首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The striatum is the main input station of the basal ganglia and is strongly associated with motor and cognitive functions. Anatomical evidence suggests that individual striatal neurons are unlikely to share their inputs from the cortex. Using a biologically realistic large-scale network model of striatum and cortico-striatal projections, we provide a functional interpretation of the special anatomical structure of these projections. Specifically, we show that weak pairwise correlation within the pool of inputs to individual striatal neurons enhances the saliency of signal representation in the striatum. By contrast, correlations among the input pools of different striatal neurons render the signal representation less distinct from background activity. We suggest that for the network architecture of the striatum, there is a preferred cortico-striatal input configuration for optimal signal representation. It is further enhanced by the low-rate asynchronous background activity in striatum, supported by the balance between feedforward and feedback inhibitions in the striatal network. Thus, an appropriate combination of rates and correlations in the striatal input sets the stage for action selection presumably implemented in the basal ganglia.  相似文献   

2.
After more than a century of work concentrating on the motor functions of the basal ganglia, new ideas have emerged, suggesting that the basal ganglia also have major functions in relation to learning habits and acquiring motor skills. We review the evidence supporting the role of the striatum in optimizing behavior by refining action selection and in shaping habits and skills as a modulator of motor repertoires. These findings challenge the notion that striatal learning processes are limited to the motor domain. The learning mechanisms supported by striatal circuitry generalize to other domains, including cognitive skills and emotion-related patterns of action.The nuclei and interconnections of the basal ganglia are widely recognized for modulating motor behavior. Whether measured at the neuronal or regional level, the activities of neurons in the basal ganglia correlate with many movement parameters, particularly those that influence the vigor of an action, such as force and velocity. Pathology within different basal ganglia circuits predictably leads to either hypokinetic or hyperkinetic movement disorders. In parallel, however, the basal ganglia, and especially the striatum, are now widely recognized as being engaged in activity related to learning. Interactions between the dopamine-containing neurons of the midbrain and their targets in the striatum are critical to this function. A fundamental question is how these two capacities—(motor behavior and reinforcement-based learning)—relate to each other and what role the striatum and other basal ganglia nuclei have in forming new behavioral repertoires. Here, we consider relevant physiological properties of the striatum by contrasting two common forms of adaptation found in all mammals: the acquisition of behavioral habits and physical skills.Without resorting to technical definitions, we all have an intuition of what habits and skills are. Tying one’s shoes after putting them on is something we consider a habit—part of a behavioral routine. The capacity to tie the laces properly is a skill. Habits and skills have many common features. Habits are consistent behaviors triggered by appropriate events (typically, but not always, external stimuli) occurring within particular contexts. Physical skills are changes in a physical repertoire: new combinations of movements that lead to new capacities for goal-directed action. Both habits and skills can leverage reward-based learning, particularly during their initial acquisition. In either instance, after sufficient experience, the need for reward becomes lower and lower. With sufficient practice, both lead to “automaticity” and a resilience against competing actions that might lead to unlearning.  相似文献   

3.
The levels of CB1 cannabinoid receptors in the basal ganglia are the highest in the brain, comparable to the levels of dopamine receptors, a major transmitter in the basal ganglia. This localization of receptors is consistent with the profound effects on motor function exerted by cannabinoids. The output nuclei of the basal ganglia, the globus pallidus (GP) and substantia nigra reticulata (SNr), apparently lack intrinsic cannabinoid receptors. Rather, the receptors are located on afferent terminals, the striatum being the major source. Cannabinoids blocked the inhibitory action of the striatal input in the SNr. Furthermore, cannabinoids blocked the excitatory effect of stimulation of the subthalamic input to the SNr revealing, along with data from in situ hybridization studies, that this input is another likely source of cannabinoid receptors to the SNr. Similar actions of cannabinoids were observed in the GP. Behavioral studies further revealed that the action of cannabinoids differs depending upon which input to the output nuclei of the basal ganglia is active. The inhibitory striatal input is quiescent and the cannabinoid action is observable only upon stimulation of the striatum, while the noticeable effect of cannabinoids under basal conditions would be on the tonically active subthalamic input. These data suggest that the recently discovered endogenous cannabinergic system exerts a major modulatory action in the basal ganglia by its ability to block both the major excitatory and inhibitory inputs to the SNr and GP.  相似文献   

