首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) plays a central role in chronic HBV infection. However, analysis of the molecular mechanism of cccDNA formation is difficult because of the low efficiency in tissue cultured cells. In this study, we developed a more efficient cccDNA expression cell, Hep38.7-Tet, by subcloning from a tetracycline inducible HBV expression cell, HepAD38. Higher levels of cccDNA were produced in Hep38.7-Tet cells compared to HepAD38 cells. In Hep38.7-Tet cells, the cccDNA was detectable at six days after HBV induction. HBV e antigen (HBeAg) secretion was dependent upon cccDNA production. We screened chemical compounds using Hep38.7-Tet cells and HBeAg secretion as a marker. Most of the hit compounds have already been reported as anti-HBV compounds. These data suggested that Hep38.7-Tet cells will be powerful tools for analysis of the molecular mechanism of cccDNA formation/maintenance and development of novel therapeutic agents to control HBV infection.  相似文献   

2.
Hepatitis B virus(HBV) infection is a severe health problem in the world. However, there is still not a satisfactory therapeutic strategy for the HBV infection. To search for new anti-HBV agents with higher efficacy and less side-effects, the inhibitory activities of traditional Chinese medicine Rheum palmatum L. ethanol extract(RPE) against HBV replication were investigated in this study. Quantitative real-time polymerase chain reaction(PCR) was employed to analyze the inhibitory activity of RPE against HBV-DNA replication in a stable HBV-producing cell line HepAD38; the expression levels of HBV surface antigen(HBsAg) and e antigen(HBeAg) were also determined by enzyme linked immunosorbent assay(ELISA) after RPE treatment. RPE could dose-dependently inhibit the production of HBV-DNA and HBsAg. The concentration of 50% inhibition(IC50) was calculated at 209.63, 252.53 μg /mL, respectivel y. However, its inhibitory activity against HBeAg expression was slight even at high concentrations. RPE had a weak cytotoxic effect on HepAD38 cells(CC50 = 1 640 μg /mL) and the selectivity index(SI) was calculated at 7.82. Compared with two anthraquinone derivatives emodin and rhein, RPE showed higher ability of anti-HBV and weaker cytotoxicity. So Rheum palmatum L. might possess other functional agents which could effectively inhibit HBV-DNA replication and HBsAg expression. Further purification of the active agents, identification and modification of their structures to improve the efficacy and decrease the cytotoxicity are required.  相似文献   

