首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Twenty five newly synthesized coumarin scaffold based derivatives were assayed for their in vitro anticancer activity against MCF-7 breast and PC-3 prostate cancer cell lines and were further assessed for their in vitro VEGFR-2 kinase inhibitory activity. The in vitro cytotoxic studies revealed that most of the synthesized compounds possessed very promising cytotoxicity against MCF-7, particularly; compounds 4a (IC50 = 1.24 µM) and 3d (IC50 = 1.65 µM) exhibited exceptional activities superior to the positive control staurosporine (IC50 = 8.81 µM). Similarly, the majority of the compounds exhibited higher antiproliferative activities compared to the reference standard with IC50 values ranging from 2.07 to 8.68 µM. The two cytotoxic derivatives 4a and 3d were selected to evaluate their inhibitory potencies against VEGFR-2 kinase. Remarkably, compound 4a, exhibited significant IC50 of 0.36 µM comparable to staurosporine (IC50; 0.33 µM). Moreover, it was capable of inducing preG1 apoptosis, cell growth arrest at G2/M phase and activating caspase-9. On the other hand, insignificant cytotoxic activity was observed for all compounds towards PC-3 cell line. Molecular docking study was carried out for the most active anti-VEGFR-2 derivative 4a, which demonstrated the ability of the tested compound to interact with the key amino acids in the target VEGFR-2 kinase binding site. Additionally, the ADME parameters and physicochemical properties of compound 4a were examined in silico.  相似文献   

2.
Multitargeted therapy is considered a successful approach to cancer treatment. The development of small molecule multikinase inhibitors through hybridization strategy can provide highly potent and selective anticancer agents. A library of N-alkyl-2-[(4-oxo-3-(4-sulfamoylphenyl)-3,4-dihydroquinazolin-2-yl)thio]acetamide derivatives 518 was designed and synthesized. The synthesized compounds were screened for cytotoxic activity against MDA-MB-231 breast cancer cell line and showed IC50 in the range of 0.34–149.10 µM. The inhibition percentage of VEGFR-2 was measured for all the compounds and found to be in the range of 90.09–20.44%. The promising compounds 8, 12, 13, 16 and 17 were selected to measure their possible multikinase inhibitory activity against VEGFR-2 and EGFR. IC50 of the promising compounds were in the range of 247–793 nM for VEGFR-2 in reference to sunitinib (IC50 320 nM), and 369–725 nM for EGFR in reference to erlotinib (IC50 568 nM). Compounds 12 and 13 showed the most potent activity towards VEGFR-2 & EGFR, respectively. Measuring the cytotoxicity of 12 and 13 against MCF-10 normal breast cell line indicates their relative safety to normal breast cells (IC50 37 & 97 µM, respectively). As radiotherapy is considered the primary treatment for some types of solid tumors, the radiosensitizing ability of 12 and 13 was measured by subjecting the MDA-MB-231 cells to a single dose of 8 Gy of gamma radiation. IC50 of 12 and 13 decreased from 1.91 & 0.51 µM to 0.79 & 0.43 µM, respectively. Molecular docking was performed to gain insights into the ligand-binding interactions of 12 inside VEGFR-2 and EGFR binding sites in comparison to their co-crystallized ligands.  相似文献   

3.
New indole-tethered [1,3,4]thiadiazolo[3,2-a]pyrimidin-5-one (8a-j) and [1,3,4]oxadiazolo[3,2-a]pyrimidin-5-one hybrids (9a-e) were synthesized using [4+2] cycloaddition reactions of functionalized 1,3-diazabuta-1,3-dienes with indole-ketenes. All molecular hybrids were structurally characterized by spectroscopic techniques (IR, NMR, and HRMS) and screened for their anti-pancreatic cancer activity in vitro. The [1,3,4]oxadiazolo[3,2-a]pyrimidin-5-one hybrids (9a-e) showed stronger anti-pancreatic cancer activity than the [1,3,4]thiadiazolo[3,2-a]pyrimidin-5-one hybrids (8a-j) against the PANC-1 cell line. Compound 9d bearing an ortho-chlorophenyl moiety emerged as the most potent anti-pancreatic cancer agent with an IC50 value of 7.7 ± 0.4 µM, much superior to the standard drug Gemcitabine (IC50 > 500 µM). The discovery of these [1,3,4]thiadiazolo and [1,3,4]oxadiazolo[3,2-a]pyrimidin-5-one hybrids elicits their potentials as pursuable candidates for pancreatic cancer chemotherapy.  相似文献   

