundamental question in neuroscience. Here we compared various approaches for estimating the information transmitted by neurons in auditory cortex in two very different experimental paradigms, one measuring spatial tuning and the other responses to complex natural stimuli. We demonstrate that, in both cases, spike counts and mean response times jointly carry essentially all the available information about the stimuli. Thus, in auditory cortex, whereas spike counts carry only partial information about stimulus identity or location, the additional availability of relatively coarse temporal information is sufficient in order to extract essentially all the sensory information available in the spike discharge pattern, at least for the relatively short stimuli (< ∼ 100 ms) commonly used in auditory research.  相似文献   

13.
14.
15.
16.
经验改变大鼠听皮层神经元的特征频率   总被引:3,自引:1,他引:2  
应用常规电生理学技术,以神经元的特征频率和频率调谐曲线为指标,研究大鼠听皮层神经元特征频率的可塑性. 结果表明,在给予的条件刺激频率和神经元特征频率相差1.0 kHz范围内,条件刺激可诱导50%以上神经元特征频率发生完全偏移,并可分为向频率调谐曲线的低频端偏移、高频端偏移,或两侧均可偏移三种类型. 其中,神经元的特征频率高、Q10-dB值大和频率调谐曲线对称指数大于零的神经元,其特征频率偏向频率调谐曲线高频端的概率更高. 结果提示,经验可改变大鼠听皮层神经元的特征频率,为深入研究中枢神经元功能活动可塑性的机制提供了重要实验资料.  相似文献   

17.
Although individuals with autism are known to have significant communication problems, the cellular mechanisms responsible for impaired communication are poorly understood. Valproic acid (VPA) is an anticonvulsant that is a known risk factor for autism in prenatally exposed children. Prenatal VPA exposure in rats causes numerous neural and behavioral abnormalities that mimic autism. We predicted that VPA exposure may lead to auditory processing impairments which may contribute to the deficits in communication observed in individuals with autism. In this study, we document auditory cortex responses in rats prenatally exposed to VPA. We recorded local field potentials and multiunit responses to speech sounds in primary auditory cortex, anterior auditory field, ventral auditory field. and posterior auditory field in VPA exposed and control rats. Prenatal VPA exposure severely degrades the precise spatiotemporal patterns evoked by speech sounds in secondary, but not primary auditory cortex. This result parallels findings in humans and suggests that secondary auditory fields may be more sensitive to environmental disturbances and may provide insight into possible mechanisms related to auditory deficits in individuals with autism. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 74: 972–986, 2014  相似文献   

18.
Patients with damage to the medial temporal lobe show deficits in forming new declarative memories but can still recall older memories, suggesting that the medial temporal lobe is necessary for encoding memories in the neocortex. Here, we found that cortical projection neurons in the perirhinal and entorhinal cortices were mostly immunopositive for cholecystokinin (CCK). Local infusion of CCK in the auditory cortex of anesthetized rats induced plastic changes that enabled cortical neurons to potentiate their responses or to start responding to an auditory stimulus that was paired with a tone that robustly triggered action potentials. CCK infusion also enabled auditory neurons to start responding to a light stimulus that was paired with a noise burst. In vivo intracellular recordings in the auditory cortex showed that synaptic strength was potentiated after two pairings of presynaptic and postsynaptic activity in the presence of CCK. Infusion of a CCKB antagonist in the auditory cortex prevented the formation of a visuo-auditory association in awake rats. Finally, activation of the entorhinal cortex potentiated neuronal responses in the auditory cortex, which was suppressed by infusion of a CCKB antagonist. Together, these findings suggest that the medial temporal lobe influences neocortical plasticity via CCK-positive cortical projection neurons in the entorhinal cortex.  相似文献   

19.
《Cell》2023,186(7):1352-1368.e18
  1. Download : Download high-res image (202KB)
  2. Download : Download full-size image
  相似文献   

20.
Previous behavioural studies have shown that repeated presentation of a randomly chosen acoustic pattern leads to the unsupervised learning of some of its specific acoustic features. The objective of our study was to determine the neural substrate for the representation of freshly learnt acoustic patterns. Subjects first performed a behavioural task that resulted in the incidental learning of three different noise-like acoustic patterns. During subsequent high-resolution functional magnetic resonance imaging scanning, subjects were then exposed again to these three learnt patterns and to others that had not been learned. Multi-voxel pattern analysis was used to test if the learnt acoustic patterns could be ‘decoded’ from the patterns of activity in the auditory cortex and medial temporal lobe. We found that activity in planum temporale and the hippocampus reliably distinguished between the learnt acoustic patterns. Our results demonstrate that these structures are involved in the neural representation of specific acoustic patterns after they have been learnt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号