4.
L-DOPA (L-3,4-dihydroxyphenylalanine) remains the most effective drug for the treatment of Parkinson's disease. However, chronic use causes dyskinesia, a complex motor phenomenon that consists of two components: the execution of involuntary movements in response to drug administration, and the 'priming' phenomenon that underlies these movements' establishment and persistence. A reinterpretation of recent data suggests that priming for dyskinesia results from nigral denervation and the loss of striatal dopamine input, which alters glutamatergic synaptic connectivity in the striatum. The subsequent response of the abnormal basal ganglia to dopaminergic drugs determines the manner and timing of dyskinesia expression. The combination of nigral denervation and drug treatment establishes inappropriate signalling between the motor cortex and the striatum, leading to persistent dyskinesia.  相似文献   

5.
A network representation of response probability in the striatum   总被引:6,自引:0,他引:6  
Blazquez PM  Fujii N  Kojima J  Graybiel AM 《Neuron》2002,33(6):973-982
The striatum of the basal ganglia is considered a key structure in the learning circuitry of the brain. To analyze neural signals that underlie striatal plasticity, we recorded from an identifiable class of striatal interneurons as macaque monkeys underwent training in a range of conditioning and non-associative learning paradigms, and recorded eyeblink electromyographs as the measure of behavioral response. We found that the responses of these striatal interneurons were modifiable under all training conditions and that their population responses were tightly correlated with the probability that a given stimulus would evoke a behavioral response. Such a network signal, proportional to current response probability, could be crucial to the learning and decision functions of the basal ganglia.  相似文献   

6.
All basal ganglia subnuclei have recently been identified in lampreys, the phylogenetically oldest group of vertebrates. Furthermore, the interconnectivity of these nuclei is similar to mammals and tyrosine hydroxylase-positive (dopaminergic) fibers have been detected within the input layer, the striatum. Striatal processing is critically dependent on the interplay with the dopamine system, and we explore here whether D2 receptors are expressed in the lamprey striatum and their potential role. We have identified a cDNA encoding the dopamine D2 receptor from the lamprey brain and the deduced protein sequence showed close phylogenetic relationship with other vertebrate D2 receptors, and an almost 100% identity within the transmembrane domains containing the amino acids essential for dopamine binding. There was a strong and distinct expression of D2 receptor mRNA in a subpopulation of striatal neurons, and in the same region tyrosine hydroxylase-immunoreactive synaptic terminals were identified at the ultrastructural level. The synaptic incidence of tyrosine hydroxylase-immunoreactive boutons was highest in a region ventrolateral to the compact layer of striatal neurons, a region where most striatal dendrites arborise. Application of a D2 receptor agonist modulates striatal neurons by causing a reduced spike discharge and a diminished post-inhibitory rebound. We conclude that the D2 receptor gene had already evolved in the earliest group of vertebrates, cyclostomes, when they diverged from the main vertebrate line of evolution (560 mya), and that it is expressed in striatum where it exerts similar cellular effects to that in other vertebrates. These results together with our previous published data (Stephenson-Jones et al. 2011, 2012) further emphasize the high degree of conservation of the basal ganglia, also with regard to the indirect loop, and its role as a basic mechanism for action selection in all vertebrates.  相似文献   

