首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lager beer is the most consumed alcoholic beverage in the world. Its production process is marked by a fermentation conducted at low (8 to 15°C) temperatures and by the use of Saccharomyces pastorianus, an interspecific hybrid between Saccharomyces cerevisiae and the cold-tolerant Saccharomyces eubayanus. Recent whole-genome-sequencing efforts revealed that the currently available lager yeasts belong to one of only two archetypes, “Saaz” and “Frohberg.” This limited genetic variation likely reflects that all lager yeasts descend from only two separate interspecific hybridization events, which may also explain the relatively limited aromatic diversity between the available lager beer yeasts compared to, for example, wine and ale beer yeasts. In this study, 31 novel interspecific yeast hybrids were developed, resulting from large-scale robot-assisted selection and breeding between carefully selected strains of S. cerevisiae (six strains) and S. eubayanus (two strains). Interestingly, many of the resulting hybrids showed a broader temperature tolerance than their parental strains and reference S. pastorianus yeasts. Moreover, they combined a high fermentation capacity with a desirable aroma profile in laboratory-scale lager beer fermentations, thereby successfully enriching the currently available lager yeast biodiversity. Pilot-scale trials further confirmed the industrial potential of these hybrids and identified one strain, hybrid H29, which combines a fast fermentation, high attenuation, and the production of a complex, desirable fruity aroma.  相似文献   

2.
《Biotechnology advances》2017,35(4):512-519
Yeasts used in the production of lager beers belong to the species Saccharomyces pastorianus, an interspecies hybrid of Saccharomyces cerevisiae and Saccharomyces eubayanus. The hybridisation event happened approximately 500–600 years ago and therefore S. pastorianus may be considered as a newly evolving species. The happenstance of the hybridisation event created a novel species, with unique genetic characteristics, ideal for the fermentation of sugars to produce flavoursome beer. Lager yeast strains retain the chromosomes of both parental species and also have sets of novel hybrid chromosomes that arose by recombination between the homeologous parental chromosomes. The lager yeasts are subdivided into two groups (I and II) based on the S. cerevisiae: S. eubayanus gene content and the types and numbers of hybrid chromosomes. Recently, whole genome sequences for several Group I and II lager yeasts and for many S. cerevisiae and S. eubayanus isolates have become available. Here we review the available genome data and discuss the likely origins of the parental species that gave rise to S. pastorianus. We review the compiled data on the composition of the lager yeast genomes and consider several evolutionary models to account for the emergence of the two distinct types of lager yeasts.  相似文献   

3.
邴健  白逢彦 《菌物学报》2018,37(11):1441-1453
近年来的基因组学研究结果已证实拉格啤酒酵母Saccharomyces pastorianus是一个由艾尔啤酒酵母S. cerevisiae和真贝氏酿酒酵母S. eubayanus杂交而成的杂交种,并可根据地域传承和染色体倍性分为两个株系,即I型/Saaz系和II型/Frohberg系。前者主要为异源3倍体,后者则主要为异源4倍体。为了探讨中国啤酒酿造酵母菌的物种和菌系归属,我们根据拉格啤酒酵母及其两个菌系的基因组特性,制定了一套基于IntFR片段种特异性扩增和ITS-RFLP分析的精确但简便易行的拉格啤酒酵母菌物种和株系鉴定新方法,并以酿酒酵母属内相关种的模式或权威菌株和部分酒精及面包酵母为参照,对保藏于中国普通微生物菌种保藏中心(CGMCC)的41株啤酒酿造酵母菌进行了重新鉴定和分型。这些菌株除1株原定名为贝氏酿酒酵母S. bayanus外,其余菌株的原定名均为S. cerevisiae。研究结果确认了S. bayanus菌株鉴定的正确性,但在其余的40株啤酒酵母菌株中,21株属于S. cerevisiae,1株属于葡萄汁酿酒酵母S. uvarum,18株属于S. pastorianus。菌系鉴定和流式细胞测定结果显示在确认的S. pastorianus菌株中,1株为I型/Saaz系,3倍体;17株为II型/Frohberg系,其中9株为4倍体,两株为3倍体,5株介于3倍至4倍体之间。啤酒酵母物种和株系的确认对优化发酵工艺和菌种选育及遗传改造等具有重要意义。  相似文献   

4.
G. I. Naumov 《Microbiology》2013,82(4):397-403
The review deals with the early studies of Saccharomyces paradoxus (syn. S. cerevisiae var. tetrasporus) yeast. The data demonstrate strong evidence that, in contrast to the well-known cultivated Saccharomyces yeasts (baker, wine, spirits, and beer yeast), wild Saccharomyces yeasts are often found in natural habitats, such as exudate and leaf litter of trees, decaying wood, soil, and insect intestines. These yeasts form a potentially valuable gene pool for research and breeding programs.  相似文献   

