首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Purpose

Clarithromycin was considered the cornerstone for the treatment of Mycobacterium abscessus complex infections. Genetic resistance mechanisms have been described and many experts propose amikacin as an alternative. Nevertheless, clarithromycin has several advantages; therefore, it is necessary to identify the non-functional erm(41) allele to determine the most suitable treatment. The aims of this study were to characterize the molecular mechanisms of clarithromycin resistance in a collection of Mycobacterium abscessus complex isolates and to verify the relationship between these mechanisms and the antibiogram.

Materials and Methods

Clinical isolates of M. abscessus complex (n = 22) from 16 patients were identified using four housekeeping genes (rpoB, secA1, sodA and hsp65), and their genetic resistance was characterized by studying erm(41) and rrl genes. Nine strains were recovered from the clinical isolates and subjected to E-test and microdilution clarithromycin susceptibility tests, with readings at 3, 7 and 14 days.

Results

We classified 11/16 (68.8%) M. abscessus subsp. abscessus, 4/16 (25.0%) M. abscessus subsp. bolletii, and 1/16 (6.3%) M. abscessus subsp. massiliense. T28 erm(41) allele was observed in 8 Mycobacterium abscessus subps. abscessus and 3 Mycobacterium abscessus subsp. bolletii. One strain of M. abscessus subsp. bolletii had an erm(41) gene truncated and was susceptible to clarithromycin. No mutations were observed in rrl gene first isolates. In three patients, follow-up of initial rrl wild-type strains showed acquired resistance.

Conclusions

Most clinical isolates of M. abscessus complex had inducible resistance to clarithromycin and total absence of constitutive resistance. Our findings showed that the acquisition of resistance mutations in rrl gene was associated with functional and non-functional erm(41) gene. Caution is needed when using erm(41) sequencing alone to identify M. abscessus subspecies. This study reports an acquired mutation at position 2057 of rrl gene, conferring medium-low clarithromycin constitutive resistance.  相似文献   

