首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The association of Chlamydia pneumoniae and atherosclerosis has been well documented. Recently, it has been demonstrated that C. pneumoniae up-regulates expression of the lectin-like ox-LDL receptor (LOX-1) in endothelial cells. Many of the pro-atherogenic effects of ox-LDL occur through its activation and uptake by LOX-1. This class E scavenger receptor contains a carbohydrate-recognition domain common to the C type lectin family. Previously, we have demonstrated that the major outer membrane protein of the chlamydiae is glycosylated and glycan removal abrogates infectivity of C. pneumoniae for endothelial cells. In this study, we investigated whether C. pneumoniae binds to LOX-1. The results show that 1) infection of endothelial cells by C. pneumoniae is inhibited by ligands that bind to the LOX-1 receptor, but not by ligands binding to other scavenger receptors; 2) anti-LOX-1 antibody inhibits C. pneumoniae infectivity, while antibodies against other scavenger receptors do not; 3) anti-LOX-1 antibody inhibits attachment of C. pneumoniae to endothelial cells; and 4) C. pneumoniae co-localizes with LOX-1. These effects were not observed for Chlamydia trachomatis. In conclusion, C. pneumoniae binds to the LOX-1 receptor, which is known to promote atherosclerosis.  相似文献   

2.
The identification of novel diagnostic markers of pathogenic bacteria is essential for improving the accuracy of diagnoses and for developing targeted vaccines. Streptococcus pneumoniae is a significant human pathogenic bacterium that causes pneumonia. N-acetylglucosamine-6-phosphate deacetylase (NagA) was identified in a protein mixture secreted by S. pneumoniae and its strong immunogenicity was confirmed in an immuno-proteomic assay against the anti-serum of the secreted protein mixture. In this study, recombinant S. pneumoniae NagA protein was expressed and purified to analyze its protein characteristics, immunospecificity, and immunogenicity, thereby facilitating its evaluation as a novel diagnostic marker for S. pneumoniae. Mass spectrometry analysis showed that S. pneumoniae NagA contains four internal disulfide bonds and that it does not undergo post-translational modification. S. pneumoniae NagA antibodies successfully detected NagA from different S. pneumoniae strains, whereas NagA from other pathogenic bacteria species was not detected. In addition, mice infected with S. pneumoniae generated NagA antibodies in an effective manner. These results suggest that NagA has potential as a novel diagnostic marker for S. pneumoniae because of its high immunogenicity and immunospecificity.  相似文献   

3.
Streptococcus pneumoniae, a Gram-positive bacterium, is a major cause of invasive infection-related diseases such as pneumonia and sepsis. In blood, erythrocytes are considered to be an important factor for bacterial growth, as they contain abundant nutrients. However, the relationship between S. pneumoniae and erythrocytes remains unclear. We analyzed interactions between S. pneumoniae and erythrocytes, and found that iron ion present in human erythrocytes supported the growth of Staphylococcus aureus, another major Gram-positive sepsis pathogen, while it partially inhibited pneumococcal growth by generating free radicals. S. pneumoniae cells incubated with human erythrocytes or blood were subjected to scanning electron and confocal fluorescence microscopic analyses, which showed that the bacterial cells adhered to and invaded human erythrocytes. In addition, S. pneumoniae cells were found associated with human erythrocytes in cultures of blood from patients with an invasive pneumococcal infection. Erythrocyte invasion assays indicated that LPXTG motif-containing pneumococcal proteins, erythrocyte lipid rafts, and erythrocyte actin remodeling are all involved in the invasion mechanism. In a neutrophil killing assay, the viability of S. pneumoniae co-incubated with erythrocytes was higher than that without erythrocytes. Also, H2O2 killing of S. pneumoniae was nearly completely ineffective in the presence of erythrocytes. These results indicate that even when S. pneumoniae organisms are partially killed by iron ion-induced free radicals, they can still invade erythrocytes. Furthermore, in the presence of erythrocytes, S. pneumoniae can more effectively evade antibiotics, neutrophil phagocytosis, and H2O2 killing.  相似文献   

