首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distributions and population densities of large benthic foraminifers (LBFs) were investigated on reef flats of the Majuro Atoll, Marshall Islands. Annual sediment production by foraminifers was estimated based on population density data. Predominant LBFs were Calcarina and Amphistegina, and the population densities of these foraminifers varied with location and substratum type on reef flats. Both foraminifers primarily attached to macrophytes, particularly turf-forming algae, and were most abundant on an ocean reef flat (ORF) and in an inter-island channel near windward, sparsely populated islands. Calcarina density was higher on windward compared to leeward sides of ORFs, whereas Amphistegina density was similar on both sides of ORFs. These foraminifers were more common on the ocean side relative to the lagoon side of reef flats around a windward reef island, and both were rare or absent in nearshore zones around reef islands and on an ORF near windward, densely populated islands. Foraminiferal production rates varied with the degree to which habitats were subject to water motion and human influences. Highly productive sites (>103 g CaCO3 m−2 year−1) included an ORF and an inter-island channel near windward, sparsely populated islands, and a seaward area of a reef flat with no reef islands. Low-productivity sites (<10 g CaCO3 m−2 year−1) included generally nearshore zones of lagoonal reef flats, leeward ORFs, and a windward ORF near densely populated islands. These results suggest that the distribution and production of LBFs were largely influenced by a combination of natural environmental factors, including water motion, water depth, elevation relative to the lowest tidal level at spring tide, and the distribution of suitable substratum. The presence of reef islands may limit the distribution and production of foraminifers by altering water circulation in nearshore environments. Furthermore, increased anthropogenic factors (population and activities) may adversely affect foraminiferal distribution and production.  相似文献   

2.

Within the complex food webs that occur on coral reefs, mesopredatory fish consume small-bodied prey and transfer accumulated biomass to other trophic levels. We estimated biomass, growth and mortality rates of three common mesopredators from Ningaloo Reef in Western Australia to calculate their annual turnover rates and potential contribution to local trophic dynamics. Biomass estimates of the serranid Epinephelus rivulatus (4.46 ± 0.76 g m−2) were an order of magnitude greater than two smaller-bodied mesopredatory fishes, Pseudochromis fuscus (0.10 ± 0.03 g m−2) and Parapercis clathrata (0.23 ± 0.31 g m−2). Growth parameters generated from a von Bertalanffy growth function fitted to size-at-age data, however, indicated that mortality rates for the three mesopredators were similar and that 32–55 % of fish survived each year. Consequently, interspecific differences in annual turnover rates among E. rivulatus (1.9 g m−2 yr−1), Pa. clathrata (0.10 g m−2 yr−1) and Ps. fuscus (0.07 g m−2 yr−1) were an artefact of differences in local biomass estimates. The rapid turnover estimates for E. rivulatus suggest this species is an important conduit of energy within the isolated patch reef habitat where it is typically found, while Ps. fuscus and Pa. clathrata channel smaller amounts of energy from specific habitats in the Ningaloo lagoon. Apparent differences in habitat, diet and turnover rates of the three species examined provide an insight into the different roles these species play in coral reef food webs and suggest that life-history traits allow for variability in the local and spatial contribution of these species at Ningaloo Reef. Moreover, calculating turnover rates of a broader suite of fish species from a range of trophic groups will help better define the role of fishes in coral reef trophic dynamics.