3.
T cell antigen recognition requires binding of the T cell receptor (TCR) to a complex between peptide antigen and major histocompatibility complex molecules (pMHC), and this recognition occurs at the interface between the T cell and the antigen-presenting cell. The TCR and pMHC molecules are small compared with other abundant cell surface molecules, and it has been suggested that small size is functionally important. We show here that elongation of both mouse and human MHC class I molecules abrogates T cell antigen recognition as measured by cytokine production and target cell killing. This elongation disrupted tyrosine phosphorylation and Zap70 recruitment at the contact region without affecting TCR or coreceptor binding. Contact areas with elongated forms of pMHC showed an increase in intermembrane distance and less efficient segregation of CD3 from the large tyrosine phosphatase CD45. These findings demonstrate that T cell antigen recognition is strongly dependent on pMHC size and are consistent with models of TCR triggering requiring segregation or mechanical pulling of the TCR.T cell antigen recognition requires the engagement of the TCR8 with peptide antigen presented on cell surface MHC molecules (pMHC) (1). “Accessory” T cell surface receptors modulate T cell antigen recognition by binding to cell surface ligands on antigen-presenting cells (APCs) (2). The dimensions of the TCR·pMHC complex dictate that TCR binding to pMHC takes places within close contact areas in which the membranes are ∼15 nm apart (35). Many accessory receptor·ligand complexes span similar dimensions to the TCR·pMHC complex and can therefore colocalize with the TCR in such close contact areas (35). Conversely, many cell surface molecules, including two of the most abundant, CD43 and CD45, have much larger ectodomains and would therefore be expected to be excluded or depleted from these close contact areas (3, 6).Signal transduction by the TCR is mediated by the associated CD3 subunits (7). The earliest event that is known to be required for signaling is tyrosine phosphorylation of immunoreceptor tyrosine-based activation motifs in the cytoplasmic portion of these TCR-associated CD3 subunits. This phosphorylation, which is mediated by Src-related kinases such as Lck, is followed by recruitment and activation of the tyrosine kinase Zap70 (which binds doubly phosphorylated immunoreceptor tyrosine-based activation motifs via tandem SH2 domains). Zap70 then phosphorylates downstream proteins, including adaptor proteins such as LAT and SLP-76, leading to the recruitment and activation of a cascade of adaptor and effector proteins (2). Although the downstream events in TCR signal transduction are fairly well characterized, the mechanism by which TCR binding to pMHC leads to increased phosphorylation of CD3 immunoreceptor tyrosine-based activation motifs, a process termed TCR triggering, remains relatively poorly understood and controversial (813).A number of models have been proposed for TCR triggering. These can be classified into three groups depending on whether the signal transduction mechanism involves aggregation, conformational change, or segregation of the TCR·CD3 complex upon pMHC binding (reviewed in Ref. 14). Models based on aggregation have difficulty accounting for TCR triggering by very low densities of agonist pMHC, so recent versions postulate a role for self-pMHC, which is present at higher densities (8). Models postulating conformational change within TCRαβ have not generally been supported by structural studies (15) and so have been adapted by proposing conformational changes of the entire TCRαβ complex with respect to other components or the plasma membrane (14, 16). A version of these models proposed that conformational change may be the result of pMHC binding subjecting the TCR to a mechanical “pulling” force toward the APC membrane (14, 16, 17). However, very recently evidence has been presented that binding to agonist pMHC may indeed trigger a conformational change within the constant domain of the TCRαβ (18), so that models based on conformational change need to be reassessed. In addition, conformational changes in the cytoplasmic domains of the TCR-associated CD3 polypeptides may help to regulate TCR activation (19). Finally, TCR triggering models based on segregation postulate that TCR binding to pMHC functions to retain the TCR·CD3 components within a region of the plasma membrane within which tyrosine kinases such as Lck are enriched and receptor tyrosine phosphatases are depleted. The kinetic segregation model postulates that this segregation is the result of the large size of the ectodomain of tyrosine phosphatases CD45 and CD148 with respect to the TCR·pMHC complex, which leads to physical exclusion from close contact areas (6, 9, 20).To explore the mechanism of TCR triggering, we have examined whether the small size of the TCR·pMHC complex is functionally significant. We showed previously that elongation of one mouse pMHC class I complex abrogated recognition by cognate T cells (21). The present study extends this previous work in several important ways. First, we extend this analysis to other pMHC complexes and cognate T cells, including human CD8 T cells. Second, we test directly whether the inhibitory effect could be the result of decreased TCR or coreceptor binding to elongated pMHC class I. Third, we look at the effect of pMHC elongation on early signaling events and segregation of CD45 from TCR·CD3 within the contact area. Our results conclusively demonstrate the importance of pMHC size in T cell antigen recognition and are consistent with the kinetic segregation model of TCR triggering.  相似文献   

4.
5.
6.
Choi GE  Cho YJ  Koh WJ  Chun J  Cho SN  Shin SJ 《Journal of bacteriology》2012,194(10):2756-2757
Mycobacterium abscessus subsp. bolletii is an increasing cause of human pulmonary disease and infections of the skin and soft tissues. Consistent reports of human infections indicate that M. bolletii is a highly pathogenic, emerging species of rapidly growing mycobacteria (RGM). Here we report the first whole-genome sequence of M. abscessus subsp. bolletii BD(T).  相似文献   

7.

Background

Lung disease (LD) due to non-tuberculous mycobacteria is an important clinical concern. Mycobacterium avium complex (MAC) is one of the most common causative agents but the diagnosis of MAC-LD remains challenging. Detection of serum IgA antibody against MAC glycopeptidolipid (GPL) has recently been shown to improve the diagnosis of MAC-LD, but has yet to be validated worldwide.

Methods

This prospective study was conducted in a tertiary referral center in northern Taiwan and enrolled patients with MAC-LD, MAC contamination, other lung diseases, and control subjects. Serum immunoglobulin A (IgA) antibody against MAC-GPL was detected in the participants and its specificity and sensitivity was assessed.