4.
Klebsiella pneumoniae is an important bacterial pathogen of man that is commonly associated with opportunistic and hospital-associated infections. Increasing levels of multiple-antibiotic resistance associated with this species pose a major emerging clinical problem. This organism also occurs naturally in other diverse environments, including the soil. Consistent with its varied lifestyle and membership of the Enterobacteriaceae family, K. pneumoniae genomes exhibit highly plastic architecture comprising a core genome backbone interspersed with numerous and varied alien genomic islands. In this study the size of the presently known K. pneumoniae pan-genome gene pool was estimated through analysis of complete sequences of three chromosomes and 31 plasmids belonging to K. pneumoniae strains. In addition, using a PCR-based strategy the genomic content of eight tRNA/tmRNA gene sites that serve as DNA insertion hotspots were investigated in 28 diverse environmental and clinical strains of K. pneumoniae. Sequencing and characterization of five newly identified horizontally-acquired tmRNA-associated islands further expanded the archived K. pneumoniae gene pool to a total of 7648 unique gene members. Large-scale investigation of the content of tRNA/tmRNA hotspots will be useful to identify and/or survey accessory sequences dispersed amongst hundreds to thousands of members of many key bacterial species.  相似文献   

5.
Polyamines are ubiquitous biologically active aliphatic cations that are at least transiently available in the soil from decaying organic matter. Our objectives in this study were to characterize polyamine uptake kinetics in Phytophthora sojae zoospores and to quantify endogenous polyamines in hyphae, zoospores, and soybean roots. Zoospores contained 10 times more free putrescine than spermidine, while hyphae contained only 4 times as much free putrescine as spermidine. Zoospores contained no conjugated putrescine, but conjugated spermidine was present. Hyphae contained both conjugated putrescine and spermidine at levels comparable to the hyphal free putrescine and spermidine levels. In soybean roots, cadaverine was the most abundant polyamine, but only putrescine efflux was detected. The selective efflux of putrescine suggests that the regulation of polyamine availability is part of the overall plant strategy to influence microbial growth in the rhizosphere. In zoospores, uptake experiments with [1,4-14C]putrescine and [1,4-14C]spermidine confirmed the existence of high-affinity polyamine transport for both polyamines. Putrescine uptake was reduced by high levels of exogenous spermidine, but spermidine uptake was not reduced by exogenous putrescine. These observations suggest that P. sojae zoospores express at least two high-affinity polyamine transporters, one that is spermidine specific and a second that is putrescine specific or putrescine preferential. Disruption of polyamine uptake or metabolism has major effects on a wide range of cellular activities in other organisms and has been proposed as a potential control strategy for Phytophthora. Inhibition of polyamine uptake may be a means of reducing the fitness of the zoospore along with subsequent developmental stages that precede infection.  相似文献   