  相似文献   

3.
Monthly samples of Abra ovata were collected during February 1983-January 1984 in the Evros Delta (N. Aegean Sea). Population density (mean annual value = 2407.5 ind · m−2) was characterized by seasonal variation. An analysis of the length frequency distributions shows that one annual recruitment of juveniles (> 2 mm) occurred in October-January; and also that, throughout the year, two age groups existed in the population. One growth ring was formed on the shells of the oldest age group during July-August. Mean growth in shell length can be described by Bertalanffy function. A positive correlation existed between shell length and decalcified dry weight. Secondary production in A. ovata, calculated by the instantaneous growth method, showed a mean biomass of 29.221 g dry weight m−2yr−1, a productivity of 17.086 g dry weight m−2yr−1 and an annual turnover ratio of 0.59.  相似文献   

4.
Summary In a fringing reef at Aqaba at the northern end of the Gulf of Aqaba (29°26′N) growth rates, density, and the calcification rate ofPorites were investigated in order to establish calculations of gross carbonate production for the reefs in this area. Colony accretion ofPorites decreases with depth as a function of decreasing growth rates. The calcification rate ofPorites is highest in shallow water (0–5 m depth) with 0.9 g·cm−2·yr−1 and falls down to 0.5 g·cm−2·yr−1 below 30 m. Scleractinian coral gross production is calculated from potential productivity and coral coverage. It is mainly dependent on living coral cover and to a lesser extent on potential productivity. Total carbonate production on the reef ranged from 0 to 2.7 kg/m2 per year, with a reef-wide average of 1.6 kg/m2 perycar. Maximum gross carbonate production by corals at Aqaba occurs at the reef crest and in the middle fore-reef from 10 to 15 m water depth. Production is low in sandy reef parts. Below 30 m depth values still reach ca. 50% of shallow water values. Mean potential production of colonies and gross carbonate production of the whole reef community at Aqaba is lower than in tropical reefs. However, carbonate production is higher than in reef areas at the same latitude in the Pacific, indicating a northward shift of reef production in the Red Sea.  相似文献   

5.
We used 15N to quantify rates of N translocation from aerial to belowground tissues, foliar leaching, and turnover and production of root and rhizome biomass in the plant-sediment system of short Spartina alterniflora areas of Great Sippewissett Marsh, Massachusetts. Decay of belowground tissues in litterbag incubations at 1- and 10-cm depths resulted in 80% remineralization of the original plant (15N-labeled) N and 20% burial after 3 years. Translocation of 15N from plant shoots in hydrologically controlled laboratory lysimeters maintained under field conditions was 38% of the aboveground pool while leaching of N was 10% from June to October. Most of the translocated N was not retranslocated to new aboveground growth in December but appeared to be either remineralized or buried in the sediment. Injection of 15N into field stands of grass showed initially high incorporation into plants followed by a continuous decline over the next 7 years yielding a gross tumover time of 1.5–1.6yr. Correcting the gross N turnover for recycling of label via translocation and uptake of remineralized label during this period, a net root and rhizome turnover time of 1.0–1.1 yr was obtained. Combining the turnover time with independent estimates of seasonal belowground biomass yielded an estimate of belowground production of 929–1,022 g C m−2 yr−1, similar to measurements by traditional biomass harvest, CO2 based budgets and models for comparable areas of this marsh. Integration of the production and nitrogen balance estimates for short Spartina marsh yielded translocation, 1.4 g N m−2 yr−1, leaching, 0.4 g N m−2 yr−1, remineralization, 14.9–16.3 g N m−2 yr−1, and burial, 3.7–4.1 g N m−2 yr−1.  相似文献   

6.

Caribbean coral cover has decreased substantially in recent decades, with much of the live coral being replaced by macroalgae. Encrusting red algae in the genus Ramicrusta have become abundant throughout the region and have demonstrated widespread harm to corals by overgrowing living tissue, causing colony mortality, and impairing coral recruitment. In this research, Ramicrusta textilis was identified by morpho-anatomy and DNA sequencing from nine sites around St. Thomas, US Virgin Islands, and 3D photogrammetry was used to measure the rate of algal growth on stony corals. 3D models of individual coral colonies (five species plus controls, N = 72) competing with R. textilis revealed differential competitive abilities among taxa, with Siderastrea siderea being the only species capable of inhibiting overgrowth by the alga (mean linear algal growth − 1.1 mm yr−1). Important reef building coral species such as Orbicella annularis and Orbicella faveolata were poor competitors (mean linear algal growth + 15 mm yr−1 and + 7.7 mm yr−1, respectively), indicating that the emergence of the alga could have significant impacts on Caribbean coral reef species diversity, community composition, and structural complexity.