Results

There were 56 patients with MAC-LD, 11 with MAC contamination, 13 M. kansasii-LD, 26 LD due to rapidly-growing mycobacteria (RGM), 48 pulmonary tuberculosis, and 42 household contacts of patients with TB. Patients with MAC-LD were older and 32% of them had an underlying co-morbidity. By logistic regression, serum MAC-GPL IgA level was an independent predictor of MAC-LD among the study subjects and those with culture-positive specimens for MAC. By the receiver operating characteristic curve, serum MAC-GPL IgA had a good power to discriminate MAC-LD from MAC contamination. Under the optimal cut-off value of 0.73 U/mL, its sensitivity and specificity were 60% and 91%, respectively. Among MAC-LD patients, presence of co-morbidity was associated with MAC-GPL <0.73 U/ml in logistic regression analysis.

Conclusions

Measurement of serum anti-MAC-GPL IgA level is useful for the diagnosis of MAC-LD. However, its implement in clinical practice for immuno-compromised hosts needs careful consideration.  相似文献   

8.

Background

Mycobacterium abscessus complex, the third most frequent mycobacterial complex responsible for community- and health care-associated infections in developed countries, comprises of M. abscessus subsp. abscessus and M. abscessus subsp. bolletii reviously referred as Mycobacterium bolletii and Mycobacterium massiliense. The diversity of this group of opportunistic pathogens is poorly described.

Results

In-depth analysis of 14 published M. abscessus complex genomes found a pan-genome of 6,153 proteins and core-genome of 3,947 (64.1%) proteins, indicating a non-conservative genome. Analysing the average percentage of amino-acid sequence identity (from 94.19% to 98.58%) discriminates three main clusters C1, C2 and C3: C1 comprises strains belonging to M. abscessus, C2 comprises strains belonging to M. massiliense and C3 comprises strains belonging to M. bolletii; and two sub-clusters in clusters C2 and C3. The phylogenomic network confirms these three clusters. The genome length (from 4.8 to 5.51-Mb) varies from 5.07-Mb in C1, 4.89-Mb in C2A, 5.01-Mb in C2B and 5.28-Mb in C3. The mean number of prophage regions (from 0 to 7) is 2 in C1; 1.33 in C2A; 3.5 in C2B and five in C3. A total of 36 genes are uniquely present in C1, 15 in C2 and 15 in C3. These genes could be used for the detection and identification of organisms in each cluster. Further, the mean number of host-interaction factors (including PE, PPE, LpqH, MCE, Yrbe and type VII secretion system ESX3 and ESX4) varies from 70 in cluster C1, 80 in cluster C2A, 74 in cluster C2B and 93 in clusters C3A and C3B. No significant differences in antibiotic resistance genes were observed between clusters, in contrast to previously reported in-vitro patterns of drug resistance. They encode both penicillin-binding proteins targeted by β-lactam antibiotics and an Ambler class A β-lactamase for which inhibitors exist.

Conclusions

Our comparative analysis indicates that M. abscessus complex comprises three genomospecies, corresponding to M. abscessus, M. bolletii, and M. massiliense. The genomics data here reported indicate differences in virulence of medical interest; and suggest targets for the refined detection and identification of M. abscessus.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-359) contains supplementary material, which is available to authorized users.  相似文献   

