首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LDs (lipid droplets) are probably the least well-characterized cellular organelles. Having long been considered simple lipid storage depots, they are now considered to be dynamic organelles involved in many biological processes. However, most of the mechanisms driving LDs biogenesis, growth and intracellular movement remain largely unknown. As for other cellular mechanisms deciphered through the study of viral models, HCV (hepatitis C virus) is an original and relevant model for investigations of the birth and life of these organelles. Recent studies in this model have raised the hypothesis that the HCV core protein induces the redistribution of LDs through the regression and regeneration of these organelles in specific intracellular domains.  相似文献   

2.
《Journal of lipid research》2017,58(12):2334-2347
Thraustochytrids are marine single-cell protists that produce large amounts of PUFAs, such as DHA. They accumulate PUFAs in lipid droplets (LDs), mainly as constituent(s) of triacylglycerol (TG). We identified a novel protein in the LD fraction of Aurantiochytrium limacinum F26-b using 2D-difference gel electrophoresis. The protein clustered with orthologs of thraustochytrids; however, the cluster was evolutionally different from known PAT family proteins or plant LD protein; thus, we named it thraustochytrid-specific LD protein 1 (TLDP1). TLDP1 surrounded LDs when expressed as a GFP-tagged form. Disruption of the tldp1 gene decreased the content of TG and number of LDs per cell; however, irregular and unusually large LDs were generated in tldp1-deficient mutants. Although the level of TG synthesis was unchanged by the disruption of tldp1, the level of TG degradation was higher in tldp1-deficient mutants than in the WT. These phenotypic abnormalities in tldp1-deficient mutants were restored by the expression of tldp1. These results indicate that TLDP1 is a thraustochytrid-specific LD protein and regulates the TG accumulation and LD morphology in A. limacinum F26-b.  相似文献   

3.
Adipocyte lipolysis is controlled by complex interactions of lipases, cofactors, and structural proteins associated with lipid droplets. Perilipin (Plin) A is a major droplet-associated protein that functions as a scaffold, both suppressing basal and facilitating cAMP-dependent protein kinase (PKA)-stimulated lipolysis. Plin is required for the translocation of hormone-sensitive lipase (HSL) from the cytosol to lipid droplets upon stimulation. In these studies, we provide direct evidence for a physical interaction of HSL with Plin. By coexpressing HSL with truncation mutations of Plin, we demonstrate using coimmunoprecipitation that HSL can interact with an N-terminal region located between amino acids 141 and 200 of Plin A as well as with a C-terminal region located between amino acids 406 and 480. The N-terminal construct, Plin 1-200, which does not associate with lipid droplets but interacts with HSL, can function as a dominant negative for PKA-stimulated lipolysis. Using confocal microscopy of Plin truncations, we demonstrate that sequences between amino acids 463 and 517 may be important for or participate in lipid targeting. The results suggest the translocation of HSL to the lipid droplet occurs by virtue of Plin localization to the surface of lipid droplets and a physical interaction of HSL occurring with sequences within the N-terminal region of Plin.  相似文献   

4.
Lipid droplets (LDs) are dynamic subcellular organelles whose growth is closely linked to obesity and hepatic steatosis. Cell death-inducing DNA fragmentation factor-α-like effector (CIDE) proteins, including Cidea, Cideb, and Cidec (also called Fsp27), play important roles in lipid metabolism. Cidea and Cidec are LD-associated proteins that promote atypical LD fusion in adipocytes. Here, we find that CIDE proteins are all localized to LD-LD contact sites (LDCSs) and promote lipid transfer, LD fusion, and growth in hepatocytes. We have identified two types of hepatocytes, one with small LDs (small LD-containing hepatocytes, SLHs) and one with large LDs (large LD-containing hepatocytes, LLHs) in the liver. Cideb is localized to LDCSs and promotes lipid exchange and LD fusion in both SLHs and LLHs, whereas Cidea and Cidec are specifically localized to the LDCSs and promote lipid exchange and LD fusion in LLHs. Cideb-deficient SLHs have reduced LD sizes and lower lipid exchange activities. Fasting dramatically induces the expression of Cidea/Cidec and increases the percentage of LLHs in the liver. The majority of the hepatocytes from the liver of obese mice are Cidea/Cidec-positive LLHs. Knocking down Cidea or Cidec significantly reduced lipid storage in the livers of obese animals. Our data reveal that CIDE proteins play differential roles in promoting LD fusion and lipid storage; Cideb promotes lipid storage under normal diet conditions, whereas Cidea and Cidec are responsible for liver steatosis under fasting and obese conditions.  相似文献   