4.
New thiourea derivatives incorporating two benzo[d][1,3]dioxol-5-yl moieties have been synthesized through the reaction of two molecules of benzo[d][1,3]dioxol-5-yl isothiocyanate with one molecule of various diamino derivatives. The synthesized compounds were examined for their cytotoxic effects using SRB assay on three cancer cell lines HepG2, HCT116 and MCF-7. Most of compounds showed significant antitumor activity and some compounds showed strong results greater than the reference drug. As example, IC50 values of 1,1′-(1,4-phenylene)bis(3-(benzo[d][1,3]dioxol-5-yl)thiourea) 5 were 2.38 µM for HepG2, 1.54 µM for HCT116 and 4.52 µM for MCF7, while the IC50 values of standard drug doxorubicin were 7.46, 8.29 and 4.56 µM, respectively. Interestingly, these compounds were non cytotoxic toward the tested normal cell line (IC50 value > 150 µM). The anticancer mechanisms were studied via EGFR inhibition assessment, annexin V-FITC apoptosis assessment, cell cycle analysis and study the effect on mitochondrial apoptosis pathway proteins Bax and Bcl-2 as well as molecular docking studies.  相似文献   

5.
derivatives of benzo[g]indazole 5a, b, benzo[h]quinazoline 7, 12a-c, 13a-c and 15a-c and benzo[h]quinoline 17a-c and 19a-c were synthesized from 6-methoxy-3,4-dihydronaphthalen-1(2H)-one (1). Anticancer activity of all the synthesized compounds was evaluated against four cancerous cell lines; HepG2, MCF-7, HCT116 and Caco-2. MCF-7 cells emerged as the most sensitive cell line against the target compounds. All the examined compounds, except 5a and 5b, displayed potent to moderate anticancer activity against MCF-7 cells with an IC50 values ranging from 7.21 to 21.55 µM. In particular, compounds 15c and 19b emerged as the most potent derivatives against EGFR-expressing MCF-7 cells with IC50 values = 7.70 ± 0.39 and 7.21 ± 0.43 μM, respectively. Additionally, both compounds did not display any significant cytotoxicity towards normal BHK-21 fibroblast cells (IC50 value > 200 µM), thereby providing a good safety profile as anticancer agents. Furthermore, compounds 15c and 19b displayed potent inhibitory activity towards EGFR in the sub-micromolar range (IC50 = 0.13 ± 0.01 and 0.14 ± 0.01 μM, respectively), compared to that of Erlotinib (IC50 = 0.11 ± 0.01 μM). Docking studies for 15c and 19b into EGFR active site was carried out to explore their potential binding modes. Therefore, compounds 15c and 19b can be considered as interesting candidates for further development of more potent anticancer agents.  相似文献   