9.
Pulmonary infections with Mycobacterium abscessus (M. abscessus) are increasingly prevalent in patients with lung diseases such as cystic fibrosis. M. abscessus exists in two morphotypes, smooth and rough, but the impact of morphotype on virulence is unclear. We developed an immune competent mouse model of pulmonary M. abscessus infection and tested the differences in host inflammatory response between the morphotypes of M. abscessus. Smooth and rough morphotypes of M. abscessus were isolated from the same American Type Culture Collection strain. Wild type and cystic fibrosis mice were intratracheally inoculated with known quantities of M. abscessus suspended in fibrin plugs. At the time of sacrifice lung and splenic tissues and bronchoalveolar lavage fluid were collected and cultured. Bronchoalveolar lavage fluid was analyzed for leukocyte count, differential and cytokine expression. Pulmonary infection with M. abscessus was present at both 3 days and 14 days post-inoculation in all groups at greater levels than systemic infection. Inoculation with M. abscessus rough morphotype resulted in more bronchoalveolar lavage fluid neutrophils compared to smooth morphotype at 14 days post-inoculation in both wild type (p = 0.01) and cystic fibrosis (p<0.01) mice. Spontaneous in vivo conversion from smooth to rough morphotype occurred in 12/57 (21%) of mice. These mice trended towards greater weight loss than mice in which morphotype conversion did not occur. In the described fibrin plug model of M. abscessus infection, pulmonary infection with minimal systemic dissemination is achieved with both smooth and rough morphotypes. In this model M. abscessus rough morphotype causes a greater host inflammatory response than the smooth based on bronchoalveolar lavage fluid neutrophil levels.  相似文献   

10.
肺癌是全世界癌症死亡中的一个主要的原因。除吸烟外,一些肺癌患者的发病与氡气污染相关。该研究采用包括染色体分选、正向和反向染色体涂色技术,分析了两株肺腺癌细胞系A549和GLC-82的核型特征。A549和GLC-82细胞系都属于非小细胞肺癌细胞系,但诱因不同,后者来源于一个长期生活在氡气污染环境肺癌病人的癌组织。染色体涂色结果表明,这两株肺癌细胞系发生了复杂的染色体重排。在A549和 GLC-82细胞系中,除正常染色体拷贝数变化外,还分别存在13条和24条畸变染色体。约一半的畸变染色体是通过非相互易位形成的,其余的畸变染色体则是通过一些正常染色体的片段缺失或重复而产生的。尽管这两株肺癌细胞系都没有共同的畸变染色体, 但它们似共享两个染色体易位断裂点:HSA8q24和12q14。  相似文献   

11.
Mycobacterium abscessus is an environmental bacterium with increasing clinical relevance. Here, we report the annotated whole-genome sequence of M. abscessus strain M152.  相似文献   

12.
The pathogenicity for mice of 12 strains of Mycobacterium abscessus was compared with that for 8 strains of M. fortuitum. Both species caused lesions in kidneys and produced "spinning disease" resulting from inner ear infections. No major differences in pathogenicity of these two species were demonstrated. Strain to strain variation was marked, especially with M. abscessus. For example, 1.6 x 10(6) organisms of strain 11188 of M. abscessus produced death in four of five animals within 42 days, whereas strain 380 of M. abscessus failed to produce any deaths within 42 days. In the case of M. fortuitum, the greatest mortality observed was one of five animals, yet the incidence of spinning disease and kidney disease occurred earlier postinfection than in mice infected with M. abscessus. Histologically, abscess formation by a strain of M. abscessus was greater than by a strain of M. fortuitum, but this difference cannot be interpreted as a species difference.  相似文献   

13.
14.
Mycobacterium abscessus is a rapid-growing species of nontuberculous mycobacteria that is frequently associated with opportunistic infections in humans. We report herein the draft genome sequence of M. abscessus strain M93.  相似文献   

15.
16.
M J Alfa  J J Sisler  G K Harding 《CMAJ》1995,153(9):1293-1296
The authors report a case of Mycobacterium abscessus infection of a subdermal levonogestrel implant (Norplant) site. The infection lasted 12 weeks and was indolent, skin manifestations were low grade and difficult to detect. Culture of exudate samples showed that M. abscessus was the only causative agent. After the implant was removed the patient''s arm healed uneventfully without antimycobacterial therapy. The authors recommend that if Gram staining of apparently infected material from an implant site does not reveal a causative organism, then cultures should be done for mycobacteria and fungi. Kinyoun staining for acid-fast bacteria and calcoflour-white staining for fungi should also be performed. The implant should be removed and the patient given antimicrobial therapy as indicated. The authors emphasize the need to be aware of the potential for M. abscessus infection of implant sites and stress that appropriate microbiologic culture procedures are essential for accurate diagnosis.  相似文献   