5.
Dysregulation of lipid homeostasis leads to the development of metabolic disorders including obesity, diabetes, cardiovascular disease and cancer. Lipid droplets (LDs) are subcellular organelles vital in the maintenance of lipid homeostasis by coordinating lipid synthesis, lipid storage, lipid secretion and lipolysis. Under fed condition, free fatty acids (FFAs) are remodeled and esterified into neutral lipids by lipogenesis and stored in the LDs. The lipid storage capacity of LDs is controlled by its growth via local lipid synthesis or by LD fusion. During fasting, neutral lipids are hydrolyzed by lipolysis, released as FFAs and secreted to meet energy demand. C ell death‐i nducing D NA fragmentation factor alpha (DFFA)‐like e ffector (CIDE) family proteins composed of Cidea, Cideb and Cidec/Fsp27 are ER‐ and LD‐associated proteins and have emerged as important regulators of lipid homeostasis. Notably, when localized on the LDs, CIDE proteins enrich at the LD‐LD contact sites (LDCSs) and control LD fusion and growth. Here, we summarize these recent advances made on the role of CIDE proteins in the regulation of lipid metabolism with a particular focus on the molecular mechanisms underlying CIDE‐mediated LD fusion and growth.  相似文献   

6.
Lipid droplets are accumulations of neutral lipids surrounded by a monolayer of phospholipids and associated proteins. Recent proteomic analysis of isolated droplets suggests that they are part of a dynamic organelle system that is involved in membrane traffic as well as packaging and distributing lipids in the cell. To gain a better insight into the function of droplets, we used a combination of mass spectrometry and NMR spectroscopy to characterize the lipid composition of this compartment. In addition to cholesteryl esters and triacylglycerols with mixed fatty acid composition, we found that approximately 10-20% of the neutral lipids were the ether lipid monoalk(en)yl diacylglycerol. Although lipid droplets contain only 1-2% phospholipids by weight, >160 molecular species were identified and quantified. Phosphatidylcholine (PC) was the most abundant class, followed by phosphatidylethanolamine (PE), phosphatidylinositol, and ether-linked phosphatidylcholine (ePC). Relative to total membrane, droplet phospholipids were enriched in lysoPE, lysoPC, and PC but deficient in sphingomyelin, phosphatidylserine, and phosphatidic acid. These results suggest that droplets play a central role in ether lipid metabolism and intracellular lipid traffic.  相似文献   

7.
敲除Adipophilin基因对脂质代谢相关疾病的作用   总被引:1,自引:0,他引:1  
Adipophilin是PAT (perilipin/adipophilin/Tip47)蛋白家族的一个成员,定位于细胞质和细胞内的脂滴表面.Adipophilin能促进脂质蓄积和细胞内脂滴的形成,在泡沫细胞的形成中起重要作用,是动脉粥样硬化脂质蓄积的一个标记物.Adipophilin基因敲除小鼠能预防高脂饮食诱导的脂肪肝产生,且在脂肪组织分化过程中也起着一定的作用.本文概述了adipophilin在细胞内脂质代谢中的作用.  相似文献   

8.
《Developmental cell》2021,56(18):2592-2606.e7
  1. Download : Download high-res image (102KB)
  2. Download : Download full-size image
  相似文献   

9.
10.
脂滴包被蛋白(perilipin)调控脂肪分解   总被引:8,自引:0,他引:8  
Xu C  He JH  Xu GH 《生理科学进展》2006,37(3):221-224
脂滴包被蛋白(perilipin)包被在脂肪细胞和甾体生成细胞脂滴表面。基础状态下perilipin可减少甘油三酯水解,使其贮备增加;脂肪分解时磷酸化的perilipin能促进甘油三酯水解,而且该蛋白对激素敏感脂酶从胞浆向脂滴转位是必需的。据推测,perilipin可能在脂肪分解调控中起到“分子开关”的作用。蛋白激酶A(PKA)、细胞外信号调节激酶(ERK)等信号转导通路参与了脂肪分解。肿瘤坏死因子仅(TNFα)、过氧化物酶体增殖物激活受体γ(PPAγ)激动剂、瘦素(leptin)均可以影响perilipin的表达。新近研究表明,perilipin可通过蛋白酶体途径来调节其蛋白量的表达。脂肪分解调控中的关键蛋白perilipin可以和2型糖尿病、肥胖、动脉粥样硬化等多种代谢性疾病及心血管疾病联系起来。  相似文献   