5.
Dimethyl sulfide (DMS) is a sulfur compound of importance for the organoleptic properties of beer, especially some lager beers. Synthesis of DMS during beer production occurs partly during wort production and partly during fermentation. Methionine sulfoxide reductases are the enzymes responsible for reduction of oxidized cellular methionines. These enzymes have been suggested to be able to reduce dimethyl sulfoxide (DMSO) as well, with DMS as the product. A gene for an enzymatic activity leading to methionine sulfoxide reduction in Saccharomyces yeast was recently identified. We confirmed that the Saccharomyces cerevisiae open reading frame YER042w appears to encode a methionine sulfoxide reductase, and propose the name MXR1 for the gene. We found that Mxr1p catalyzes reduction of DMSO to DMS and that an mxr1 disruption mutant cannot reduce DMSO to DMS. Mutant strains appear to have unchanged fitness under several laboratory conditions, and in this paper I hypothesize that disruption of MXR1 in brewing yeasts would neutralize the contribution of the yeast to the DMS content in beer.  相似文献   

6.
The yeast species Saccharomyces bayanus and Saccharomyces pastorianus are of industrial importance since they are involved in the production process of common beverages such as wine and lager beer; however, they contain strains whose variability has been neither fully investigated nor exploited in genetic improvement programs. We evaluated this variability by using PCR-restriction fragment length polymorphism analysis of 48 genes and partial sequences of 16. Within these two species, we identified “pure” strains containing a single type of genome and “hybrid” strains that contained portions of the genomes from the “pure” lines, as well as alleles termed “Lager” that represent a third genome commonly associated with lager brewing strains. The two pure lines represent S. uvarum and S. bayanus, the latter a novel group of strains that may be of use in strain improvement programs. Hybrid lines identified include (i) S. cerevisiae/S. bayanus/Lager, (ii) S. bayanus/S. uvarum/Lager, and (iii) S. cerevisiae/S. bayanus/S. uvarum/Lager. The genome of the lager strains may have resulted from chromosomal loss, replacement, or rearrangement within the hybrid genetic lines. This study identifies brewing strains that could be used as novel genetic sources in strain improvement programs and provides data that can be used to generate a model of how naturally occurring and industrial hybrid strains may have evolved.  相似文献   

7.
Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade), has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment.  相似文献   

8.
Traditional tequila fermentation is a complex microbial process performed by different indigenous yeast species. Usually, they are classified in two families: Saccharomyces and Non-Saccharomyces species. Using mixed starter cultures of several yeasts genera and species is nowadays considered to be beneficial to enhance the sensorial characteristics of the final products (taste, odor). However, microbial interactions occurring in such fermentations need to be better understood to improve the process. In this work, we focussed on a Saccharomyces cerevisiae/Kluyveromyces marxianus yeast couple. Indirect interactions due to excreted metabolites, thanks to the use of a specific membrane bioreactor, and direct interaction due to cell-to-cell contact have been explored. Comparison of pure and mixed cultures was done in each case. Mixed cultures in direct contact showed that both yeast were affected but Saccharomyces rapidly dominated the cultures whereas Kluyveromyces almost disappeared. In mixed cultures with indirect contact the growth of Kluyveromyces was decreased compared to its pure culture but its concentration could be maintained whereas the growth of Saccharomyces was enhanced. The loss of viability of Kluyveromyces could not be attributed only to ethanol. The sugar consumption and ethanol production in both cases were similar. Thus the interaction phenomena between the two yeasts are different in direct and indirect contact, Kluyveromyces being always much more affected than Saccharomyces.  相似文献   

9.
This work presents the genome sequencing of the lager brewing yeast (Saccharomyces pastorianus) Weihenstephan 34/70, a strain widely used in lager beer brewing. The 25 Mb genome comprises two nuclear sub-genomes originating from Saccharomyces cerevisiae and Saccharomyces bayanus and one circular mitochondrial genome originating from S. bayanus. Thirty-six different types of chromosomes were found including eight chromosomes with translocations between the two sub-genomes, whose breakpoints are within the orthologous open reading frames. Several gene loci responsible for typical lager brewing yeast characteristics such as maltotriose uptake and sulfite production have been increased in number by chromosomal rearrangements. Despite an overall high degree of conservation of the synteny with S. cerevisiae and S. bayanus, the syntenies were not well conserved in the sub-telomeric regions that contain lager brewing yeast characteristic and specific genes. Deletion of larger chromosomal regions, a massive unilateral decrease of the ribosomal DNA cluster and bilateral truncations of over 60 genes reflect a post-hybridization evolution process. Truncations and deletions of less efficient maltose and maltotriose uptake genes may indicate the result of adaptation to brewing. The genome sequence of this interspecies hybrid yeast provides a new tool for better understanding of lager brewing yeast behavior in industrial beer production.Key words: Saccharomyces pastorianus, beer, genome, interspecies hybrid, larger yeast  相似文献   