6.
Dual targeting of EGFR and HER2 is a proven anticancer strategy for the treatment of solid tumors. An array of new N-substituted-2-(4-oxo-3-(4-sulfamoylphenyl)-3,4-dihydrobenzo[g]quinazolin-2-ylthio) acetamides 518 were designed and synthesized from the starting compound 4-(2-mercapto-4-oxobenzo[g]quinazolin-3(4H)-yl) benzenesulfonamide 4. The targeted compounds were screened for their cytotoxic activity against MDA-MB-231 breast cancer cell line. The IC50 of all the compounds were in the range of 0.36–40.90 µM. The percentage inhibition towards EGFR was measured and found to be in the range of 63.00–16.90 %. The most potent compounds 5, 9, 15, 17 and 18 were further screened for their activity against both EGFR and HER2 receptors. The compounds showed IC50 in the range of 0.64–1.81 µM for EGFR and 1.13–2.21 µM for HER2, in comparison to erlotinib, the reference drug. Compound 17, the most potent towards EGFR in this series, undergoes cell cycle analysis and was found to arrest the cycle at the G2/M phase. Measurement of the cytotoxicity of compound 17 against normal breast cell line showed mild cytotoxic activity. The most potent compounds were subjected to a single dose of 8 Gy of γ-radiation and the cytotoxicity of the tested compounds was found to increase after irradiation, thus proving the synergistic effect of γ-irradiation. Molecular docking was adopted for all the synthesized compounds to confirm their mechanism of action.  相似文献   

7.
Deregulation of many kinases is directly linked to cancer development and the tyrosine kinase family is one of the most important targets in current cancer therapy regimens. In this study, we have designed and synthesized a series of thieno[2,3-d]pyrimidine derivatives as an EGFR and HER2 tyrosine kinase inhibitors. All the synthesized compounds were evaluated in vitro for their inhibitory activities against EGFRWT; and the most active compounds that showed promising IC50 values against EGFRWT were tested in vitro for their inhibitory activities against mutant EGFRT790M and HER2 kinases. Moreover, the antitumor activities of these compounds were tested against four cancer cell lines (HepG2, HCT-116, MCF-7 and A431). Compounds 13g, 13h and 13k exhibited the highest activities against the examined cell lines with IC50 values ranging from 7.592 ± 0.32 to 16.006 ± 0.58 µM comparable to that of erlotinib (IC50 ranging from 4.99 ± 0.09 to 13.914 ± 0.36 µM). Furthermore, the most potent antitumor agent (13k) was selected for further studies to determine its effect on the cell cycle progression and apoptosis in MCF-7 cell line. The results indicated that this compound arrests G2/M phase of the cell cycle and it is a good apoptotic agent. Finally, molecular docking studies showed a good binding pattern of the synthesized compounds with the prospective target, EGFRWT and EGFRT790M.  相似文献   

8.
EGFR has a key role in cell growth. Its mutation and overexpression share in epithelial malignancies and tumor growth. Quinazoline and quinoline derivatives are common anticancer intracellular inhibitors of EGFR kinase, and their optimization is an important issue for development of potent targeted anticancer agents. Based on these facts, different strategies were used for optimizing our reported quinoline-3-carboxamide compound III (EGFR IC50 = 5.283 µM and MCF-7 IC50 = 3.46 µM) through different molecular modeling techniques. The optimized compounds were synthesized and subjected to EGFR binding assay and accordingly some more potent inhibitors were obtained. The most potent quinoline-3-carboxamides were the furan derivative 5o; thiophene derivative 6b; and benzyloxy derivative 10 showing EGFR IC50 values 2.61, 0.49 and 1.73 μM, respectively. Furthermore, the anticancer activity of compounds eliciting potent EGFR inhibition (5o, 5p, 6b, 8a, 8b, and 10) was evaluated against MCF-7 cell line where they exhibited IC50 values 3.355, 3.647, 5.069, 3.617, 0.839 and 10.85 μM, respectively. Compound 6b was selected as lead structure for further optimization hoping to produce more potent EGFR inhibitors.  相似文献   