11.
To prevent extraction of lipids during a double staining procedure for electron microscopy, the tissue slices, double fixed with glutaraldehyde and osmium tetroxide to preserve microvesicular lipid droplets in the cytoplasm, were immersed for 2 hr in veronal buffer (pH 9.0) containing 0.5% p-phenylenediamine and 0.5% imidazole immediately after postfixation. The stained sections of the immersed tissue slice showed blackened, well circumscribed lipid droplets similar to those in corresponding unstained sections. Moreover, highly contrasting features of the cellular architecture could be visualized with the double stained, as well as routinely prepared sections.  相似文献   

12.
UBXD8是能与p97/VCP相互作用共同参与内质网相关的泛素化后蛋白质降解过程的膜蛋白.新近的脂滴蛋白质组学研究表明UBXD8能够定位到脂滴上,同时有研究表明UBXD8调控甘油三酯的代谢.但是UBXD8调控甘油三酯代谢的分子机制并不清楚.因此我们采用改良的CRISPR/Cas9技术敲除小鼠成骨骼肌细胞C2C12中的UBXD8.从筛选出来的26个可能的UBXD8敲除单克隆细胞系中鉴定获得了2个确切的UBXD8敲除单克隆细胞系.研究表明,敲除UBXD8没有显著改变脂滴上蛋白质的分布,但敲除UBXD8增加了细胞内中性脂的累积.同时敲除UBXD8可缓解棕榈酸引起的胰岛素抵抗和抵抗棕榈酸引起的细胞凋亡.当在敲除UBXD8的细胞中重新过表达UBXD8后,细胞再次出现了棕榈酸引起的胰岛素抵抗及细胞凋亡.这些数据表明UBXD8在细胞脂质代谢及其异常所引起的胰岛素信号和细胞凋亡中起着十分重要的作用.  相似文献   

13.
Stocks of protargol of foreign origin are becoming exhausted, and since such protargol is no longer available, the American-made product must be used for histologic staining. Some of the earlier domestic protargol seems not to have given satisfaction in neurohistology; therefore it seemed desirable to compare the staining qualities of the pre-war material with several lots furnished recently by Winthrop-Stearns, Inc., New York City.  相似文献   

14.
The ultrastructure of bovine embryos developed from in vitro‐matured and ‐fertilized oocytes, cocultured with bovine cumulus/granulosa cells either in a serum‐free medium (IVMD101) or in a serum‐containing medium (TCM199+CS) was compared. Embryos up to the eight‐cell stage had many cellular organelles and cytoplasmic components that were randomly distributed in the cytoplasm. Mitochondria were spherical or ovoid and had only a few peripheral cristae. There were no obvious differences in the ultrastructure between embryos developed in IVMD101 and TCM199+CS up to the eight‐cell stage. However, conspicuous differences in the ultrastructural features between the embryos cultured in IVMD101 and TCM199+CS were observed at the morula and blastocyst stages. At the morula stage, embryos cultured in IVMD101 had cells containing elongated mitochondria, well‐developed Golgi apparatus, lipid droplets, and large vesicles resembling lysosomes. The lysosome‐like vesicles were partially filled with electron‐dense materials and were frequently fused with lipid droplets. The blastomeres of morulae cultured in TCM199+CS contained numerous large lipid droplets and fewer lysosome‐like vesicles than those cultured in IVMD101. In blastocysts cultured in IVMD101, lysosome‐like vesicles were frequently observed in the trophoblast cells and lipid droplets were present in the cytoplasm of trophoblast and inner cell mass (ICM)‐cells, but they were not abundant. On the other hand, the blastocysts developed in TCM199+CS contained fewer lysosome‐like vesicles and large numbers of lipid droplets. This accumulation of lipid droplets was higher in the trophoblast cells than in the ICM‐cells. This study showed major differences in the ultrastructural features between the morulae and blastocysts from serum‐free and serum‐supplemented cultures, suggesting that the ultrastructural differences may reflect physiological characteristics of embryos. Mol. Reprod. Dev. 53:325–335, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