  相似文献   

7.
Crustose coralline algae (CCA) are important components of reef ecology contributing to reef framework construction. However, little is known about how seasonal upwelling systems influence growth and calcification of tropical CCA. We assessed marginal and vertical growth and net calcification rates of two dominant but morphologically different reef-building CCA, Porolithon antillarum and Lithophyllum cf. kaiseri, in a shallow coral reef of the Colombian Caribbean during upwelling and non-upwelling seasons. Growth and calcification rates varied seasonally with higher values during the upwelling compared to the non-upwelling (rainy) season. Annual vertical growth showed rates of 4.48 ± 1.58 and 4.31 ± 2.17 mm · y−1, net calcification using crust growth estimates of 0.75 ± 0.30 g and 0.68 ± 0.60 g CaCO3 · cm−2 · y−1 and net calcification using the buoyant weight method of 1.49 ± 0.57 and 0.52 ± 0.11 g CaCO3 · cm−2 · y−1 in P. antillarum and L. kaiseri, respectively. Seawater temperature was inversely related with growth and calcification; however, complex oceanographic interactions between temperature and resource availability (e.g., light, nutrients, and CO2) are proposed to modulate CCA vital rates. Although CCA calcification rates are comparable to hard corals, CCA vertical accretion is much lower, suggesting that the main contribution of CCA to reef construction is via cementation processes. These results provide baseline data on CCA in the region and generate useful information for monitoring the impacts of environmental changes on tropical upwelling environments.  相似文献   

8.
The bioerosive potential of the intertidal chiton Acanthopleura gemmata on One Tree Reef was determined by quantification of CaCO3 in daily faecal pellet production of individuals transplanted into mesocosms after nocturnal-feeding forays. Mean bioerosive potential was estimated at 0.16 kg CaCO3 chiton−1 yr−1. Bioerosion rates were estimated for populations on two distinct chiton habitats, reef margin (0.013 kg CaCO3 m−2 yr−1) and beachrock platform (0.25 kg CaCO3 m−2 yr−1). Chiton density on the platform was orders of magnitude greater than on the reef margin. The surface-lowering rate (0.16 mm m−2 yr) due to bioerosion by the beachrock population is a substantial contribution to the total surface-lowering rate of 2 mm m−2 yr−1 previously reported for One Tree Reef across all erosive agents. At high densities, the contribution of A. gemmata to coral reef bioerosion budgets may be comparable to other important bioeroders such as echinoids and fish.  相似文献   

9.
Rosas  Keysa G.  Colón-Gaud  Checo  Ramírez  Alonso 《Hydrobiologia》2020,847(8):1961-1975

The relative importance of allochthonous and autochthonous resources in fueling tropical headwater streams remains an open topic. We combined estimates of secondary production and assessment of its trophic basis to determine which resources were responsible for animal production. We studied benthic insect assemblages in two streams in the Luquillo Experimental Forest, Puerto Rico. Habitat-weighted production estimates were similar in both streams (528.5 and 591.5 mg m−2 year−1), but production was over twice as high in pool versus riffle habitats. The mayfly Neohagenulus (Leptophlebiidae) was a major contributor to total production (259.1 and 352.2 mg m−2 year−1). All taxa relied heavily on amorphous detritus and plant tissue. Aquatic insect production was similar to that reported for shrimp assemblages in the same study area, but low relative to temperate region estimates. The trophic basis of production appears to be allochthonous organic matter, which agrees with the small size and closed canopy cover over the study streams. This is the first study quantifying the production and trophic basis of the non-shrimp macroinvertebrate assemblage in tropical island streams. We also provide support for the importance of riparian vegetation as the main energy sources for stream tropical stream food webs.