3.
Hepatitis B virus (HBV) infection is a global public health problem that plays a crucial role in the pathogenesis of chronic hepatitis, cirrhosis, and hepatocellular carcinoma. However, the pathogenesis of HBV infection and the mechanisms of host-virus interactions are still elusive. In this study, two-dimensional gel electrophoresis and mass spectrometry-based comparative proteomics were applied to analyze the host response to HBV using an inducible HBV-producing cell line, HepAD38. Twenty-three proteins were identified as differentially expressed with glucose-regulated protein 78 (GRP78) as one of the most significantly up-regulated proteins induced by HBV replication. This induction was further confirmed in both HepAD38 and HepG2 cells transfected with HBV-producing plasmids by real time RT-PCR and Western blotting as well as in HBV-infected human liver biopsies by immunohistochemistry. Knockdown of GRP78 expression by RNA interference resulted in a significant increase of both intracellular and extracellular HBV virions in the transient HBV-producing HepG2 cells concomitant with enhanced levels of hepatitis B surface antigen and e antigen in the culture medium. Conversely overexpression of GRP78 in HepG2 cells led to HBV suppression concomitant with induction of the positive regulatory circuit of GRP78 and interferon-β1 (IFN-β1). In this connection, the IFN-β1-mediated 2′,5′-oligoadenylate synthetase and RNase L signaling pathway was noted to be activated in GRP78-overexpressing HepG2 cells. Moreover GRP78 was significantly down-regulated in the livers of chronic hepatitis B patients after effective anti-HBV treatment (p = 0.019) as compared with their counterpart pretreatment liver biopsies. In conclusion, the present study demonstrates for the first time that GRP78 functions as an endogenous anti-HBV factor via the IFN-β1-2′,5′-oligoadenylate synthetase-RNase L pathway in hepatocytes. Induction of hepatic GRP78 may provide a novel therapeutic approach in treating HBV infection.Hepatitis B virus infection is a global public health problem. An estimated 2 billion (one-third of the world''s population) people are infected with HBV1 worldwide, and more than 400 million are chronic hepatitis B (CHB) carriers (1). Epidemiological studies have shown that HBV infection is one of the major risk factors for chronic hepatitis, liver fibrosis, and hepatocellular carcinoma (HCC). Every year, over 1 million people die of HBV-related liver diseases, 30–50% of which are attributed to HCC (2). In China, more than 130 million (10% of the national population) people are suffering from CHB (3), and HCC has been ranked as the second major cause of cancer-related death since 1990 (4). However, the limited efficacy of antiviral therapies, high rates of post-treatment HBV relapse, and the emergence of drug-resistant viral mutants have greatly hindered the effective management of CHB infection. Therefore, it is of prime importance to understand the mechanisms of HBV-host interactions during malignant transformation in CHB infection to identify novel therapeutic anti-HBV targets.Because human HBV is incapable of infecting hepatocytes in vitro efficiently and the availability of reliable in vitro culture systems that favor HBV replication is limited, the pathogenetic studies of HBV and the development of anti-HBV drugs have long been hampered. HepAD38 and HepG2.2.15, both of which are derived from HepG2 cells and integrated with a greater than 1-unit-length HBV genome, have been widely accepted and are well established cell lines for the study of the HBV life cycle and screening potential HBV inhibitors since the late 1990s (5, 6). Recently comparative proteomics analysis of the HBV-expressing HepG2.2.15 cells and the parental HepG2 cells has been performed in two independent laboratories to characterize the altered proteome profile induced by HBV (7, 8). However, the different genetic backgrounds of HepG2.2.15 and HepG2 may lead to an inaccurate evaluation of the impact of HBV replication on host genes. When compared with HepG2.2.15 cells, which produce HBV particles in a continuous manner, HepAD38 cells produce higher levels of HBV DNA in a controllable and inducible way (5). HBV production in HepAD38 is under the strict control of a tetracycline-responsive promoter; therefore, a direct comparison of cellular characteristics with or without HBV replication in HepAD38 is easily achieved. To date, changes in the proteome profile of HepAD38 induced by HBV replication have not been reported. In this study, we performed comparative proteomics to globally analyze the host response to HBV by using an inducible HBV-producing cell line, HepAD38. The combination of two-dimensional gel electrophoresis (2-DE) and MALDI-TOF MS revealed that 23 cellular proteins were differentially expressed when HBV replicated. Among them, GRP78, which was one of the most highly up-regulated proteins, was further selected for functional assessment.  相似文献   

4.
Selective inhibition of hepatitis B virus replication by RNA interference   总被引:43,自引:0,他引:43  
Small interfering RNA (siRNA) is a powerful tool to silence gene expression in mammalian cells including genes of viral origin. To evaluate the therapeutic efficacy of siRNA against the hepatitis B virus (HBV), we studied the effect of transfection of the HBV-inducible cell lines HepAD38 and HepAD79 with siRNA specific for the core gene of the HBV genome. HepAD38 cells produce wild-type HBV, whereas HepAD79 cells produce the lamivudine resistant YMDD variant. Transfection of HepAD38 cells with either 1.6 or 4 microg/ml siRNA resulted in a profound inhibition (72% and 98%, respectively) of viral replication (as assessed by real-time quantitative PCR). The inhibitory effect was corroborated by a marked reduction of HBV core protein synthesis in induced HepAD38 cells. In HepAD79 cells, transfected with 1.6 or 4 microg/ml HBV-specific siRNA, virus production was reduced by 75% and 89%, respectively.  相似文献   