7.
A hypothetical mechanism of the basal ganglia involvement in the occurrence of paradoxical sleep dreams and rapid eye movements is proposed. According to this mechanism, paradoxical sleep is provided by facilitation of activation of cholinergic neurons in the pedunculopontine nucleus as a result of suppression of their inhibition from the output basal ganglia nuclei. This disinhibition is promoted by activation of dopaminergic cells by pedunculopontine neurons, subsequent rise in dopamine concentration in the input basal ganglia structure. striatum, and modulation of the efficacy of cortico-striatal inputs. In the absence of signals from retina, a disinhibition of neurons in the pedunculopontine nucleus and superior colliculus allows them to excite neurons in the lateral geniculate body and other thalamic nuclei projecting to the primary and higher visual cortical areas, prefrontal cortex and back into the striatum. Dreams as visual images and "motor hallucinations" are the result of an increase in activity of definitely selected groups of thalamic and neocortical neurons. This selection is caused by modifiable action of dopamine on long-term changes in the efficacy of synaptic transmission during circulation of signals in closed interconnected loops, each of which includes one of the visual cortical areas (motor cortex), one of the thalamic nuclei, limbic and one of the visual areas (motor area) of the basal ganglia. pedunculopontine nucleus, and superior colliculus. Simultaneous modification and modulation of synapses in diverse units of neuronal loops is provided by PGO waves. Disinhibition of superioir colliculus neurons and their excitation by pedunculopontine nucleus lead to an appearance of rapid eye movements during paradoxical sleep.  相似文献   

8.
A possible mechanism of participation of cholinergic striatal interneurons and dopaminergic cells in conditioned selection of a certain types of motor activity is proposed. This selection is triggered by simultaneous increase in the activity of dopaminergic cells and a pause in the activity of cholinergic interneurons in response to a conditioned stimulus. This pause is promoted by activation of striatal inhibitory interneurons and action of dopamine at D2 receptors on cholinergic cells. Opposite changes in dopamine and acetylcholine concentration synergistically modulate the efficacy of corticostriatal inputs, modulation rules for the "strong" and "weak" corticostriatal inputs are opposite. Subsequent reorganization of neuronal firing in the loop cortex--basal ganglia--thalamus--cortex results in amplification of activity of the group of cortical neurons that strongly activate striatal cells, and simultaneous suppression of activity of another group of cortical neurons that weakly activate striatal cells. These changes can underlie a conditioned selection of motor activity performed with involvement of the motor cortex. As follows from the proposed model, if the time delay between conditioned and unconditioned stimuli does not exceed the latency of responses of dopaminergic and cholinergic cells (about 100 ms), conditioned selection of motor activity and learning is problematic.  相似文献   

9.
Altered glutamatergic neurotransmission and neuronal metabolic dysfunction appear to be central to the pathophysiology of Parkinson’s disease (PD). The substantia nigra pars compacta—the area where the primary pathological lesion is located—is particularly exposed to oxidative stress and toxic and metabolic insults. A reduced capacity to cope with metabolic demands, possibly related to impaired mitochondrial function, may render nigral neurons highly vulnerable to the effects of glutamate, which acts as a neurotoxin in the presence of impaired cellular energy metabolism. In this way, glutamate may participate in the pathogenesis of PD. Degeneration of dopamine nigral neurons is followed by striatal dopaminergic denervation, which causes a cascade of functional modifications in the activity of basal ganglia nuclei. As an excitatory neurotransmitter, glutamate plays a pivotal role in normal basal ganglia circuitry. With nigrostriatal dopaminergic depletion, the glutamatergic projections from subthalamic nucleus to the basal ganglia output nuclei become overactive and there are regulatory changes in glutamate receptors in these regions. There is also evidence of increased glutamatergic activity in the striatum. In animal models, blockade of glutamate receptors ameliorates the motor manifestations of PD. Therefore, it appears that abnormal patterns of glutamatergic neurotransmission are important in the symptoms of PD. The involvement of the glutamatergic system in the pathogenesis and symptomatology of PD provides potential new targets for therapeutic intervention in this neuro-degenerative disorder.  相似文献   