9.
A new series of benzimidazole linked pyrazole derivatives were synthesized by cyclocondensation reaction through one-pot multicomponent reaction in absolute ethanol. All the synthesized compounds were tested for their in vitro anticancer activities on five human cancer cell lines including MCF-7, HaCaT, MDA-MB231, A549 and HepG2. EGFR receptor inhibitory activities were carried out for all the compounds. Majority of the compounds showed potent antiproliferative activity against the tested cancer cell lines. Compound 5a showed the most effective activity against the lungs cancer cell lines (IC50 = 2.2 µM) and EGFR binding (IC50 = 0.97 µM) affinity as compared to other members of the series. Compound 5a inhibited growth of A549 cancer cells by inducing a strong G2/M phase arrest. In addition, same compound inhibited growth of A549 cancer cells by inducing apoptosis. In molecular docking studies compound 5a was bound to the active pocket of the EGFR (PDB 1M17) with five key hydrogen bonds and two π-π interaction with binding energies ΔG = −34.581 Kcal/mol.  相似文献   

10.
Four series of N-methylpicolinamide moiety and thienopyrimidine moiety bearing pyridazinone were designed and synthesized and evaluated for the IC50 values against three cancer cell lines (A549, HepG2 and MCF-7) and some selected compounds were further evaluated for the activity against c-Met, Flt-3, VEGFR-2, c-Kit and EGFR kinases. Three compounds (35, 39 and 43) showed more active than positive control Foretinib against A549, HepG2 and MCF-7 cell lines. The most promising compound 43 showed superior activity against A549, HepG2 and MCF-7, with the IC50 values of 0.58?±?0.15?µM, 0.47?±?0.06?µM and 0.74?±?0.12?µM, which were 3.73–5.39-fold more activity than Foretinib, respectively. The experiments of enzyme-based showed that 43 restrain the c-Met selectively, with the IC50 values of 16?nM, which showed equal activity to Foretinib (14?nM) and better than the compound 5 (90?nM). Moreover, AO and Annexin V/PI staining and docking studies were carried out.  相似文献   

11.
Four series of phenylpicolinamide derivatives bearing 1H-pyrrolo[2,3-b]pyridine moiety (12ae, 13af, 14af and 15ai) were designed, synthesized and evaluated for the IC50 values against three cancer cell lines (A549, PC-3 and MCF-7) and c-Met kinase. Five selected compounds (13b, 15b, 15d, 15e and 15f) were further evaluated for the activity against HepG2 and Hela cell lines. Eighteen of the compounds showed excellent cytotoxicity activity and selectivity with the IC50 valuables in single-digit μM to nanomole range. Seven of them are equal to more active than positive control Foretinib against one or more cell lines. The most promising compound 15f showed superior activity to Foretinib, with the IC50 values of 1.04 ± 0.11 μM, 0.02 ± 0.01 μM and 9.11 ± 0.55 μM against A549, PC-3 and MCF-7 cell lines, which were 0.62 to 19.5 times more active than Foretinib (IC50 values: 0.64 ± 0.26 μM, 0.39 ± 0.11 μM, 9.47 ± 0.22 μM), respectively. Structure–activity relationships (SARs) and docking studies indicated that replacement of quinoline nucleus of the previous active compounds with 1H-pyrrolo[2,3-b]pyridine moiety maintained even improved the potent cytotoxic activity. The results suggested that the introduction of fluoro atoms to the aminophenoxy part of target compounds or the phenyl group of pyrimidine substituted on C-4 position was benefit for the activity.  相似文献   

12.
Two new series of furochromone and benzofuran derivatives were designed, synthesized and evaluated for their in vitro anticancer activity against MCF-7 and MDA231 breast cancer cell lines. Compounds 5, 6, 7, 9, 15a, 16, 17a and 18 exhibited the best antiproliferative activities with IC50 values ranging from 1.19 to 2.78?µM against MCF-7 superior to lapatinib as reference standard (IC50; 4.69?µM). Compounds 15a and 18 revealed significant cytotoxic activity against MCF-7 and MDA231, therefore their inhibitory potencies against p38α MAP kinase were evaluated. Remarkably they exhibited significant IC50 of 0.04?µM comparable to SB203580 (IC50; 0.50?µM) as a reference standard. These promising results of cytotoxic activity and significant inhibition of p38α MAP kinase, were confirmed by exploring the effect of benzofuran derivative (18) on the apoptotic induction and cell cycle progression of MCF-7 cell line. Compound 18 induced preG1 apoptosis and cell growth arrest at G2/M phase preventing the mitotic cycle. Moreover it activated the caspase-7 which executes apoptosis. Molecular docking study was carried out using GOLD program to predict the mode of binding interaction of the synthesized compounds into the target p38α MAPK. Additionally, the physicochemical properties and ADME parameters of compound 18 were examined in silico to investigate its drug-likeness.  相似文献   