5.
Hepatitis B virus(HBV) infection is a severe health problem in the world.However,there is still not a satisfactory therapeutic strategy for the HBV infection.To search for new anti-HBV agents with higher efficacy and less side-effects,the inhibitory activities of traditional Chinese medicine Rheum palmatum L.ethanol extract(RPE) against HBV replication were investigated in this study.Quantitative real-time polymerase chain reaction(PCR) was employed to analyze the inhibitory activity of RPE against HBV-DNA replication in a stable HBV-producing cell line HepAD38; the expression levels of HBV surface antigen(HBsAg) and e antigen(HBeAg) were also determined by enzyme linked immunosorbent assay(ELISA) after RPE treatment.RPE could dose-dependently inhibit the production of HBV-DNA and HBsAg.The concentration of 50% inhibition(IC50) was calculated at 209.63,252.53 μg/mL,respectively.However,its inhibitory activity against HBeAg expression was slight even at high concentrations.RPE had a weak cytotoxic effect on HepAD38 cells(CC50 = 1 640 μg/mL) and the selectivity index(SI) was calculated at 7.82.Compared with two anthraquinone derivatives emodin and rhein,RPE showed higher ability of anti-HBV and weaker cytotoxicity.So Rheum palmatum L.might possess other functional agents which could effectively inhibit HBV-DNA replication and HBsAg expression.Further purification of the active agents,identification and modification of their structures to improve the efficacy and decrease the cytotoxicity are required.  相似文献   

6.
Antiviral therapy of chronic hepatitis B remains a major clinical problem worldwide. Like lamivudine, nucleoside analogs have become the focus of investigation of anti-hepatitis B virus (anti-HBV) drugs. Here, β-LPA is a novel 2,6-diaminopurine analog found to possess potent anti-HBV activity. In HepG2.2.15 cell line, β-LPA had a 50% effective concentration (EC50) of 0.01 μM against HBV, as determined by analysis of secreted and intracellular episomal HBV DNA. Levels of HBV surface antigen (HBsAg) and e antigen (HBeAg) in drug-treated cultures revealed that β-LPA had no significant inhibitory effects on HBsAg and HBeAg. β-LPA didn’t show any cytotoxicity up to 0.4 μM with a 50% cytotoxic concentration (CC50) of 50 μM. Furthermore, treatment with β-LPA resulted in no apparent inhibitory effects on mitochondrial DNA content. Considering the potent inhibition of HBV DNA synthesis and no obvious toxicity of β-LPA, this compound should be further explored for development as an anti-HBV drug.  相似文献   

7.
8.
Dehydroandrographolide and andrographolide, two natural diterpenoids isolated from Andrographis paniculata possessed activity against HBV DNA replication with IC50 values of 22.58 and 54.07 μM and low SI values of 8.7 and 3.7 in our random assay. Consequently, 48 derivatives of dehydroandrographolide and andrographolide were synthesized and evaluated for their anti-HBV properties to yield a series of active derivatives with lower cytotoxicity, including 14 derivatives against HBsAg secretion, 19 derivatives against HBeAg secretion and 38 derivatives against HBV DNA replication. Interestingly, compound 4e could inhibit not only HBsAg and HBeAg secretions but also HBV DNA replication with SI values of 20.3, 125.0 and 104.9. Furthermore, the most active compound 2c with SI value higher than 165.1 inhibiting HBV DNA replication was revealed with the optimal log P value of 1.78 and log D values. Structure–activity relationships (SARs) of the derivatives were disclosed for guiding the future research toward the discovery of new anti-HBV drugs.  相似文献   