  相似文献   

10.
A geomorphic assessment of reef system calcification is conducted for past (3200 Ka to present), present and future (2010–2100) time periods. Reef platform sediment production is estimated at 569 m3 yr−1 using rate laws that express gross community carbonate production as a function of seawater aragonite saturation, community composition and rugosity and incorporating estimates of carbonate removal from the reef system. Key carbonate producers including hard coral, crustose coralline algae and Halimeda are mapped accurately (mean R2 = 0.81). Community net production estimates correspond closely to independent census-based estimates made in-situ (R2 = 0.86). Reef-scale outputs are compared with historic rates of production generated from (i) radiocarbon evidence of island deposition initiation around 3200 years ago, and (ii) island volume calculated from a high resolution island digital elevation model. Contemporary carbonate production rates appear to be remarkably similar to historical values of 573 m3 yr−1. Anticipated future seawater chemistry parameters associated with an RCP8.5 emissions scenario are employed to model rates of net community calcification for the period 2000–2100 on the basis of an inorganic aragonite precipitation law, under the assumption of constant benthic community character. Simulations indicate that carbonate production will decrease linearly to a level of 118 m3 yr−1 by 2100 and that by 2150 aragonite saturation levels may no longer support the positive budgetary status necessary to sustain island accretion. Novel aspects of this assessment include the development of rate law parameters to realistically represent the variable composition of coral reef benthic carbonate producers, incorporation of three dimensional rugosity of the entire reef platform and the coupling of model outputs with both historical radiocarbon dating evidence and forward hydrochemical projections to conduct an assessment of island evolution through time. By combining several lines of evidence in a deterministic manner, an assessment of changes in carbonate production is carried out that has tangible geomorphic implications for sediment availability and associated island evolution.  相似文献   

11.
Trophic interactions and cycling of organic carbon within the macroinvertebrate community of a Northern German lowland stream were analyzed based on a compartment model. The network model describes the structure of the food web quantifying biomass, production, and consumption of their elements, of the entire system and between trophic levels. System primary production is 153.7 g C m−2 yr−1 and invertebrate production 53.3 g C m−2 yr−1. Invertebrate consumption amounts to 702.6 g C m−2 yr−1. Main flows are identified between trophic level 1 and 2 and are connected with highly productive compartments. ‘Anodonta and Pseudanodonta’ and Dreissena polymorpha show the highest consumption of all groups with 269.9 g C m−2 yr−1 and 114.1 g C m−2 yr−1, respectively. System consumption is highest on the import from the upstream lake with 532.5 g C m−2 yr−1, sediment detritus with 135.5 g C m−2 yr−1, and primary producers with 25.7 g C m−2 yr−1. The lowest predation pressure is observed for Bivalvia with an ecotrophic efficiency of <10% and highest for Chironomidae with 91%. Approximately 20% of organic matter entering the detritus pool are recycled to the living groups of the system. Transfer efficiencies between discrete trophic levels are generally low except for transfer of detrital material between level I and II.  相似文献   

12.
Secondary production of benthic invertebrates was estimated for Delaware Bay and coastal Delaware. Production and turnover ratios were highest in Delaware Bay (P = 46,572 mg AFDW m−2 yr−1, P:B = 6,O) and progressively lower at two coastal stations (P = 7,501 to 30,124 mg AFDW m−2 yr−1, P:B = 2.3 to 5.3, and P = 4,485 to 4,492mg AFDW m−2 yr−1, P:B =2.3 to 4.8). Production was inversely related to sediment particle size. Production in Delaware Bay was relatively evenly distributed between deposit feeding polychaetes and suspension feeding molluscs with a definite shift in production dominance to suspension feeding molluscs at the coastal stations. Moreover, crustaceans and echinoderms played a larger role in production at the coastal stations than in Delaware Bay. Concerns about the health of soft-bottom communities in Delaware Bay expressed earlier were not supported here. Finally, it was concluded that P and P: B from the Delaware Bay area were very similar to those obtained from other areas in the North Atlantic which agrees with estimates for other estuaries in the northern hemisphere.  相似文献   