10.
In this paper, we present a neural network model of the interactions between cortex and the basal ganglia during prehensile movements. Computational neuroscience methods are used to explore the hypothesis that the altered kinematic patterns observed in Parkinson’s disease patients performing prehensile movements is mainly due to an altered neuronal activity located in the networks of cholinergic (ACh) interneurons of the striatum. These striatal cells, under a strong influence of the dopaminergic system, significantly contribute to the neural processing within the striatum and in the cortico-basal ganglia loops. In order to test this hypothesis, a large-scale model of neural interactions in the basal ganglia has been integrated with previous models accounting for the cortical organization of goal directed reaching and grasping movements in normal and perturbed conditions. We carry out a discussion of the model hypothesis validation by providing a control engineering analysis and by comparing results of real experiments with our simulation results in conditions resembling these original experiments.  相似文献   

11.
Corticotropin-releasing factor is a neuropeptide associated with the integration of physiological and behavioural responses to stress and also in the modulation of affective state and drug reward. The selective, centrally acting corticotropin-releasing factor type 1 receptor antagonist, antalarmin, is a potent anxiolytic and reduces volitional ethanol consumption in Fawn-Hooded rats. The efficacy of antalarmin to reduce ethanol consumption increased with time, suggestive of adaptation to reinforcement processes and goal-directed behaviour. The aim of the present study was to examine the effects of chronic antalarmin treatment on reward-related regions of Fawn-Hooded rat brain. Bi-daily antalarmin treatment (20 mg/kg, i.p.) for 10 days increased tyrosine hydroxylase messenger RNA expression throughout the ventral mesencephalon. Following chronic antalarmin the density of dopaminergic terminals within the basal ganglia and amygdaloid complex were reduced, as was dopamine transporter binding within the striatum. Receptor autoradiography indicated an up-regulation of dopamine D2, but no change in D1, binding in striatum, and Golgi-Cox analysis of striatal medium spiny neurones indicated that chronic antalarmin treatment increased spine density. Thus, chronic antalarmin treatment modulates dopaminergic pathways and implies that chronic treatment with drugs of this class may ultimately alter postsynaptic signaling mechanisms within the basal ganglia.  相似文献   

12.
Progressive loss of the ascending dopaminergic projection in the basal ganglia is a fundamental pathological feature of Parkinson's disease. Studies in animals and humans have identified spatially segregated functional territories in the basal ganglia for the control of goal-directed and habitual actions. In patients with Parkinson's disease the loss of dopamine is predominantly in the posterior putamen, a region of the basal ganglia associated with the control of habitual behaviour. These patients may therefore be forced into a progressive reliance on the goal-directed mode of action control that is mediated by comparatively preserved processing in the rostromedial striatum. Thus, many of their behavioural difficulties may reflect a loss of normal automatic control owing to distorting output signals from habitual control circuits, which impede the expression of goal-directed action.  相似文献   

13.
14.
Morris G  Arkadir D  Nevet A  Vaadia E  Bergman H 《Neuron》2004,43(1):133-143
Midbrain dopamine and striatal tonically active neurons (TANs, presumed acetylcholine interneurons) signal behavioral significance of environmental events. Since striatal dopamine and acetylcholine affect plasticity of cortico-striatal transmission and are both crucial to learning, they may serve as teachers in the basal ganglia circuits. We recorded from both neuronal populations in monkeys performing a probabilistic instrumental conditioning task. Both neuronal types respond robustly to reward-related events. Although different events yielded responses with different latencies, the responses of the two populations coincided, indicating integration at the target level. Yet, while the dopamine neurons' response reflects mismatch between expectation and outcome in the positive domain, the TANs are invariant to reward predictability. Finally, TAN pairs are synchronized, compared to a minority of dopamine neuron pairs. We conclude that the striatal cholinergic and dopaminergic systems carry distinct messages by different means, which can be integrated differently to shape the basal ganglia responses to reward-related events.  相似文献   