15.
16.
Proteomic approaches on lipid bodies have led to the identification of proteins associated with this compartment, showing that, rather than the inert fat depot, lipid droplets appear as complex dynamic organelles with roles in metabolism control and cell signaling. We focused our investigations on caleosin [ Arabidopsis thaliana caleosin 1 (AtClo1)], a minor protein of the Arabidopsis thaliana seed lipid body. AtClo1 shares an original triblock structure, which confers to the protein the capacity to insert at the lipid body surface. In addition, AtClo1 possesses a calcium-binding domain. The study of plants deficient in caleosin revealed its involvement in storage lipid degradation during seed germination. Using Saccharomyces cerevisiae as a heterologous expression system, we investigated the potential role of AtClo1 in lipid body biogenesis and filling. The green fluorescent protein-tagged protein was correctly targeted to lipid bodies. We observed an increase in the number and size of lipid bodies. Moreover, transformed yeasts accumulated more fatty acids (+46.6%). We confirmed that this excess of fatty acids was due to overaccumulation of lipid body neutral lipids, triacylglycerols and steryl esters. We showed that the original intrinsic properties of AtClo1 protein were sufficient to generate a functional lipid body membrane and to promote overaccumulation of storage lipids in yeast oil bodies.  相似文献   

17.
Liver steatosis is characterized by an abnormal buildup of hepatic fat content. Our understanding of how this fat balance is normally regulated remains limited. Recently, autophagy has been implicated as one potential mechanism contributing to the breakdown of cytoplasmic fat storage organelles known as lipid droplets (LDs) in the hepatocyte. In our recent publication, we show that the large GTPase DNM2/dynamin 2 helps promote lipophagic turnover by facilitating the scission of nascent lysosomes from autolysosomal tubules during autophagic flux. Genetic and pharmacological perturbations of DNM2 function in cultured cells result in the generation of aberrantly long autolysosomal reformation tubules. As a consequence, hepatocytes accumulate LDs. An alleviation of DNM2 inhibition results in the scission of reformation tubules and the return of LD turnover to normal levels. DNM2 therefore plays a critical role in the regulation of the lipophagic machinery in the hepatocyte.  相似文献   

18.
Glycerol-3-phosphate acyltransferase-4 (GPAT4) null pups grew poorly during the suckling period and, as adults, were protected from high fat diet-induced obesity. To determine why Gpat4−/− mice failed to gain weight during these two periods of high fat feeding, we examined energy metabolism. Compared with controls, the metabolic rate of Gpat4−/− mice fed a 45% fat diet was 12% higher. Core body temperature was 1 ºC higher after high fat feeding. Food intake, fat absorption, and activity were similar in both genotypes. Impaired weight gain in Gpat4−/− mice did not result from increased heat loss, because both cold tolerance and response to a β3-adrenergic agonist were similar in both genotypes. Because GPAT4 comprises 65% of the total GPAT activity in brown adipose tissue (BAT), we characterized BAT function. A 45% fat diet increased the Gpat4−/− BAT expression of peroxisome proliferator-activated receptor α (PPAR) target genes, Cpt1α, Pgc1α, and Ucp1, and BAT mitochondria oxidized oleate and pyruvate at higher rates than controls, suggesting that fatty acid signaling and flux through the TCA cycle were enhanced. To assess the role of GPAT4 directly, neonatal BAT preadipocytes were differentiated to adipocytes. Compared with controls, Gpat4−/− brown adipocytes incorporated 33% less fatty acid into triacylglycerol and 46% more into the pathway of β-oxidation. The increased oxidation rate was due solely to an increase in the oxidation of exogenous fatty acids. These data suggest that in the absence of cold exposure, GPAT4 limits excessive fatty acid oxidation and the detrimental induction of a hypermetabolic state.  相似文献   

19.
Yuan Li  Wei-Xing Zong 《Autophagy》2017,13(11):1995-1997
Fatty acids are an important cellular energy source under starvation conditions. However, excessive free fatty acids (FFAs) in the cytoplasm cause lipotoxicity. Therefore, it is important to understand the mechanisms by which cells mobilize lipids and maintain a homeostatic level of fatty acids. Recent evidence suggests that cells can break down lipid droplets (LDs), the intracellular organelles that store neutral lipids, via PNPLA2/adipose triglyceride lipase and a selective type of macroautophagy/autophagy termed lipophagy, to release FFAs under starvation conditions. FFAs generated from LD catabolism are either transported to mitochondria for β-oxidation or converted back to LDs. The biogenesis of LDs under starvation conditions is mediated by autophagic degradation of membranous organelles and requires diacylglycerol O-acyltransferase 1, which serves as an adaptive cellular protective mechanism against lipotoxicity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号