13.
Oceanic Anoxic Events (OAEs) are conspicuous intervals in the geologic record that are associated with the deposition of organic carbon (OC)-rich marine sediment, linked to extreme biogeochemical perturbations, and characterized by widespread ocean deoxygenation. Mechanistic links between the marine biological carbon pump (BCP), redox conditions, and organic carbon burial during OAEs, however, remain poorly constrained. In this work we reconstructed the BCP in the western Tethys Ocean across OAE1a (~120 Mya) using sediment geochemistry and OC mass accumulation rates (OCAcc). We find that OCAcc were between 0.006 and 3.3 gC m−2 yr−1, with a mean value of 0.79 ± 0.78 SD gC m−2 yr−1—these rates are low and comparable to oligotrophic regions in the modern oceans. This challenges longstanding assumptions that oceanic anoxic events are intervals of strongly elevated organic carbon burial. Numerical modelling of the BCP, furthermore, reveals that such low OC fluxes are only possible with either or both low to moderate OC export fluxes from ocean surface waters, with rates similar to oligotrophic (nutrient-poor, <30 gC m−2 yr−1) and mesotrophic (moderate-nutrients, ~50–100 gC m−2 yr−1) regions in the modern ocean, and stronger than modern vertical OC attenuation. The low OC fluxes thus reflect a relatively weak BCP. Low to moderate productivity is further supported by palaeoecological and geochemical evidence and was likely maintained through nutrient limitation that developed in response to the burial and sequestration of phosphorus in association with iron minerals under ferruginous (anoxic iron-rich) ocean conditions. Without persistently high productivity, ocean deoxygenation during OAE1a was more likely driven by other physicochemical and biological factors including ocean warming, changes in marine primary producer community composition, and fundamental shifts in the efficiency of the BCP with associated effects and feedbacks.  相似文献   

14.
1. The life cycles and annual production of the eight most abundant species of chironomids (Prodadius cf. choreus, Tanypus punctipennis, Chironomus bernensis, Chironomus gr. plumosus, Cladopelma virescens, Microchironomus tencr, Tanytarsus gr. lestagei, and Cladotanytarsus atridorsum) were studied from sublittoral and profundal samples taken monthly in Lake Banyoles during 1987 at five sampling stations (depths ranging from 5 to 20 m). 2. The number of generations per year deduced from instar-frequency data varied from one to four, depending on the species, lake basin and depth. Annual temperature range, dissolved oxygen in the stratified period and presence of sulphide are the key factors that may explain the differences in the number of generations. 3. Production estimates were calculated using the size-frequency (SF) method corrected for the number of generations (SFG), and the increment-summation method (IS) when cohorts could be clearly deduced. 4. Production calculated with the SFG method gave results which were comparable with those of the IS method using smoothed-survivorship curves in the three species for which the use of the IS method was possible (C. virescens, M. tener and C. atridorsum). Using these methods production was estimated to range from 23–70 mg AFDW (ash-free dry weight) m?2 yr?1 at 12 m to 74–275 mg AFDW m?2 yr?1 in the sublittoral zone of the lake (5-m depth). 5. Calculation of production for the other five species using the size-frequency method with the number of generations (SFG) deduced from monthly instar-frequency data gave values ranging from 12 mg AFDW m?2 yr?1 (Chironomus bernensis at 20 m depth) to 3.75 g AFDW m?2 yr?1(Prodadius cf. choreus at 12 m). 6. Total chironomid production (with the SFG method) varied from 0.8 to 5 g AFDW m?2 yr?1 in the profundal and sublittoral, respectively. At each sampling station two species groups accounted for most of the production: Prodadius cf. choreus and Chironomus spp. Annual production/biomass ratio (P/B) varied from very high values for Prodadius (between 11 and 27, as four generations completed each year) to very low values for Chironomus gr. plumosus (2.20), which completed only one generation each year. The annual production of P. cf. choreus in Lake Banyoles is higher than any reported in the literature due to the completion of four generations and to the high densities of this species.  相似文献   