15.
The herbicide atrazine (ATR) is a very commonly used pesticide in the United States. and a major ground water contaminant. It has also been recently implicated as a potential basal ganglia toxicant. In the present study, our objective was to determine the effects of ATR exposure on striatal neurochemistry, on the number of dopaminergic neurons in the substantia nigra pars compacta (SNpc), and, as a reference, in the ventral tegmental area (VTA) of male juvenile C57BL/6 mice. Oral exposure to ATR for 14 days dose-dependently decreased the levels of dopamine (DA) and its metabolites in the striatum for up to a week post-treatment. ATR exposure also time- and dose-dependently decreased the number of tyrosine hydroxylase-positive (TH+) dopaminergic neurons in both SNpc and VTA (with effects being slightly more prominent in SNpc), such that the decreases were most evident at 7 weeks post-cessation of exposure to ATR. Together, these data indicate that, in the juvenile male C57BL/6 mouse, the neurotoxic effects of ATR appear to cause transient neurochemical alterations, whereas the loss of TH+ neurons appears to be persistent, possibly confined to basal ganglia dopaminergic neurons, but not exclusive to the SNpc.  相似文献   

16.
The striatum is composed predominantly of medium spiny neurons (MSNs) that integrate excitatory, glutamatergic inputs from the cortex and thalamus, and modulatory dopaminergic inputs from the ventral midbrain to influence behavior. Glutamatergic activation of AMPA, NMDA, and metabotropic receptors on MSNs is important for striatal development and function, but the roles of each of these receptor classes remain incompletely understood. Signaling through NMDA-type glutamate receptors (NMDARs) in the striatum has been implicated in various motor and appetitive learning paradigms. In addition, signaling through NMDARs influences neuronal morphology, which could underlie their role in mediating learned behaviors. To study the role of NMDARs on MSNs in learning and in morphological development, we generated mice lacking the essential NR1 subunit, encoded by the Grin1 gene, selectively in MSNs. Although these knockout mice appear normal and display normal 24-hour locomotion, they have severe deficits in motor learning, operant conditioning and active avoidance. In addition, the MSNs from these knockout mice have smaller cell bodies and decreased dendritic length compared to littermate controls. We conclude that NMDAR signaling in MSNs is critical for normal MSN morphology and many forms of learning.  相似文献   

17.
The neostriatum (dorsal striatum) is composed of the caudate and putamen. The ventral striatum is the ventral conjunction of the caudate and putamen that merges into and includes the nucleus accumbens and striatal portions of the olfactory tubercle. About 2% of the striatal neurons are cholinergic. Most cholinergic neurons in the central nervous system make diffuse projections that sparsely innervate relatively broad areas. In the striatum, however, the cholinergic neurons are interneurons that provide very dense local innervation. The cholinergic interneurons provide an ongoing acetylcholine (ACh) signal by firing action potentials tonically at about 5 Hz. A high concentration of acetylcholinesterase in the striatum rapidly terminates the ACh signal, and thereby minimizes desensitization of nicotinic acetylcholine receptors. Among the many muscarinic and nicotinic striatal mechanisms, the ongoing nicotinic activity potently enhances dopamine release. This process is among those in the striatum that link the two extensive and dense local arbors of the cholinergic interneurons and dopaminergic afferent fibers. During a conditioned motor task, cholinergic interneurons respond with a pause in their tonic firing. It is reasonable to hypothesize that this pause in the cholinergic activity alters action potential dependent dopamine release. The correlated response of these two broad and dense neurotransmitter systems helps to coordinate the output of the striatum, and is likely to be an important process in sensorimotor planning and learning.  相似文献   