6.
Nosocomial infections caused by antibiotic-resistant Klebsiella pneumoniae are emerging as a major health problem worldwide, while community-acquired K. pneumoniae infections present with a range of diverse clinical pictures in different geographic areas. In particular, an invasive form of K. pneumoniae that causes liver abscesses was first observed in Asia and then was found worldwide. We are interested in how differences in gene content of the same species result in different diseases. Thus, we sequenced the whole genome of K. pneumoniae NTUH-K2044, which was isolated from a patient with liver abscess and meningitis, and analyzed differences compared to strain MGH 78578, which was isolated from a patient with pneumonia. Six major types of differences were found in gene clusters that included an integrative and conjugative element, clusters involved in citrate fermentation, lipopolysaccharide synthesis, and capsular polysaccharide synthesis, phage-related insertions, and a cluster containing fimbria-related genes. We also conducted comparative genomic hybridization with 15 K. pneumoniae isolates obtained from community-acquired or nosocomial infections using tiling probes for the NTUH-K2044 genome. Hierarchical clustering revealed three major groups of genomic insertion-deletion patterns that correlate with the strains'' clinical features, antimicrobial susceptibilities, and virulence phenotypes with mice. Here we report the whole-genome sequence of K. pneumoniae NTUH-K2044 and describe evidence showing significant genomic diversity and sequence acquisition among K. pneumoniae pathogenic strains. Our findings support the hypothesis that these factors are responsible for the changes that have occurred in the disease profile over time.Klebsiella pneumoniae is a gram-negative bacterium that belongs to the gamma subdivision of the class Proteobacteria and exhibits relatively close genetic relatedness to other genera of the Enterobacteriaceae, including Escherichia, Salmonella, Shigella, and Yersinia (2). The conspicuous difference between K. pneumoniae and the other enterobacteria is the presence of a thick polysaccharide capsule, which is thought to be a significant virulence factor and to help the bacterium avoid phagocytosis (13). Infections caused by K. pneumoniae are seen throughout the world. This organism is a major cause of urinary tract infection and an important source of nosocomial infection (39). Moreover, K. pneumoniae is emerging worldwide as a major cause of bacteremia and drug-resistant infections (25, 38).The clinical pattern of K. pneumoniae infection in humans has changed since this organism was discovered (19, 20) more than 100 years ago. Until the 1960s, K. pneumoniae was an important cause of community-acquired pneumonia in the United States (8) and elsewhere. However, the incidence of this type of infection has dropped to 1 to 3% in the United States and Europe, and hospital-acquired K. pneumoniae infection now predominates (22, 39, 48). The global pattern of community-acquired K. pneumoniae bacteremia varies with geographical area (25). In the United States, Europe, Australia, and Argentina, this condition is associated with urinary tract infection, vascular catheters, and cholangitis. In Asia and South Africa, classic K. pneumoniae pneumonia still exists (25) and has remained important over the past two decades. At the same time, an invasive form of K. pneumoniae infection, which presents as primary bacteremic liver abscesses, endophthalmitis, and meningitis, has been reported almost exclusively in Asia (21), especially in Taiwan (47, 50). Although the reasons for the preponderance of this severe invasive K. pneumoniae infection in Asia are unknown, they are likely to involve both host and microbial factors.Recent studies by several groups have investigated and debated the major virulence factors of K. pneumoniae, including the magA (16) and rmpA (53) genes, capsular serotype K1 or K2 (11, 52), and even hypermucoviscosity (16, 53). In principle, other determinants may also contribute to pyogenic K. pneumoniae infection. To gather sufficient DNA sequence information for a systematic analysis of the genetic features that underlie the diverse clinical manifestations of K. pneumoniae infections, we undertook complete genome sequencing of a pathogenic strain, NTUH-K2044, which had been isolated from a Taiwanese liver abscess case (16). NTUH-K2044 is an appropriate strain because it possesses the magA and rmpA genes, belongs to capsular serotype K1, and has high virulence and hypermucoviscosity; these factors make this isolate very suitable as a model strain for genomic studies. We additionally used a genomic shotgun array (GSA) protocol developed in our laboratory (27) to compare the genome contents of NTUH-K2044 and multiple clinical isolates. The microarray data allowed us to examine the genome evolution of K. pneumoniae and to relate the various genomic signatures to the clinical patterns seen in K. pneumoniae infections.  相似文献   

7.
Bacterial uptake by phagocytic cells is a vital event in the clearance of invading pathogens such as Streptococcus pneumoniae. A major role of the P-selectin glycoprotein ligand-1 (PSGL-1) on leukocytes against invasive pneumococcal disease is described in this study. Phagocytosis experiments using different serotypes demonstrated that PSGL-1 is involved in the recognition, uptake and killing of S. pneumoniae. Co-localization of several clinical isolates of S. pneumoniae with PSGL-1 was demonstrated, observing a rapid and active phagocytosis in the presence of PSGL-1. Furthermore, the pneumococcal capsular polysaccharide and the main autolysin of the bacterium ―the amidase LytA― were identified as bacterial ligands for PSGL-1. Experimental models of pneumococcal disease including invasive pneumonia and systemic infection showed that bacterial levels were markedly increased in the blood of PSGL-1 −/− mice. During pneumonia, PSGL-1 controls the severity of pneumococcal dissemination from the lung to the bloodstream. In systemic infection, a major role of PSGL-1 in host defense is to clear the bacteria in the systemic circulation controlling bacterial replication. These results confirmed the importance of this receptor in the recognition and clearance of S. pneumoniae during invasive pneumococcal disease. Histological and cellular analysis demonstrated that PSGL-1 −/− mice have increased levels of T cells migrating to the lung than the corresponding wild-type mice. In contrast, during systemic infection, PSGL-1 −/− mice had increased numbers of neutrophils and macrophages in blood, but were less effective controlling the infection process due to the lack of this functional receptor. Overall, this study demonstrates that PSGL-1 is a novel receptor for S. pneumoniae that contributes to protection against invasive pneumococcal disease.  相似文献   