10.
11.
The Saccharomyces sensu stricto group encompasses species ranging from the industrially ubiquitous yeast Saccharomyces cerevisiae to those that are confined to geographically limited environmental niches. The wealth of genomic data that are now available for the Saccharomyces genus is providing unprecedented insights into the genomic processes that can drive speciation and evolution, both in the natural environment and in response to human-driven selective forces during the historical “domestication” of these yeasts for baking, brewing, and winemaking.  相似文献   

12.
The concentrations and relative ratios of various aroma compounds produced by fermenting yeast cells are essential for the sensory quality of many fermented foods, including beer, bread, wine, and sake. Since the production of these aroma-active compounds varies highly among different yeast strains, careful selection of variants with optimal aromatic profiles is of crucial importance for a high-quality end product. This study evaluates the production of different aroma-active compounds in 301 different Saccharomyces cerevisiae, Saccharomyces paradoxus, and Saccharomyces pastorianus yeast strains. Our results show that the production of key aroma compounds like isoamyl acetate and ethyl acetate varies by an order of magnitude between natural yeasts, with the concentrations of some compounds showing significant positive correlation, whereas others vary independently. Targeted hybridization of some of the best aroma-producing strains yielded 46 intraspecific hybrids, of which some show a distinct heterosis (hybrid vigor) effect and produce up to 45% more isoamyl acetate than the best parental strains while retaining their overall fermentation performance. Together, our results demonstrate the potential of large-scale outbreeding to obtain superior industrial yeasts that are directly applicable for commercial use.  相似文献   

13.
Aims: The aim of this study was to examine the physiological and genetic stability of hybrids of industrial wine yeasts Saccharomyces sensu stricto complex subjected to acidic stress during fermentation. Methods and Results: Laboratory‐constructed yeast hybrids, one intraspecific Saccharomyces cerevisiae × S. cerevisiae and three interspecific S. cerevisiae ×Saccharomyces bayanus, were subcultured in aerobic or anaerobic conditions in media with or without l ‐malic acid. Changes in the biochemical profiles, karyotypes and mitochondrial DNA profiles of the segregates were assessed after 50–190 generations. All yeast segregates showed a tendency to increase the range of the tested compounds utilized as sole carbon sources. Interspecific hybrids were alloaneuploid and their genomes tended to undergo extensive rearrangement especially during fermentation. The karyotypes of segregates lost up to four and appearance up to five bands were recorded. The changes in their mtDNA patterns were even broader reaching 12 missing and six additional bands. These hybrids acquired the ability to sporulate and significantly changed their biochemical profiles. The alloaneuploid intraspecific S. cerevisiae hybrid was characterized by high genetic stability despite the phenotypic changes. l ‐malic acid was not found to affect the extent of genomic changes of the hybrids, which suggests that their demalication ability is combined with resistance to acidic stress. Conclusions: The results reveal the plasticity and extent of changes of chromosomal and mitochondrial DNA of interspecific hybrids of industrial wine yeast especially under anaerobiosis. They imply that karyotyping and restriction analysis of mitochondrial DNA make it possible to quickly assess the genetic stability of genetically modified industrial wine yeasts but may not be applied as the only method for their identification and discrimination. Significance and Impact of the Study: Laboratory‐constructed interspecific hybrids of industrial strains may provide a model for studying the adaptive evolution of wine yeasts under fermentative stress.  相似文献   

14.
Saccharomyces and non-Saccharomyces yeast species from a winery located in Brazil were identified by ribosomal gene-sequencing analysis. A total of 130 yeast strains were isolated from grape surfaces and musts during alcoholic fermentation from Isabel, Bordeaux, and Cabernet Sauvignon varieties. Samples were submitted to PCR–RFLP analysis and genomic sequencing. Thirteen species were identified: Candida quercitrusa, Candida stellata, Cryptococcus flavescens, Cryptococcus laurentii, Hanseniaspora uvarum, Issatchenkia occidentalis, Issatchenkia orientalis, Issatchenkia terricola, Pichia kluyveri, Pichia guilliermondii, Pichia sp., Saccharomyces cerevisiae, and Sporidiobolus pararoseus. A sequential substitution of species during the different stages of fermentation, with a dominance of non-Saccharomyces yeasts at the beginning, and a successive replacement of species by S. cerevisiae strains at the final steps were observed. This is the first report about the yeast distribution present throughout the alcoholic fermentation in a Brazilian winery, providing supportive information for future studies on their contribution to wine quality.  相似文献   