9.
Despite an existing effective vaccine, hepatitis B virus (HBV) remains a major public health concern. There are effective suppressive therapies for HBV, but they remain expensive and inaccessible to many, and not all patients respond well. Furthermore, HBV can persist as genomic covalently closed circular DNA (cccDNA) that remains in hepatocytes even during otherwise effective therapy and facilitates rebound in patients after treatment has stopped. Therefore, the need for an effective treatment that targets active and persistent HBV infections remains. As a novel approach to treat HBV, we have targeted the HBV genome for disruption to prevent viral reactivation and replication. We generated 3 zinc finger nucleases (ZFNs) that target sequences within the HBV polymerase, core and X genes. Upon the formation of ZFN-induced DNA double strand breaks (DSB), imprecise repair by non-homologous end joining leads to mutations that inactivate HBV genes. We delivered HBV-specific ZFNs using self-complementary adeno-associated virus (scAAV) vectors and tested their anti-HBV activity in HepAD38 cells. HBV-ZFNs efficiently disrupted HBV target sites by inducing site-specific mutations. Cytotoxicity was seen with one of the ZFNs. scAAV-mediated delivery of a ZFN targeting HBV polymerase resulted in complete inhibition of HBV DNA replication and production of infectious HBV virions in HepAD38 cells. This effect was sustained for at least 2 weeks following only a single treatment. Furthermore, high specificity was observed for all ZFNs, as negligible off-target cleavage was seen via high-throughput sequencing of 7 closely matched potential off-target sites. These results show that HBV-targeted ZFNs can efficiently inhibit active HBV replication and suppress the cellular template for HBV persistence, making them promising candidates for eradication therapy.  相似文献   

10.
黏病毒抗性蛋白A(myxovirus resistance protein A,MxA)是由干扰素诱导的具有重要抗乙肝病毒(hepatitis B virus,HBV)功能的蛋白质,我们前期工作发现,MxA主要依赖其中心互作结构域(central interactive domain,CID)与病毒直接相互作用发挥功能,但其具体的抗病毒功能区以及功能区是否具有独立的抗病毒活性仍不清楚。本研究拟鉴定MxA蛋白上的抗乙肝病毒活性肽。首先从全长MxA构建缺失突变体ΔCID和截短体CID,以HepG2-2-15细胞为病毒模型,分别转染空载质粒、MxA、ΔCID和CID,免疫荧光法检测转染效率,Western印迹法检测质粒表达,酶联免疫法测定细胞培养液中HBsAg、HBeAg的量及荧光定量PCR法测定乙肝病毒 DNA的量,评估CID段的抗乙肝病毒活性。根据CID段的晶体结构,缩短肽段长度,构建α1、α2、α3等9段肽段质粒,鉴定各段的抗乙肝病毒活性和细胞毒性(MTT法)。运用计算生物学手段--分子对接法预测MxA蛋白与病毒相互作用的模式和位点。结果显示,ΔCID、CID和9段肽段质粒的序列及表达正确,9段肽段的表达量未见显著性差异,无显著的细胞毒性。CID组和黏病毒抗性蛋白A组较对照组乙肝病毒的复制水平显著降低,CID组细胞上清中HBsAg、HBeAg及乙肝病毒 DNA的量分别减少了55.57%±8.48%、68.37%±6.24%、66.67%±6.40%,P<0.01;MxA组的3个指标分别减少了61.63%±3.11%、70.77%±7.25%、73.73%±6.18%,P<0.01;ΔCID组较对照组无明显变化。9段肽段中α1组较对照组HBsAg、HBeAg及乙肝病毒 DNA的量有显著下降,分别减少了48.33%±1.70%、70.67%±3.30%、68.95%±2.55%,P<0.001,表明α1对乙肝病毒具有强抑制活性。分子对接的结果显示,384 ~ 408位氨基酸是MxA蛋白与病毒互作的关键位点,该区域落在α1肽段上,验证了α1是MxA蛋白抗乙肝病毒及与乙肝病毒相互作用中的关键区段。本研究筛选并鉴定出人干扰素诱导蛋白MxA上最有效的抗乙肝病毒活性肽α1,研究结果为抗乙肝病毒多肽类新药的研发奠定了基础。  相似文献   

11.
应用ELISA和PCR法检测502例乙肝病人血清,401例HBsAg阳性血清中,有114例(28.4%)抗-HCV和HCVRNA双项阳性,25例(6.2%)HCVRNA单项阳性;21例(5.2%)抗-HCV单项阳性。将HBsAg乙肝病人分成HBVDNA,HBeAg阳性组和HBVDNA,HBeAg阴性组。前者抗-HCV阳性率为11.6%~20.5%,HCVRNA阳性率为16.2%~20.5%。后者抗-HCV阳性率为20.2%~55.6%,HCVRNA阳性率为23%~60.3%。结果说明长期携带HBV者和慢性乙肝病人均可重叠HCV感染。HBVDNA阳性组抗-HCV和HCVRNA阳性率明显高于HBVDNA阳性组  相似文献   