8.
Chlamydiae are important human pathogens that are responsible for a wide rage of diseases with a significant impact on public health. In this review article we highlight how recent studies have increased our knowledge of Chlamydia pneumoniae pathogenesis and mechanisms of innate immunity directed host defense against C. pneumoniae infection.  相似文献   

9.
Klebsiella pneumoniae is one of the major pathogens causing global multidrug-resistant infections. Therefore, strategies for preventing and controlling the infections are urgently needed. Phage depolymerase, often found in the tail fiber protein or the tail spike protein, is reported to have antibiofilm activity. In this study, phage P560 isolated from sewage showed specific for capsule locus type KL47 K. pneumoniae, and the enlarged haloes around plaques indicated that P560 encoded a depolymerase. The capsule depolymerase, ORF43, named P560dep, derived from phage P560 was expressed, purified, characterized and evaluated for enzymatic activity as well as specificity. We reported that the capsule depolymerase P560dep, can digest the capsule polysaccharides on the surface of KL47 type K. pneumoniae, and the depolymerization spectrum of P560dep matched to the host range of phage P560, KL47 K. pneumoniae. Crystal violet staining assay showed that P560dep was able to significantly inhibit biofilm formation. Further, a single dose (50 μg/mouse) of depolymerase intraperitoneal injection protected 90%–100% of mice from lethal challenge before or after infection by KL47 carbapenem-resistant K. pneumoniae. And pathological changes were alleviated in lung and liver of mice infected by KL47 type K. pneumoniae. It is demonstrated that depolymerase P560dep as an attractive antivirulence agent represents a promising tool for antimicrobial therapy.  相似文献   

10.

Background

Mycoplasma pneumoniae and Chlamydophila pneumoniae are major causes of lower and upper respiratory infections that are difficult to diagnose using conventional methods such as culture. The ProPneumo-1 (Prodesse, Waukesha, WI) assay is a commercial multiplex real-time PCR assay for the simultaneous detection of M. pneumoniae and/or C. pneumoniae DNA in clinical respiratory samples.

Objective

The aim of this study was to evaluate the sensitivity and specificity of the ProPneumo-1, a newly developed commercial multiplex real-time PCR assay.

Methods

A total of 146 clinical respiratory specimens, collected from 1997 to 2007, suspected of C. pneumoniae or M. pneumoniae infections were tested retrospectively. Nucleic acid was extracted using an automated NucliSense easyMag (bioMerieux, Netherlands). We used a "Home-brew" monoplex real-time assay as the reference method for the analysis of C. pneumoniae and culture as the reference method for the analysis of M. pneumoniae. For discordant analysis specimens were re-tested using another commercial multiplex PCR, the PneumoBacter-1 assay (Seegene, Korea).

Results

Following discordant analysis, the sensitivity of the ProPneumo-1 assay for pathogens, C. pneumoniae or M. pneumoniae, was 100%. The specificity of the ProPneumo-1 assay, however, was 100% for C. pneumoniae and 98% for M. pneumoniae. The limits of detection were 1 genome equivalent (Geq) per reaction for pathogens, M. pneumoniae and C. pneumoniae. Due to the multipex format of the ProPneumo-1 assay, we identified 5 additional positive specimens, 2 C. pneumoniae in the M. pneumoniae-negative pool and 3 M. pneumoniae in the C. pneumoniae-negative pool.

Conclusion

The ProPneumo-1 assay is a rapid, sensitive and effective method for the simultaneous detection of M. pneumoniae and C. pneumoniae directly in respiratory specimens.  相似文献   

11.
12.
13.
Co-infections with pathogens and secondary bacterial infections play significant roles during the pandemic coronavirus disease 2019 (COVID-19) pathogenetic process, caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Notably, co-infections with Streptococcus pneumoniae (S. pneumoniae), as a major Gram-positive pathogen causing pneumonia or meningitis, severely threaten the diagnosis, therapy, and prognosis of COVID-19 worldwide. Accumulating evidences have emerged indicating that S. pneumoniae evolves multiple virulence factors, including pneumolysin (PLY) and sortase A (SrtA), which have been extensively explored as alternative anti-infection targets. In our study, natural flavonoid kaempferol was identified as a potential candidate drug for infection therapeutics via anti-virulence mechanisms. We found that kaempferol could interfere with the pore-forming activity of PLY by engaging with catalytic active sites and consequently inhibit PLY-mediated cytotoxicity. Additionally, exposed to kaempferol significantly reduced the SrtA peptidase activity by occupying the active sites of SrtA. Further, the biofilms formation and bacterial adhesion to the host cells could be significantly thwarted by kaempferol incubation. In vivo infection model by S. pneumoniae highlighted that kaempferol oral administration exhibited notable treatment benefits, as evidenced by decreased bacterial burden, suggesting that kaempferol has tremendous potential to attenuate S. pneumoniae pathogenicity. Scientifically, our study implies that kaempferol is a promising therapeutic option by targeting bacterial virulence factors.  相似文献   

14.