15.
Culture-dependent and -independent methods were used to examine the yeast diversity present in botrytis-affected (“botrytized”) wine fermentations carried out at high (~30°C) and ambient (~20°C) temperatures. Fermentations at both temperatures possessed similar populations of Saccharomyces, Hanseniaspora, Pichia, Metschnikowia, Kluyveromyces, and Candida species. However, higher populations of non-Saccharomyces yeasts persisted in ambient-temperature fermentations, with Candida and, to a lesser extent, Kluyveromyces species remaining long after the fermentation was dominated by Saccharomyces. In general, denaturing gradient gel electrophoresis profiles of yeast ribosomal DNA or rRNA amplified from the fermentation samples correlated well with the plating data. The direct molecular methods also revealed a Hanseniaspora osmophila population not identified in the plating analysis. rRNA analysis also indicated a large population (>106 cells per ml) of a nonculturable Candida strain in the high-temperature fermentation. Monoculture analysis of the Candida isolate indicated an extreme fructophilic phenotype and correlated with an increased glucose/fructose ratio in fermentations containing higher populations of Candida. Analysis of wine fermentation microbial ecology by using both culture-dependent and -independent methods reveals the complexity of yeast interactions enriched during spontaneous fermentations.  相似文献   

16.
Saccharomyces yeasts have been used for millennia for the production of beer, wine, bread, and other fermented products. Long-term “unconscious” selection and domestication led to the selection of hundreds of strains with desired production traits having significant phenotypic and genetic differences from their wild ancestors. This review summarizes the results of recent research in deciphering the genomes of wine Saccharomyces strains, the use of comparative genomics methods to study the mechanisms of yeast genome evolution under conditions of artificial selection, and the use of genomic and postgenomic approaches to identify the molecular nature of the important characteristics of commercial wine strains of Saccharomyces. Succinctly, data concerning metagenomics of microbial communities of grapes and wine and the dynamics of yeast and bacterial flora in the course of winemaking is provided. A separate section is devoted to an overview of the physiological, genetic, and biochemical features of sherry yeast strains used to produce biologically aged wines. The goal of the review is to convince the reader of the efficacy of new genomic and postgenomic technologies as tools for developing strategies for targeted selection and creation of new strains using “classical” and modern techniques for improving wine-making technology.  相似文献   

17.
18.
The lager beer yeast Saccharomyces pastorianus is considered an allopolyploid hybrid species between S. cerevisiae and S. eubayanus. Many S. pastorianus strains have been isolated and classified into two groups according to geographical origin, but this classification remains controversial. Hybridization analyses and partial PCR-based sequence data have indicated a separate origin of these two groups, whereas a recent intertranslocation analysis suggested a single origin. To clarify the evolutionary history of this species, we analysed 10 S. pastorianus strains and the S. eubayanus type strain as a likely parent by Illumina next-generation sequencing. In addition to assembling the genomes of five of the strains, we obtained information on interchromosomal translocation, ploidy, and single-nucleotide variants (SNVs). Collectively, these results indicated that the two groups of strains share S. cerevisiae haploid chromosomes. We therefore conclude that both groups of S. pastorianus strains share at least one interspecific hybridization event and originated from a common parental species and that differences in ploidy and SNVs between the groups can be explained by chromosomal deletion or loss of heterozygosity.  相似文献   

19.
Biological relatedness makes species characterization of the industrially important Saccharomyces sensu stricto complex difficult. In this paper we present a set of PCR-fingerprinting markers based in Single Primer Amplification Reactions (SPAR) that, together with PCR-ribotyping and single gene RFLP analysis, can effectively identify individual species and fully characterize the hybrid nature of industrial isolates. With those markers, all six yeast species of the sensu stricto complex could be discriminated and we also identified errors in the previous taxonomic characterization of certain wine yeasts. The unique patterns generated by the SPAR markers could be useful in monitoring yeast populations during industrial fermentation processes and can be used to detect the appearance of yeast hybrids in these environments.  相似文献   

20.
Yeast ecology, biogeography and biodiversity are important and interesting topics of research. The population dynamics of yeasts in several cellars of two Spanish wine-producing regions was analysed for three consecutive years (1996 to 1998). No yeast starter cultures had been used in these wineries which therefore provided an ideal winemaking environment to investigate the dynamics of grape-related indigenous yeast populations. Non-Saccharomyces yeast species were identified by RFLPs of their rDNA, while Saccharomyces species and strains were identified by RFLPs of their mtDNA. This study confirmed the findings of other reports that non-Saccharomyces species were limited to the early stages of fermentation whilst Saccharomyces dominated towards the end of the alcoholic fermentation. However, significant differences were found with previous studies, such as the survival of non-Saccharomyces species in stages with high alcohol content and a large variability of Saccharomyces strains (a total of 112, all of them identified as Saccharomyces cerevisiae) with no clear predominance of any strain throughout all the fermentation, probably related to the absence of killer phenotype and lack of previous inoculation with commercial strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号