13.
Designed and synthesized novel homopiperazine linked imidazo[1,2-a]pyrimidine derivatives (10a–i, 11a–g, 12), and evaluated them for their in vitro cytotoxicity against HeLa cells (cervical cancer), A549 cells (lung cancer) cells, by MTT assay. Compound 12 (IC50 = 4.14 µM) and compound 10c (IC50 = 5.98 µM) were found to be 2.5 fold, and 1.74 fold more potent when compared with standard Etoposide (IC50 = 10.44 µM), against A549 (lung cancer cells). Compound 12 also found to be 1.57 and 1.13 fold potent against DU145 (IC50 = 6.24 µM) and HeLa (IC50 = 6.54 µM), respectively when compared with Etoposide (DU145, IC50 = 9.8 µM; HeLa, IC50 = 7.43 µM). Compound 10f (IC50 = 6.12 µM) was found to be 1.31 fold more potent than Etoposide (IC50 = 7.43 µM) against HeLa cell lines.Moreover compounds 10a and 11a showed cytotoxicity at low micro-molar concentrations against A549 cells. Synthesized compounds were also evaluated for their antimicrobial activity by Cup plate diffusion method. Compounds 10c, 11b, 11d and 11f displayed remarkable antimicrobial activity relating to their standard drugs Gentamycin, Amphotericin B and Ampicillin. Significantly, compound 10c showed broad spectrum activity against tested microbial strains. All the designed compounds were well occupied the binding site of the colchicine and interacted with both α- and β-tubuline interface (PDB ID: 3E22), which demonstrates that synthesized compounds are promising tubulin inhibitors. Also, the synthesized compounds occupied the catalytic triad and adenine-binding site, in the active site of β-ketoacyl-acyl carrier protein synthase III enzyme (PDB ID: 1MZS). The molecular docking results provided the useful information for the future design of more potent inhibitors. These preliminary results convinced further investigation and modifications on synthesized compounds aiming towards the development of potential cytotoxic as well as antimicrobial agents.  相似文献   

14.
Four series of phenylpyrimidine-carboxamide derivatives bearing 1H-pyrrolo[2,3-b]pyridine moiety (14ae, 15ag, 16ae and 17ag) were designed, synthesized and evaluated for the IC50 values against three cancer cell lines (A549, PC-3 and MCF-7). Four selected compounds (15e, 16ab and 17a) were further evaluated for the activity against c-Met kinase, HepG2 and Hela cell lines. Most of the compounds showed excellent cytotoxicity activity and selectivity with the IC50 valuables in single-digit μM to nanomole range. Eleven of them are equal to more active than positive control Foretinib against one or more cell lines. The most promising compound 15e showed superior activity to Foretinib against A549, PC-3 and MCF-7 cell lines, with the IC50 values of 0.14 ± 0.08 μM, 0.24 ± 0.07 μM and 0.02 ± 0.01 μM, which were 4.6, 1.6 and 473.5 times more active than Foretinib (0.64 ± 0.26 μM, 0.39 ± 0.11 μM, 9.47 ± 0.22 μM), respectively. Structure–activity relationships (SARs) and docking studies indicated that the replacement of phenylpicolinamide scaffold with phenylpyrimidine fragment of the target compounds was benefit for the activity. What’s more, the introduction of fluoro atom to the aminophenoxy part played no significant impact on the activity and any substituent group on aryl group is unfavourable for the activity.  相似文献   