Introduction

Genotype and metabolomic variation are important for bacterial survival and adaptation to environmental changes.

Objectives

In this study, we compared the relationship among Klebsiella pneumoniae strains based on their genotypic and metabolic profiles. In addition, we also evaluated the association of the relationship with beta-lactamase production.

Methods

A total of 53 K. pneumoniae strains isolated in 2013–2014 from a tertiary teaching hospital in Malaysia were subjected to antimicrobial susceptibility testing (AST) via disk diffusion method and beta-lactamase production confirmation. The bacterial strains were also typed genotypically and metabolically via REP-PCR and 1H-NMR spectroscopy respectively. The concordance of the matrices derived based on genotypic and metabolic characterization was measured based on Spearman’s rank correlation.

Results

Spearman’s correlation rank showed that there is a weak but significant negative correlation between the genetic fingerprints and metabolic profiles of K. pneumoniae. Specifically, K. pneumoniae strains were clustered into five major clusters based on REP-PCR where most of the carbapenem resistant K. pneumoniae (CRKP) strains made up the major cluster. In contrast, metabolic patterns of the three groups (i.e. CRKP, extended spectrum beta-lactamase producing K. pneumoniae (ESBL), susceptible) of K. pneumoniae were clearly differentiated on PLS-DA score plots derived from 1H-NMR spectroscopy.

Conclusion

Overall, this study showed that metabolomic profiling using 1H-NMR spectroscopy is able to discriminate K. pneumoniae strains based on their beta-lactamase production status.
  相似文献   

15.
Streptococcus pneumoniae is one of the major causative agents of pneumonia, sepsis, meningitis and other morbidities. In spite of its heavy disease burden, surprisingly little is known about the mechanisms involved in the switch of life style, from commensal colonizer of the nasopharynx to invasive pathogen. In vitro experiments, and mouse models have shown that S. pneumoniae can be internalized by host cells, which coupled with intracellular vesicle transport through the cells, i.e. transcytosis, is suggested to be the first step of invasive disease. To further dissect the process of S. pneumoniae internalization, we chemically inhibited discrete parts of the cellular uptake system. We show that this invasion of the host cells was facilitated via both clathrin- and caveolae-mediated endocytosis. After internalization we demonstrated that the bulk of the internalized S. pneumoniae was killed in the lysosome. Interestingly, inhibition of the lysosome altered transcytosis dynamics as it resulted in an increase in the transport of the internalized bacteria out of the cells via the basal side. These results show that uptake of S. pneumoniae into host cells occurs via multiple pathways, as opposed to the often proposed view of invasion being dependent on specific, and singular receptor-mediated endocytosis. This indicates that the endothelium not only has a critical role as a physical barrier against S. pneumoniae in the blood stream, but also in degrading S. pneumonia cells that have adhered to, and invaded the endothelial cells.  相似文献   

16.
A duplex real-time PCR assay was designed for simultaneous detection and genotyping of Mycoplasma pneumoniae (M. pneumoniae). The detection/typing performance of this duplex PCR method, targeting specific genes for M. pneumoniae type 1 (mpn 459) and type 2 (mpna 5864), was compared to that of the previously published MpP1 real-time PCR assay and the genotyping method for the adhesin P1 gene (mpn 141). A total of 1,344 throat swab specimens collected from patients in Beijing, China were tested for M. pneumoniae by bacterial culture, MpP1 real-time PCR assay, and our duplex PCR assay, and positive detection rates of 26.9%, 34.4%, and 33.7%, respectively, were obtained. The duplex PCR method demonstrated high sensitivity and accuracy for detecting and genotyping M. pneumoniae, and significant differences in genotyping ability were observed when compared to the conventional P1 gene-based method. M. pneumoniae type 1 was the predominate genotype from 2008 to 2012 in Beijing, and a shift from type 1 to type 2 began to occur in 2013. To our knowledge, this is the first reported incidence of a type shift phenomenon of M. pneumoniae clinical isolates in China. These genotyping results provide important information for understanding recent changes in epidemiological characteristics of M. pneumoniae in Beijing.  相似文献   