15.
Data from five Great Lakes studies ofMysis relicta populations were reanalyzed to calculate secondary production estimates using the size-frequency method. Production estimates (P) ranged from 0.25 to 3.2 g dry weight m–2 yr–1. Average annual biomass {xxB} and mean annual density (xxD) were 0.11–1.11 g dry weight/ m2 and 25–434 animals/ m2, respectively. P:{xxB} ratios varied only between 2.2 and 3.3. Maximum and minimum biomass values within a study varied by a factor of 519 for one study but by less than 17 for the others. Highest estimates of P, {xxB} and {xxD} were calculated for collections from a 50-m station in Lake Michigan despite the larger populations suspected to be present at greater depths sampled in the other studies. These conservative estimates provide a basis for scaling trophic interactions involvingM. relicta and emphasize findings by previous workers that night-time sampling with vertical net hauls is the best available technique for quantitative studies ofM. relicta populations in the Great Lakes.  相似文献   

16.
The biomass production and biochemical properties of marine and freshwater species of green macroalgae (multicellular algae), cultivated in outdoor conditions, were evaluated to assess the potential conversion into high-energy liquid biofuels, specifically biocrude and biodiesel and the value of these products. Biomass productivities were typically two times higher for marine macroalgae (8.5–11.9 g m−2 d−1, dry weight) than for freshwater macroalgae (3.4–5.1 g m−2 d−1, dry weight). The biochemical compositions of the species were also distinct, with higher ash content (25.5–36.6%) in marine macroalgae and higher calorific value (15.8–16.4 MJ kg−1) in freshwater macroalgae. Lipid content was highest for freshwater Oedogonium and marine Derbesia. Lipids are a critical organic component for biocrude production by hydrothermal liquefaction (HTL) and the theoretical biocrude yield was therefore highest for Oedogonium (17.7%, dry weight) and Derbesia (16.2%, dry weight). Theoretical biocrude yields were also higher than biodiesel yields for all species due to the conversion of the whole organic component of biomass, including the predominant carbohydrate fraction. However, all marine species had higher biomass productivities and therefore had higher projected biocrude productivities than freshwater species, up to 7.1 t of biocrude ha−1 yr−1 for Derbesia. The projected value of the six macroalgae was increased by 45–77% (up to US$7700 ha−1 yr−1) through the extraction of protein prior to the conversion of the residual biomass to biocrude. This study highlights the importance of optimizing biomass productivities for high-energy fuels and targeting additional coproducts to increase value.  相似文献   

17.
Nearly all published rates of secondary forest (SF) regrowth for Amazonia are inferred from chronosequences. We examined SF regrowth on abandoned pastures over a 4‐year period to determine if measured rates of forest recovery differ from chronosequence predictions. We studied the emergence, development and death of over 1300 stems in 10 SFs representing three age classes (<1–5, 6–10 and 11–14 years old). Mean tree biomass accumulation in both the <1–5 and 6–10 years old (4.4 and 5.7 Mg ha−1 yr−1, respectively) abandoned pastures was lower than predicted and deviated significantly (57% and 41%) from rates estimated from the chronosequence. The older SFs, with a mean growth rate of 9.9 Mg ha−1 yr−1 followed the rate predicted by the chronosequence. Understocking was the primary cause of low biomass recovery rates in the youngest forests; although the youngest stands had a diameter at breast height increment three times the oldest stands, the youngest stands lacked sufficient density to cumulatively produce high biomass accumulation rates. Four years of measurement indicated that the youngest stands had developed 59% of the stems measured in the older stands during the same time period. The 6–10‐year‐old stands were rapidly self‐thinning and approached stem density values measured in the same aged stands at the onset of the study. Mortality was high for all stands, with 54% of the original stems remaining after 4 years in intermediate‐aged stands. The forests were dominated by the tree Vismia, which represented 55–66% of the biomass in all stands. The Vismia share of the biomass was decreasing over time, with other genera replacing the pioneer. Our measured rates of regrowth indicate that generalized estimates of forest regrowth through chronosequence studies will overestimate forest regrowth for the youngest forests that were under land use for longer time‐periods before abandonment. Certified Emission Reductions under the Clean Development Mechanism of the Kyoto protocol should consider these results when predicting and compensating for carbon sequestered under natural forest management.  相似文献   