18.
Alterations of striatal synaptic transmission have been associated with several motor disorders involving the basal ganglia, such as Parkinson's disease. For this reason, we investigated the role of group-III metabotropic glutamate (mGlu) receptors in regulating synaptic transmission in the striatum by electrophysiological recordings and by using our novel orthosteric agonist (3 S )-3-[(3-amino-3-carboxypropyl(hydroxy)phosphinyl)-hydroxymethyl]-5-nitrothiophene (LSP1-3081) and l -2-amino-4-phosphonobutanoate (L-AP4). Here, we show that both drugs dose-dependently reduced glutamate- and GABA-mediated post-synaptic potentials, and increased the paired-pulse ratio. Moreover, they decreased the frequency, but not the amplitude, of glutamate and GABA spontaneous and miniature post-synaptic currents. Their inhibitory effect was abolished by ( RS )-α-cyclopropyl-4-phosphonophenylglycine and was lost in slices from mGlu4 knock-out mice. Furthermore, ( S )-3,4-dicarboxyphenylglycine did not affect glutamate and GABA transmission. Finally, intrastriatal LSP1-3081 or L-AP4 injection improved akinesia measured by the cylinder test. These results demonstrate that mGlu4 receptor selectively modulates striatal glutamate and GABA synaptic transmission, suggesting that it could represent an interesting target for selective pharmacological intervention in movement disorders involving basal ganglia circuitry.  相似文献   

19.
A hypothetical mechanism of the basal ganglia involvement in visual hallucinations is proposed. According to this mechanism, hallucination is the result of modulation of the efficacy of corticostriatal synaptic inputs and changes in spiny cell activity due to the rise of striatal dopamine concentration (or due to other reasons). These changes cause an inhibition of neurons in the substantia nigra pars reticulata and subsequent disinhibition of neurons in the superior colliculus and pedunculopontine nucleus (including its cholinergic cells). In the absence of afferentation from the retina this disinhibition leads to activation of neurons in the lateral geniculate nucleus, pulvinar and other thalamic nuclei projecting to the primary and highest visual cortical areas, prefrontal cortex, and also back to the striatum. Hallucinations as conscious visual patterns are the result of selection of signals circulating in several interconnected loops each of which includes one of above mentioned neocortical areas, one of thalamic nuclei, limbic and one of visual areas of the basal ganglia, superior colliculus and/or pedunculopontine nucleus. According to our model, cannabinoids, opioids and ketamine may lead to hallucinations due to their promotional role in the LTD of cortical inputs to GABAergic spiny cells of striatal striosomes projecting to dopaminergic neurons, disinhibition of the lasts, and increase in striatal dopamine concentration.  相似文献   

20.
A typical Go/No-Go decision is suggested to be implemented in the brain via the activation of the direct or indirect pathway in the basal ganglia. Medium spiny neurons (MSNs) in the striatum, receiving input from cortex and projecting to the direct and indirect pathways express D1 and D2 type dopamine receptors, respectively. Recently, it has become clear that the two types of MSNs markedly differ in their mutual and recurrent connectivities as well as feedforward inhibition from FSIs. Therefore, to understand striatal function in action selection, it is of key importance to identify the role of the distinct connectivities within and between the two types of MSNs on the balance of their activity. Here, we used both a reduced firing rate model and numerical simulations of a spiking network model of the striatum to analyze the dynamic balance of spiking activities in D1 and D2 MSNs. We show that the asymmetric connectivity of the two types of MSNs renders the striatum into a threshold device, indicating the state of cortical input rates and correlations by the relative activity rates of D1 and D2 MSNs. Next, we describe how this striatal threshold can be effectively modulated by the activity of fast spiking interneurons, by the dopamine level, and by the activity of the GPe via pallidostriatal backprojections. We show that multiple mechanisms exist in the basal ganglia for biasing striatal output in favour of either the `Go'' or the `No-Go'' pathway. This new understanding of striatal network dynamics provides novel insights into the putative role of the striatum in various behavioral deficits in patients with Parkinson''s disease, including increased reaction times, L-Dopa-induced dyskinesia, and deep brain stimulation-induced impulsivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号