17.
18.
Non-tuberculous mycobacterium (NTM) lung disease is increasing in prevalence. We analyzed the frequency of NTM lung disease among patients who are suspected of tuberculosis. NTM was isolated from about one-fourth of the mycobacterium culture-positive patients and about half of these had NTM lung disease. Therefore, NTM isolates should be routinely identified at the species level for adequate treatment.  相似文献   

19.
Mycobacterium abscessus is the most common rapidly growing non-tuberculous mycobacteria to cause pulmonary disease in patients with impaired lung function such as cystic fibrosis. M. abscessus displays high intrinsic resistance to common antibiotics and inducible resistance to macrolides like clarithromycin. As such, M. abscessus is clinically resistant to the entire regimen of front-line M. tuberculosis drugs, and treatment with antibiotics that do inhibit M. abscessus in the lab results in cure rates of 50% or less. Here, we identified epetraborole (EPT) from the MMV pandemic response box as an inhibitor against the essential protein leucyl-tRNA synthetase (LeuRS) in M. abscessus. EPT protected zebrafish from lethal M. abscessus infection and did not induce self-resistance nor against clarithromycin. Contrary to most antimycobacterials, the whole-cell activity of EPT was greater against M. abscessus than M. tuberculosis, but crystallographic and equilibrium binding data showed that EPT binds LeuRSMabs and LeuRSMtb with similar residues and dissociation constants. Since EPT-resistant M. abscessus mutants lost LeuRS editing activity, these mutants became susceptible to misaminoacylation with leucine mimics like the non-proteinogenic amino acid norvaline. Proteomic analysis revealed that when M. abscessus LeuRS mutants were fed norvaline, leucine residues in proteins were replaced by norvaline, inducing the unfolded protein response with temporal changes in expression of GroEL chaperonins and Clp proteases. This supports our in vitro data that supplementation of media with norvaline reduced the emergence of EPT mutants in both M. abscessus and M. tuberculosis. Furthermore, the combination of EPT and norvaline had improved in vivo efficacy compared to EPT in a murine model of M. abscessus infection. Our results emphasize the effectiveness of EPT against the clinically relevant cystic fibrosis pathogen M. abscessus, and these findings also suggest norvaline adjunct therapy with EPT could be beneficial for M. abscessus and other mycobacterial infections like tuberculosis.  相似文献   

20.
The natural resistance of Mycobacterium abscessus to most commonly available antibiotics seriously limits chemotherapeutic treatment options, which is particularly challenging for cystic fibrosis patients infected with this rapid‐growing mycobacterium. New drugs with novel molecular targets are urgently needed against this emerging pathogen. However, the discovery of such new chemotypes has not been appropriately performed. Here, we demonstrate the utility of a phenotypic screen for bactericidal compounds against M. abscessus using a library of compounds previously validated for activity against M. tuberculosis. We identified a new piperidinol‐based molecule, PIPD1, exhibiting potent activity against clinical M. abscessus strains in vitro and in infected macrophages. Treatment of infected zebrafish with PIPD1 correlated with increased embryo survival and decreased bacterial burden. Whole genome analysis of M. abscessus strains resistant to PIPD1 identified several mutations in MAB_4508, encoding a protein homologous to MmpL3. Biochemical analyses demonstrated that while de novo mycolic acid synthesis was unaffected, PIPD1 strongly inhibited the transport of trehalose monomycolate, thereby abrogating mycolylation of arabinogalactan. Mapping the mutations conferring resistance to PIPD1 on a MAB_4508 tridimensional homology model defined a potential PIPD1‐binding pocket. Our data emphasize a yet unexploited chemical structure class against M. abscessus infections with promising translational development possibilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号