15.
A new series of pyrido[2,3-d]pyrimidines 318 bearing substitution at C-5 position was synthesized. All compounds were tested for their in vitro antitumor activity against five human cancer cell lines namely; hepatocellular carcinoma (HePG2), breast carcinoma (MCF-7), human prostate carcinoma (PC3), colorectal carcinoma (HCT-116), and cervical carcinoma (Hela) using doxorubicin as a positive control. Compounds 3, 4, 9, 11, 13, 14, 15 and 17 exhibited the highest antitumor activity against the tested cell lines and were selected to screen their enzymatic inhibition against dihydrofolate reductase enzyme (DHFR) compared with the reference drug methotrexate (MTX), to explain the probable mechanism of action of the observed anticancer activity. Compound 11 displayed the highest inhibitory activity (IC50 = 6.5 µM) among the tested compounds in comparison with MTX (IC50 = 5.57 µM). Also, compounds 13 and 14 showed high inhibitory activity against DHFR with IC50 values 7.1 and 8.7 µM, respectively. Comparative molecular modeling study was performed between DHFR inhibitors 11, 13 and 14 of the highest activity and 10 of the lowest activity among the eight inhibitors against MTX. Docking studies into the active site of DHFR domain showed good agreement with the obtained biological results. Finally, compound 11 was found to be best antitumor, DHFR inhibitor, and it induced the process of apoptosis at Pre-G phase and cell cycle arrest at G2/M phase in MCF-7 cells.  相似文献   

16.
A series of imidazo[2,1-b]thiazole-benzimidazole conjugates were synthesized and evaluated for their antiproliferative activity against four human cancer cell lines i.e.; HeLa (cervical), A549 (lung), MCF-7 (breast) and DU-145 (prostate) along with normal HEK-293 cell line. Amongst them, conjugate 6d displayed significant cytotoxicity against human lung cancer cell line, A549 with IC50 value 1.08 µM. Further, cell cycle analysis revealed that this compound arrested the cell cycle at G2/M phase in A549 cells. Furthermore, the tubulin polymerization assay results suggest that this conjugate (6d) exhibits significant inhibitory effect on the tubulin assembly with an IC50 value of 1.68 µM. Moreover, the apoptotic inducing properties of compound 6d was confirmed by Hoechst staining, measurement of mitochondrial membrane potential (ΔΨm) and annexin V-FITC assay. Further, molecular docking studies revealed that compound 6d occupied the colchicine binding site.  相似文献   

17.
A series of novel methyl 4-(4-amidoaryl)-3-methoxythiophene-2-carboxylate derivatives were designed against the active site of protein tyrosine phosphatise 1B (PTP1B) enzyme using MOE.2008.10. These molecules are also subjected for in silico toxicity prediction studies and considering their corresponding drug scores, it implied that, the molecules are promising as anticancer agents. The designed compounds were synthesized by using suitable methods and characterized. They were subjected to inhibitory activity against PTP1B and in vitro anticancer activity by MTT assay. Most of the tested compounds showed potent inhibitory activity against PTP1B, among the compounds tested, compound 5b exhibited the highest activity (IC50 = 5.25 µM) and remarkable cytotoxic activity at 0.09 µM of IC50 against the MCF-7 cell line. In addition to this, compound 5c also showed potential anticancer activity at 2.22 µM of IC50 against MCF-7 and 0.72 µM against HepG2 cell lines as well as PTP1B inhibitory activity at IC50 of 6.37 µM.  相似文献   