12.
A series of hemslecin A derivatives were synthesized and evaluated for their anti-hepatitis B virus (HBV) activities, namely, inhibiting the secretion of hepatitis B surface antigen (HBsAg), hepatitis B e antigen (HBeAg), and HBV DNA replication on HepG 2.2.15 cells. Most of the derivatives showed enhanced anti-HBV activities, of which compounds A1A7, B5, C and E exhibited significant activities inhibiting HBV DNA replication with IC50 values of 2.8–11.6 μM, comparable to that of the positive control, tenofovir. Compounds A1A3, A5, B5, and C displayed low cytotoxicities, which resulted in high SI values of 89.7, 55.6, 77.8, >83.4, >55.8, and >150.5, respectively.  相似文献   

13.
14.
15.
16.
The hepatitis B virus (HBV) core protein (HBc) functions in multiple steps of the viral life cycle. Heteroaryldihydropyrimidine compounds (HAPs) such as Bay41-4109 are capsid protein allosteric modulators that accelerate HBc degradation and inhibit the virion secretion of HBV, specifically by misleading HBc assembly into aberrant non-capsid polymers. However, the subsequent cellular fates of these HAP-induced aberrant non-capsid polymers are not well understood. Here, we discovered that that the chaperone-binding E3 ubiquitin ligase protein STUB1 is required for the removal of Bay41-4109-induced aberrant non-capsid polymers from HepAD38 cells. Specifically, STUB1 recruits BAG3 to transport Bay41-4109-induced aberrant non-capsid polymers to the perinuclear region of cells, thereby initiating p62-mediated macroautophagy and lysosomal degradation. We also demonstrate that elevating the STUB1 level enhances the inhibitory effect of Bay41-4109 on the production of HBeAg and HBV virions in HepAD38 cells, in HBV-infected HepG2-NTCP cells, and in HBV transgenic mice. STUB1 overexpression also facilitates the inhibition of Bay41-4109 on the cccDNA formation in de novo infection of HBV. Understanding these molecular details paves the way for applying HAPs as a potentially curative regimen (or a component of a combination treatment) for eradicating HBV from hepatocytes of chronic infection patients.  相似文献   

17.
18.
观察联合应用siRNA对HepG2.2.15细胞中HBV抗原表达和复制的抑制作用。应用ELISA方法检测HBeAg和HBsAg;HBVDNA水平用实时定量PCR测定;用RT—PCR检测HBVmRNA水平。结果显示,实验中应用的HBV特异性siRNA均具有明显的抗HBV抗原表达和病毒复制作用;联合应用siRNA较单独应用具有更强的抗HBV作用。可见,HepG2.2.15细胞中联合应用siRNA对HBV复制的抑制作用比单独应用siRNA更有效。  相似文献   

19.
RNA interference (RNAi) may be harnessed to inhibit viral gene expression and this approach is being developed to counter chronic infection with hepatitis B virus (HBV). Compared to synthetic RNAi activators, DNA expression cassettes that generate silencing sequences have advantages of sustained efficacy and ease of propagation in plasmid DNA (pDNA). However, the large size of pDNAs and inclusion of sequences conferring antibiotic resistance and immunostimulation limit delivery efficiency and safety. To develop use of alternative DNA templates that may be applied for therapeutic gene silencing, we assessed the usefulness of PCR-generated linear expression cassettes that produce anti-HBV micro-RNA (miR) shuttles. We found that silencing of HBV markers of replication was efficient (>75%) in cell culture and in vivo. miR shuttles were processed to form anti-HBV guide strands and there was no evidence of induction of the interferon response. Modification of terminal sequences to include flanking human adenoviral type-5 inverted terminal repeats was easily achieved and did not compromise silencing efficacy. These linear DNA sequences should have utility in the development of gene silencing applications where modifications of terminal elements with elimination of potentially harmful and non-essential sequences are required.  相似文献   

20.
用修饰核心基因产物干扰乙型肝炎病毒基因的复制和表达   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号