17.
18.
Klebsiella pneumoniae produces 3-hydroxypropionic acid (3-HP) from glycerol with oxidation of 3-hydroxypropionaldehyde (3-HPA) to 3-HP in a reaction catalyzed by aldehyde dehydrogenase (ALDH). In the present study, two putative ALDHs of K. pneumoniae, YneI and YdcW were identified and characterized. Recombinant YneI was specifically active on 3-HPA and preferred NAD+ as a cofactor, whereas YdcW exhibited broad substrate specificity and preferred NADP+ as a cofactor. Overexpression of ALDHs in the glycerol oxidative pathway-deficient mutant K. pneumoniae AK resulted in a significant increase in 3-HP production upon shake-flask culture. The final titers of 3-HP were 2.4 and 1.8 g L?1 by recombinants overexpressing YneI and YdcW, respectively. Deletion of the ALDH gene from K. pneumoniae did not affect the extent of 3-HP synthesis, implying non-specific activity of ALDHs on 3-HPA. The ALDHs might play major roles in detoxifying the aldehyde generated in glycerol metabolism.  相似文献   

19.
We previously reported that Klebsiella pneumoniae MGH78578 exhibited higher resistance against various antimicrobials than K. pneumoniae ATCC10031. In this study, we showed that the plasmid, pKPN5, in K. pneumoniae MGH78578 played an important role in resistance against aminoglycosides, ampicillin, tetracycline, and chloramphenicol, while genome-derived β-lactamases and drug efflux pumps appeared to be more important in resistance to cloxacillin. acrAB, encoding a potent multidrug efflux pump, was cloned from K. pneumoniae MGH78578 and ATCC10031, to investigate reasons for the high drug resistance of K. pneumoniae MGH78578, and the results revealed that AcrAB from K. pneumoniae ATCC10031 conferred weaker drug resistance than AcrAB from K. pneumoniae MGH78578. DNA sequencing revealed that acrB from K. pneumoniae ATCC10031 carried the nonsense mutation, UGA, which was not found in acrB from K. pneumoniae MGH78578. However, acrB from K. pneumoniae ATCC10031 conferred slightly elevated resistant levels to several antimicrobials. The intact length of AcrB was detected in K. pneumoniae ATCC10031 by Western blot analysis, even though its quantity was small. Therefore, the stop codon UGA in acrB was thought to be overcome to some extent in this strain. We artificially introduced the nonsense mutation, UGA to the cat gene on pACYC184, and the plasmid also elevated the MIC of chloramphenicol in K. pneumoniae ATCC10031. These results suggest that a mechanism to overcome the nonsense mutation in acrB sustained resistance against a few β-lactams, dyes, and cholic acid in K. pneumoniae ATCC10031.  相似文献   

20.
Chlamydia pneumoniae is a respiratory pathogen involved in the onset of chronic inflammatory pathologies. Dendritic cells (DC), are major players in spreading of C. pneumoniae from the lungs, a crucial step leading to disseminated infections. Less is known concerning modulation of DC functions consequent to encounter with the bacterium. In order to address this aspect, human monocyte-derived (MD)DC were infected with C. pneumoniae. After internalization bacterial counts increased in MDDC, as well as the expression of CPn1046, a gene involved in bacterial metabolism, with a peak 48 h after the infection. Infected MDDC switched to the mature stage, produced IL-12p70, IL-1β, IL-6, and IL-10, and drove a mixed Type 1/Type 17 polarization. Intracellular pathways triggered by C. pneumoniae involved Toll-like receptor (TLR) 2. Indeed, TLR2 was activated by C. pneumoniae in transfected HEK 293 cells, and C. pneumoniae-mediated phosphorylation of ERK1/2 was inhibited by an anti-TLR2 antibody in MDDC. When an ERK1/2 inhibitor was used, IL-12p70 and IL-10 release by MDDC was reduced and T cell polarization shifted towards a Type 2 profile. Overall, our findings unveiled the role played by TLR2 and ERK1/2 induced by C. pneumoniae to affect DC functions in a way that contributes to a Type 1/Type 17 pro-inflammatory response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号