18.
A new convenient method for preparation of 2-aroyl-[1]benzopyrano[4,3-c]pyrazol-4(1H)-one derivatives 5bg and coumarin containing hydrazide-hydrazone analogues 4ae was presented. The antimycobacterial activity against reference strain Mycobacterium tuberculosis H37Rv and cytotoxicity against the human embryonic kidney cell line HEK-293 were tested in vitro. All compounds demonstrated significant minimum inhibitory concentrations (MIC) ranging 0.28–1.69 μM, which were comparable to those of isoniazid. The cytotoxicity (IC50 > 200 µM) to the “normal cell” model HEK-293T exhibited by 2-aroyl-[1]benzopyrano[4,3-c]pyrazol-4(1H)-one derivatives 5be, was noticeably milder compared to that of their hydrazone analogues 4ae (IC50 33–403 µM). Molecular docking studies on compounds 4ae and 5bg were also carried out to investigate their binding to the 2-trans-enoyl-ACP reductase (InhA) enzyme involved in M. tuberculosis cell wall biogenesis. The binding model suggested one or more hydrogen bonding and/or arene-H or arene-arene interactions between hydrazones or pyrazole-fused coumarin derivatives and InhA enzyme for all synthesized compounds.  相似文献   

19.
Eight new C21 steroidal glycosides, namely cynanotins A–H (18), together with fifteen known analogues, were isolated from the roots of Cynanchum otophyllum. Their structures were elucidated by spectroscopic analysis and chemical methods. In this study, all of isolates were tested for their vitro inhibitory activities against five human tumor cell lines (HL-60, SMMC-7721, A-549, MCF-7 and SW480). Compounds 315 showed moderate cytotoxic activities against HL-60 cell lines with IC50 values ranging from 11.4 to 37.9?µM. Compounds 5, 9, and 10 showed marked or moderate cytotoxic activities against five human tumor cell lines with IC50 values ranging from 11.4 to 36.7?µM. Compound 11 displayed moderate cytotoxic activities against HL-60, SMMC-7721, MCF-7 and SW480 cell lines with IC50 values of 12.2–30.8?µM. Compared to the positive control (IC50: 35.0?µM), compounds 5, 911 exhibited more potential inhibitory activity against MCF-7 cells (IC50: 16.1–25.6?µM).  相似文献   

20.
《Phytomedicine》2015,22(14):1247-1254
IntroductionMultidrug resistance (MDR) in cancer represent a major hurdle in chemotherapy. Previously, the methanol extract of the medicinal spice Xylopia aethiopica displayed considerable cytotoxicity against multidrug resistant (MDR) cancer cell lines.MethodsThe present study was designed to assess the cytotoxicity of compounds, 16α-hydroxy-ent-kauran-19-oic acid (2), 3,4′,5-trihydroxy-6″,6″-dimethylpyrano[2,3-g]flavone (3), isotetrandrine (5) and trans-tiliroside (6) derived from the methanol crude extract of Xylopia aethiopica against 9 drug-sensitive and -resistant cancer cell lines. The resazurin reduction assay was used to evaluate the cytotoxicity of these compounds, whilst caspase-Glo assay was used to detect caspase activation. Cell cycle, mitochondrial membrane potential (MMP) and levels of reactive oxygen species (ROS) were all analyzed via flow cytometry.ResultsFlavonoid 3 and alkaloid 5 also displayed IC50 values ranging from 2.61 µM (towards leukemia CCRF-CEM cells) to 18.60 µM (towards gliobastoma multiforme U87MG.ΔEGFR cells) and from 1.45 µM (towards HepG2 cells) to 7.28 µM (towards MDA-MB-231-pcDNA cells), respectively. IC50 values ranged from 0.20 µM (against CCRF-CEM cells) to 195.12 µM (against CEM/ADR5000 cells) for doxorubicin. Compound 3 induced apoptosis in leukemia CCRF-CEM cells mediated by the disruption of the MMP, whilst 5 induced apoptosis mediated by ROS production.ConclusionsCompounds 2 and 5 represent potential cytotoxic phytochemicals that deserve more investigations to develop novel antineoplastic drugs against multifactorial drug-resistant cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号