18.
SUMMARY.
  • 1 Orthodadius (Euorthodadius) calvus Pinder. similar to Orthocladius (Euorthodadius) thienemanni Kieffer. colonized a new gravel substratum in two recirculating stream channels. A maximum population density of 68.621 m-2 was attained after only 16 days. This had fallen to a negligible density by the thirty-third day.
  • 2 Some recruitment occurred over most of the study period (April-May 1981) and no single sharply defined cohort was evident. There was a large range of body lengths within each instar. and considerable overlap between instars. The population density estimates for instars I and II were low compared with instars III and IV.
  • 3 The relationship between instantaneous growth rate (g) and geometric mean length indicated that growth was best described by a Gompertz curve. Growth rate decreased with increasing length from a value of about 40% length day-1 at 2 mm body length to about 5% length day-1 at 9 mm.
  • 4 Growth rates for individual larvae, kept in culture, were very variable with maximum rates close to the values determined from the field data. Mean duration of larval life was 16 days.
  • 5 Estimates of production for the study period ranged from 13.5 g dry wt m-2 (Channel III, size-frequency method) to 34.2 g dry wt m-2 (Channel II, Allen's graphical method, values corrected for non-linear growth).
  • 6 Gut contents were estimated to represent about 55% of the total weight therefore production values should be reduced by this amount.
  相似文献   

19.
In the Bedford Basin, Nova Scotia — a small, enriched, marine inlet — the annual production of phytoplankton was 220 g Cm−2yr−1 with a standard deviation of ± 35 gC m−2 yr−1. The relative contributions of spatial and temporal fluctuations to the variance of the estimate of annual production are assessed, and conclusions are drawn on the design of sampling programs. Although on any given day differences were observed in production rate among four stations, the estimates of annual production agreed within 5 %. The results from Bedford Basin are compared with those from neighbouring St Margaret's Bay, which is relatively unenriched.  相似文献   

20.
Forest under low rainfall (averaging 745 mm yr-1) on the Shai Hills in S.E. Ghana has redeveloped following cessation of farming in the 1890s. Forest stature is low, with a canopy at about 11 m, principally of three species, Diospyros abyssinica, D. mespiliformis and Millettia thonningii. Drypetes parvifolia and Vepris heterophylla are common understorey trees. Twelve species of woody liane were recorded. Species of thicket vegetation in the area were also present at low density. Most species are evergreen.Tree mortality averaged 2.3% yr-1 and exceeded recruitment (1.5% yr-1). Differences between species in mortality and recruitment were pronounced: canopy species showed a small decline in density; understorey species increased markedly and the thicket species declined. Seed production was very variable, but seedling establishment was very poor for all species. Seedling mortality was high (11% yr-1) especially for small seedlings. These population trends probably represent the latter stages of succession of forest regrowth after farming about 100 years ago.Compared with tropical rain forest, Shai Hills forest has similar relative tree diameter growth (1–3.5% yr-1), mortality and recruitment rates, and small-litter fall (5.52 t ha-1 yr-1).Shai Hills forest differs from rain forest by its short stature, relatively few (evergreen) tree species, poor regeneration from seed, high soil nutrient status and low rainfall. Similar forests have been reported in east Africa and in parts of New Guinea.Abbreviations dbh diameter at breast height (1.3 m) - gbh girth at breast height died May 1984  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号